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We reexamine k-essence dark energy models with a scalar field φ and a factorized Lagrangian,
L = V (φ)F (X), with X = 1

2
∇µφ∇

µφ. A value of the equation of state parameter, w, near −1
requires either X ≈ 0 or dF/dX ≈ 0. Previous work showed that thawing models with X ≈ 0
evolve along a set of unique trajectories for w(a), while those with dF/dX ≈ 0 can result in a
variety of different forms for w(a). We show that if dV/dφ is small and (1/V )(dV/dφ) is roughly
constant, then the latter models also converge toward a single unique set of behaviors for w(a),
different from those with X ≈ 0. We derive the functional form for w(a) in this case, determine the
conditions on V (φ) for which it applies, and present observational constraints on this new class of
models. We note that k-essence models with dF/dX ≈ 0 correspond to a dark energy sound speed
c2s ≈ 0.

I. INTRODUCTION

Observational evidence [1–7] indicates that roughly
70% of the energy density in the universe is in the form
of a component called dark energy, which has negative
pressure, and roughly 30% is in the form of nonrelativistic
matter. The dark energy component can be parametrized
in terms of its equation of state parameter, w, defined as
the ratio of the dark energy pressure to its density:

w = p/ρ. (1)

A cosmological constant, Λ, corresponds to the case ρ =
constant and w = −1 .
While a model with a cosmological constant and

cold dark matter (ΛCDM) is consistent with current
observations, there are other models of dark energy
that have a dynamical equation of state. The most
widely-investigated are quintessence models, with a time-
dependent scalar field, φ, having potential V (φ) [8–14].
(See Ref. [15] for a review).
While quintessence generically produces a time-

varying value for w, a successful model must closely
mimic ΛCDM in order to be consistent with current ob-
servations. Hence, a viable model should yield a present-
day value of w close to −1. This fact has been exploited in
a number of papers that explored the evolution of a scalar
field subject to the constraint that w must be close to −1
[16–21]. By imposing this constraint, one can reduce an
infinite number of models to a finite set of behaviors for
w(a).
In Ref. [22], this methodology was extended to

k-essence models, which are characterized by a non-
standard kinetic term in the Lagrangian. Ref. [22] found
two sets of solutions that yield w ≈ −1. The first cor-
responds to φ̇ → 0 (where dot will refer throughout to
the time derivative), and it yields a single set of behav-
iors for w(a). The evolution of w in this case turns out
to be identical to the quintessence models investigated
in Refs. [17–19]. The second solution corresponds to

φ̇ → constant. However, in the latter case, the solution
is sensitive to the functional form for V (φ) and therefore
fails to correspond to a single set of behaviors for w(a).
In this paper, we revisit the second class of these so-

lutions and show that, under some conditions on the po-
tential V (φ), they do converge to a single unique set of
trajectories for w(a). Specifically, when |(1/V )(dV/dφ)|
is small and nearly constant as φ evolves, then the evo-
lution of w(a) converges toward a single functional be-
havior. Furthermore, unlike the solutions derived in Ref.
[22], the new class of solutions derived here correspond to
behavior for w(a) that differs from previously-examined
quintessence evolution.
In the next section, we briefly review previously-

derived results for quintessence and k-essence evolution
for w near −1. In Sec. III, we present our new results
for k-essence evolution, along with a discussion of the pa-
rameter ranges over which these solutions are valid. We
discuss our results, including observational constraints,
in Sec. IV.

II. PREVIOUS RESULTS

Before deriving our new results for k-essence, we need
to present, for comparison, previously-derived results for
both quintessence and k-essence evolution. We assume a
flat universe with the Hubble parameter given by

H =

(

ȧ

a

)

=
√

ρ/3. (2)

Here a is the scale factor (with a = 1 at the present),
ρ is the total density, and we work in units for which
8πG = 1. At late times, the contribution of photons
and neutrinos to the expansion can be neglected, so we
take ρ to include only matter (dark matter plus baryons)
with a density scaling as a−3, and our unknown dark
energy component, with a density which we assume to
be approximately (but not exactly) constant.
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A. Quintessence

In this section, we will assume that the dark energy
is provided by a minimally-coupled scalar field, φ, with
equation of motion given by

φ̈+ 3Hφ̇+
dV

dφ
= 0. (3)

Equation (3) indicates that the field rolls downhill in the
potential V (φ), but its motion is damped by a term pro-
portional to H .
The pressure and density of the scalar field are given

by

p =
φ̇2

2
− V (φ), (4)

and

ρ =
φ̇2

2
+ V (φ), (5)

respectively, and the equation of state parameter, w, is
given by equation (1).
We will consider only “thawing” models, for which the

scalar field is initially at rest (φ̇ = 0, w = −1) and rolls
downhill in the potential V (φ) so that w increases up to
the present [23]. Then Ref. [16] considered potentials
satisfying the inflationary slow-roll conditions, namely

(

V ′

V

)2

≪ 1, (6)

and

V ′′

V
≪ 1, (7)

where the prime indicates throughout derivatives with
respect to the scalar field, φ.
Note, however, that the solutions derived here differ

markedly from the inflationary slow-roll solutions. In
the latter case, H in Eq. (3) contains only the density
of the scalar field itself, and a solution can be derived by
setting φ̈ in Eq. (3) equal to zero. When both the matter
and scalar field energy densities are included in H , this
solution is no longer valid, as discussed in detail in Refs.
[24, 25].
When conditions (6) and (7) are imposed on the po-

tential, along with the thawing initial condition (φ̇ = 0
at early times), it is possible to derive an approximate
analytic solution for w(a) that is independent of V (φ).
This solution is [16]

1 + w(a) = (1 + w0)

[

G(a) − (G(a)2 − 1) coth−1 G(a)
]2

[

G(1)− (G(1)2 − 1) coth−1 G(1)
]2 ,

(8)

where w0 is the value of w at the present. The function
G(a) is

G(a) =
√

1 + (Ω−1
φ0 − 1)a−3, (9)

where Ωφ0 is the fraction of the total density at present
contributed by the scalar field, which we will take
throughout to be Ωφ0 = 0.7. With these defini-

tions, G(a) = 1/
√

Ωφ(a) and G(1) = 1/
√

Ωφ0. Here
and throughout we will not give detailed derivations of
previously-derived results but will instead cite the origi-
nal papers; in this case, a detailed derivation of Eq. (8)
is given in Ref. [16]. Note that we use different no-
tation and express our results in a different functional
form than some of the earlier works cited here, both for
the sake of increased simplicity and to avoid confusion
with previously-adopted k-essence notation. The func-
tion given by Eq. (8) is displayed in Fig. 1 (green, long-
dashed curve).

FIG. 1: Evolution of 1+w relative to its value at the present,
1 + w0, as a function of the scale factor a for the analytic
predictions discussed in this paper. Solid (black) curve is
for k-essence with FX ≈ 0 (the new result of this paper).
Blue (dotted) curve and red (short-dashed) curve are for k-
essence with X ≈ 0 or quintessence with nonnegligible cur-
vature in the potential, for K = 2 and K → 0, respectively.
Green (long-dashed) curve is for quintessence in a nearly flat
potential. Magenta (dot-dashed) curve is for noncanonical
quintessence with α = 2.

In Refs. [17–19], the condition on the potential given
by Eq. (6) was retained, but condition (7) was relaxed,
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resulting in a wider range of possible behaviors. In this
case, the evolution of w with scale factor is given by [17–

19]

1 + w(a) = (1 + w0)a
3(K−1) [(G(a) + 1)K(K −G(a)) + (G(a)− 1)K(K +G(a))]2

[(G(1) + 1)K(K −G(1)) + (G(1)− 1)K(K +G(1))]2
, (10)

where the constant K is a function of V ′′/V ,

K =
√

1− (4/3)V ′′(φ∗)/V (φ∗), (11)

evaluated at φ∗, which can be taken to be the initial value
of φ [18]. Now instead of a single functional form for
w(a) for a given value of w0, Eq. (10) provides a family
of solutions that depend on K. As K becomes large,
these solutions thaw more slowly, i.e., w remains close
to −1 until later in the evolution [17]. In the opposite
limit, as K → 1, the solution in Eq. (10) approaches the
evolution given in Eq. (8). For K → 0, w increases more
rapidly than in Eq. (8). This behavior is illustrated in
Fig. 1, where (1 +w)/(1 +w0) is displayed as a function
of a for K = 2 (blue, dotted curve) and K → 0 (red,
short-dashed curve).

B. k-essence

Now consider k-essence models with w near −1. In
general, k-essence can be defined as any scalar field φ
with a noncanonical kinetic term, so that the Lagrangian
is of the form L(X,φ), where

X =
1

2
∇µφ∇

µφ. (12)

In practice, only a few special classes of such models have
been explored in detail. The most widely-investigated
class of models (and the one examined in detail here and
in Ref. [22]) is taken to have a Lagrangian in factorized
form:

L = V (φ)F (X). (13)

Such models were first introduced for inflation [26, 27],
and later extended to possible models for dark energy
[28–34].

Before considering such models in detail, we briefly
mention a second class of models, for which the La-
grangian has the form

L = Xα − V (φ). (14)

These models have been dubbed “noncanonical
quintessence” and have been previously examined
as models both for inflation [35, 36] and for dark energy
[37–42]. For these models, Li and Scherrer [42] showed
that when both slow-roll conditions on the potential
(Eqs. 6 and 7) are satisfied, the equation of state is
well-approximated by

1 + w(a) = (1 + w0)

[

G(a)− (G(a)2 − 1) coth−1 G(a)
]2α/(2α−1)

[

G(1)− (G(1)2 − 1) coth−1 G(1)
]2α/(2α−1)

. (15)

As expected, this expression for 1 + w(a) reduces to the
corresponding quintessence result (Eq. 8) when α = 1,
which corresponds to quintessence with a standard ki-
netic term. The behavior of (1+w)/(1+w0) as a function
of a for the representative case α = 2 is shown in Fig. 1
(magenta, dot-dashed curve).

Now we direct our attention to factorizable k-essence
models with the Lagrangian given by Eq. (13); such mod-
els are what is usually meant by the term “k-essence.”
The pressure in these models is simply given by equation

(13), while the energy density is

ρ = V (φ)[2XFX − F ], (16)

where FX ≡ dF/dX . Therefore, the equation of state
parameter is

w =
F

2XFX − F
. (17)

The sound speed, which is relevant for the growth of den-
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sity perturbations, is

c2s =
FX

2XFXX + FX
, (18)

with FXX ≡ d2F/dx2. In the flat Robertson-Walker met-
ric, the equation for the evolution of the k-essence field
takes the form:

(FX +2XFXX)φ̈+3HFX φ̇+(2XFX −F )
V ′

V
= 0. (19)

Chiba et al. [22] noted that w ≈ −1 in Eq. (17)
requires

|XFX | ≪ |F |, (20)

which can be satisfied when either (i) X ≈ 0 or (ii)
FX ≈ 0. Note that these two conditions are sufficient,
but not necessary to produce w ≈ −1; one can derive
other functional forms for F (X) for which Eq. (20) is
satisfied for arbitrary X . For example, if F = X−α we
obtain

w = −
1

2α+ 1
, (21)

and α << 1 corresponds to w ≈ −1. Here we will con-
sider only the two cases examined in Ref. [22], since these
both converge toward unique sets of behaviors for w(a).

Consider first case (i). For this case, Chiba et al.
showed that the resulting evolution for w is given by

1 + w(a) = (1 + w0)a
3(K−1) [(G(a) + 1)K(K −G(a)) + (G(a)− 1)K(K +G(a))]2

[(G(1) + 1)K(K −G(1)) + (G(1)− 1)K(K +G(1))]2
, (22)

where now,

K =

√

1−
4

3

V ′′(φi)

FX(0)V (φi)2
. (23)

This result is identical to the corresponding quintessence
result in Eq. (10). Thus, these two models are observa-
tionally indistinguishable. The behavior of (1 +w)/(1 +
w0) as given by Eq. (22) is displayed in Fig. 1 for
K = 2 (blue, dotted curve) and K → 0 (red, short-
dashed curve).
For case (ii), Chiba et al. derived a functional form

for w(a), but the result depends on V (φ) and is therefore
considerably less interesting. It is this second case that
we will revisit in the next section, showing that there are
some conditions under which it produces a single func-
tional behavior for w(a) that is independent of V (φ).

III. EVOLUTION OF w FOR k-ESSENCE

MODELS WITH FX ≈ 0

Consider a k-essence model for which FX ≈ 0. Follow-
ing Ref. [22], we will expand F (X) around the extremum

in F , which we will take to occur at X = Xm. Then tak-
ing

X = Xm +∆, (24)

where ∆ ≪ Xm, we can write F (X) as

F (X) = F (Xm) +
1

2
FXX(Xm)∆2, (25)

so that

FX(X) = FXX(Xm)∆, (26)

FXX(X) = FXX(Xm). (27)
Then Eq. (17) can be expanded to linear order in ∆ to
yield

1 + w =

[

2XmFXX(Xm)

F (Xm)

]

∆. (28)

In order to solve for w(a), we first need to reexpress Eq.
(19) in terms of ∆ instead of φ. Using Eqs. (24) - (27),
we can rewrite Eq. (19), up to linear order in ∆, as

∆̇ + 3H∆+

(

√

2Xm
V ′

V

)

∆−

(

√

2Xm
V ′

V

)(

F (Xm)

4X2
mFXX(Xm)

)

∆−

(

√

2Xm
V ′

V

)(

F (Xm)

2XmFXX(Xm)

)

= 0. (29)

The ratio of the third term to the final term is (from Eq.
28) equal to 1+w, which we take to be ≪ 1. The ratio of

the fourth term to the final term is ∆/2Xm, and we have
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assumed that ∆/Xm ≪ 1. Thus, the third and fourth
terms in Eq. (29) are negligible compared to the final
term in that equation. Then Eq. (29) simplifies to

∆̇+ 3H∆−

(

√

2Xm
V ′

V

)(

F (Xm)

2XmFXX(Xm)

)

= 0. (30)

To solve this equation, we make one final assumption:
that V ′/V is roughly constant as the k-essence field
evolves through the period of interest. With this assump-
tion, Eq. (30) can be solved exactly to yield

∆ =
C

√

3ρφ0
[G(a)− [G(a)2 − 1] coth−1 G(a)], (31)

where C is the negative of the third term in Eq. (30),
now taken to be constant:

C =

(

√

2Xm
V ′

V

)(

F (Xm)

2XmFXX(Xm)

)

. (32)

Then Eq. (28) gives the value of 1 + w:

1+w =

√

2Xm

3ρφ0

V ′

V
[G(a)−(G(a)2−1) coth−1 G(a)]. (33)

We can reexpress this in terms of the w0 as in Eqs. (8),
(10), (15), and (22) to give:

1 + w(a) = (1 + w0)
G(a)− (G(a)2 − 1) coth−1G(a)

G(1)− (G(1)2 − 1) coth−1 G(1)
.

(34)
Eq. (34) is the main result of this paper.
In Fig. 1, we show the behavior of w(a) given by Eq.

(34) (solid black curve), along with the corresponding
behavior for the models examined previously. Note that,
unlike the solution for k-essence with X ≈ 0, the result
here does not resemble any corresponding quintessence
model, although it does correspond to the limiting be-
havior of noncanonical quintessence (Eq. 15) in the limit
where α → ∞. This correspondence is not surprising,
as α → ∞ in noncanonical quintessence corresponds to
the limit X → constant [40], the same behavior as in the
k-essence models considered here.
The difference between this result for k-essence and

the corresponding behavior for quintessence (Eq. 8) is
particularly clear if we examine these results in the w−w′

plane [23, 43], where w′ ≡ a(dw/da), in the limit a ≪
1. In that limit, Eq. (8) reduces to w′ = 3(1 + w) for
quintessence (see also Ref. [25]), while Eq. (34) gives
w′ = 3

2 (1 + w) for k-essence.
Now consider the conditions on the model parameters

necessary for Eq. (34) to represent a good approximation
to the evolution of w. The conditions we imposed to
derive Eq. (34) are: (i) 1 + w ≪ 1, (ii) ∆ ≪ Xm, and
(iii) V ′/V is approximately constant as φ evolves.
Clearly, if all of the other parameters in the k-essence

models are ∼ O(1), then conditions (i) and (ii) can be
satisfied by choosing (V ′/V )2 ≪ 1 as in Eq. (6); this

follows directly from Eqs. (31)-(33). Condition (iii) indi-
cates that V ′/V evolves only a small amount compared
to its initial value as φ evolves. This will be the case
as long as (V ′/V )′/(V ′/V )δφ ≪ 1, where δφ is the total
change in φ between a = 0 and a = 1.
In Fig. 2, we compare the analytic approximation

of Eq. (34) to a numerical integration of the equa-
tion for k-essence evolution, where the parameters of
these models are chosen to satisfy (V ′/V )2 ≪ 1 and
(V ′/V )′/(V ′/V )δφ ≪ 1; these conditions can be satis-
fied for all three potentials by taking the initial value of
φ to be sufficiently large. For all of these cases we take
F (X) = F0 + F2(X −Xm)2. The fit to our analytic ex-
pression is very good in all three cases, and nearly exact
for the exponential potential. The latter is not surpris-
ing, as the exponential potential has V ′/V = constant
by construction.

FIG. 2: Evolution of w as a function of a, normalized to a = 1
at the present, with Ωφ0 = 0.7 and w0 = −0.9 and −0.95,
for models with FX ≈ 0. Solid (black) curve is our analytic
approximation (Eq. 34). Dotted (blue) curve is for V (φ) =
V0/φ, short-dashed (red) curve is V (φ) = e−λφ, and long-

dashed (green) curve is V (φ) = e−φ2/σ2

. We take F (X) =
F0 + F2(X −Xm)2 for all three cases.

IV. DISCUSSION

Now we can compare the behavior of k-essence models
with FX ≈ 0 to those of Ref. [22] with X ≈ 0. The
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FX ≈ 0 models yield a new form for the evolution of
w(a), distinct from previous behaviors that have been
derived for other models, while X ≈ 0 models correspond
to behavior that is identical to the results for quintessence
evolution given in Refs. [17, 18]. On the other hand, our
results for FX ≈ 0 models are applicable to a much more
restricted set of scalar field potentials than is the case for
X ≈ 0, namely, our results apply only to potentials for
which (V ′/V )′/(V ′/V )δφ ≪ 1. This is the reason that
Chiba et al. [22] found a variety of possible behaviors
for w(a) with FX ≈ 0 (see Fig. 4 of Ref. [22]); the
potentials examined in that paper did not satisfy our
(very restrictive) conditions on V (φ).
Now consider the observational constraints on our

model. We will compare with the recent results of Alam
et al. [44], derived from baryon acoustic oscillation mea-
surements from the Sloan Digital Sky Survey III, cosmic
microwave background observations from Planck, and
Type Ia supernovae data. Alam et al. express their con-
straints on w in terms of the Chevallier-Linder-Polarski
(CPL) parametrization [45, 46]:

w = w0 + (1 − a)wa, (35)

where wa and w0 are constants, with w0 being the
present-day value of w. The most stringent bounds on
wa and w0 in Alam et al. correspond to a narrow ellipse
in the w0, wa plane. In this two-parameter model, nei-
ther w0 nor wa is individually strongly constrained, but
a linear combination of the two is tightly bounded. The
reason for this characteristic narrow elliptical bounded
region in w0 − wa space is the existence of a pivot red-
shift zp, at which the errors on w are minimized [47].
In particular, Alam et al. [44] find a pivot redshift of
zp = 0.37, at which w(zp) = −1.05± 0.05.
We can exploit the fact that our model and the other

models discussed in this paper are well-fit by the CPL
parametrization for ap < a < 1, and each model gives a
unique prediction for w(ap) as a function of w0. Hence,
much stronger constraints can be placed on these models
than on a generic dark energy model; in particular, we
can derive a tight upper bound on the present-day value
of w. First note that the pivot redshift zp is related to
ap through ap = 1/(1 + zp), so we have ap = 0.73. Then
our k-essence model with FX ≈ 0 must satisfy the 2− σ
upper bound w(a = 0.73) < −0.95. We can then simply

read off the allowed value of w0 from Fig. 1, namely,
w0 < −0.93.
It is clear from this argument that the models that

allow the largest values of w0 are those for which w in-
creases most rapidly from a = 0.73 to a = 1. Hence, our
new k-essence model with FX ≈ 0 is the most strongly
constrained of those displayed in Fig. 1. In compari-
son, the quintessence model with a nearly-flat potential
[16] yields the constraint w0 < −0.91, while the least
strongly-constrained model is the k-essence model with
X ≈ 0 (or equivalently, the quintessence model with non-
negligible curvature in the potential) with K = 2, for
which w0 < −0.87. Larger values of K are even less
strongly constrained [17]. (See Ref. [48] for another ap-
proach to observational constraints on thawing models).
Note further that the k-essence models considered here

with FX ≈ 0 make a very different prediction for the dark
energy sound speed than do the previously-examined
models with X ≈ 0. From Eq. (18), we see that our
models give c2s ≈ 0, while the X ≈ 0 models have c2s ≈ 1.
Current observations are unable to significantly constrain
cs for dark energy (see, e.g., Refs. [49–52]), so these two
extreme cases are not currently distinguishable, but fu-
ture experiments such as Euclid [53] may provide useful
constraints on the sound speed of dark energy.
In summary, we have derived a new generic thawing

evolution of k-essence with w near −1; this is essentially
a special case of the FX ≈ 0 solutions previously derived
in Ref. [22], but for which additional constraints on the
potential V (φ) yield a single set of evolutionary behaviors
for w(a). It is interesting that w in this model evolves
away from −1 more rapidly than in any of the other
models considered here, which allows us to place tighter
constraints on this model than on any of the others. In
constrast, the k-essence models with X ≈ 0 examined
in Ref. [22] require fewer conditions on the potential
V (φ) and are less tightly constrained by observations.
Our FX ≈ 0 models also provide a simple case for which
w ≈ −1, but the dark energy sound speed is close to zero.
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