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The first dark matter halos form by direct collapse from peaks in the matter density field, and
evidence from numerical simulations and other analyses suggests that the dense inner regions of
these objects largely persist today. These halos would be the densest dark matter structures in the
Universe, and their abundance can probe processes that leave imprints on the primordial density
field, such as inflation or an early matter-dominated era. They can also probe dark matter through its
free-streaming scale. The first halos are qualitatively different from halos that form by hierarchical
clustering, as evidenced by their ρ ∝ r−3/2 inner density profiles. In this work, we present and
tune models that predict the density profiles of these halos from properties of the density peaks
from which they collapsed. These models predict the coefficient A of the ρ = Ar−3/2 small-radius
asymptote of the density profile along with the maximum circular velocity vmax and associated
radius rmax. These models are universal: they can be applied to any cosmology, and we confirm
this by validating them using six N -body simulations carried out in wildly disparate cosmological
scenarios. We find that these models can even predict the full population of halos with reasonable
accuracy in scenarios with narrowly supported power spectra, although for broader power spectra,
an understanding of the impact of halo mergers is needed. With their connection to the primordial
density field established, the first dark matter halos will serve as probes of the early Universe and
the nature of dark matter.

I. INTRODUCTION

Decades of work have been devoted to understand-
ing the halos that form by the gravitational collapse
of collisionless dark matter. In the cold dark matter
(CDM) model, N -body simulations have demonstrated
that the radial density profiles ρ(r) of these halos are
well described by a remarkably universal form, known as
the Navarro-Frenk-White (NFW) profile [1, 2], which is a
double power law that transitions from ρ ∝ r−1 at small
radii to ρ ∝ r−3 at large radii. This profile has received
only minor corrections since its introduction (e.g. [3]). In
the CDM picture, all halos form by hierarchical clustering
of smaller halos, and the NFW profile appears to be the
generic consequence.

CDM represents an idealized scenario, however. In
reality, dark matter particles are expected to have a
nonzero temperature, and the corresponding random
particle motions wash out density fluctuations smaller
than a characteristic free-streaming scale. The first halos
form by direct collapse of overdense regions at this scale,
and N -body simulations with sufficient resolution show
that these halos possess a markedly different density
profile that asymptotes to ρ ∝ r−3/2 at small radii [4–
9]. This profile is stable: it does not relax to the NFW
profile, at least in the absence of halo mergers.

The first halos subsequently merge to produce suc-
cessively larger halos, and Refs. [9, 10] find that these
mergers gradually drive the halos’ density profiles toward
the NFW form. As these works argue, the shallowing
of the inner density profile is likely a consequence of
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violent relaxation [11] during merger events. However,
there are multiple lines of evidence suggesting that such
relaxation does not erase memory of prior states. For
nearly equal-mass mergers, the density profile of the
merger remnant depends sensitively on the profiles of its
progenitors [7, 9]. Successive mergers either raise or leave
unaltered a halo’s characteristic density [9, 10, 12]; since
the first halos are the densest, this trend preserves them.
Finally, for highly unequal-mass mergers, the smaller
halo is generally expected to survive as a subhalo of the
larger [13]. The smaller halo’s central density profile may
even be mostly unaffected by the merger [14–16].

In this way, it is broadly plausible that the dense
central regions of the first halos survive the hierarchical
clustering process. These halos, forming during a denser
epoch, should be the densest dark matter objects in
the Universe, and such density leads to observational
prospects. Signals from dark matter annihilation are dra-
matically enhanced by the high density within these halos
(e.g. [17–22]). Gravitational signatures, whether through
microlensing (e.g. [23–26]), timing delays (e.g. [27]),
or stellar dynamics (e.g. [28–30]), are also enhanced.
Meanwhile, since these halos form by direct collapse
from overdense patches, they carry sensitive information
about the primordial density field on scales that are
inaccessible to other probes. Our goal is to develop a
model that extracts this information: we aim to connect
the properties of the first halos to the statistics of the
primordial matter density field.

The matter density field is intimately connected to
some of the most fundamental questions of cosmology.
The power spectrum P(k), which quantifies the power
in density fluctuations at scale wavenumber k, has been
precisely measured at scales above ∼ 1 Mpc using the
cosmic microwave background [31] and the Lyman-α
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forest [32]. However, with a few exceptions [33, 34], it is
largely unconstrained at sub-Mpc scales. Since density
fluctuations are thought to have been seeded during
inflation, P(k) serves as a valuable probe of inflation-
ary models [35]. The power spectrum is also sensitive
to the thermal history of the Universe after inflation.
An early matter-dominated era (EMDE), driven by an
unstable heavy relic, would amplify small-scale density
fluctuations [36–39], as would a period of domination
by a fast-rolling scalar field [40]. The power spectrum
P(k) thereby supplies one of the few windows into the
Universe prior to big bang nucleosynthesis. Separately,
its sensitivity to the free-streaming scale makes it a probe
of the nature of dark matter.

Numerous previous works have explored the prospects
of using the first dark matter halos to probe the small-
scale primordial power spectrum [41–49]. However, most
treatments assumed that these halos, if they form suffi-
ciently early, possess a particularly compact ρ ∝ r−9/4

density profile [50] derived from self-similar theory [51].
References [52] and [53] (Paper I) used N -body sim-
ulations to show that this profile does not arise from
a realistic formation scenario. In Ref. [54], hereafter
Paper II, we showed that despite possessing shallower
ρ ∝ r−3/2 density profiles, the first halos can still supply
competitive constraints on the power spectrum through
nondetection of their observable signals. In that work,
we used scaling arguments to model the population of
the first halos given a particular family of power spectra.
Each peak in the density field was mapped to a collapsed
halo at later time.

Our present work represents a natural extension of
that model to arbitrary power spectra. It is based on
the notion that the density profile of a halo forming
by direct collapse is uniquely related to the properties
of its precursor density peak. Numerous prior works
have explored the problem of explaining a halo’s density
profile in terms of the structure of the density peak
whence it collapsed. In work that pioneered the so-
called spherical infall model, Refs. [55, 56] approximated
the density profile of a collapsed halo by employing the
simplifying assumption that particle orbits are unaltered
after accretion. Subsequent works extended this model
by including the contraction of orbiting material due
to new accretion [51, 57–63], relaxing the assumption
of spherical symmetry [64, 65], and modeling nonradial
motions [66–72]. Due to the difficult, nonlinear nature
of the matter infall problem, every treatment employs
simplifying assumptions. Exact solutions only exist for
the self-similar case [51, 58, 64, 65], where the primordial
mass excess is a power-law in radius. More general
treatments employ ansätze related to angular momenta
and orbital contraction. As an alternative to tracking
each orbit, other works have employed an ansatz related
to virialization [73, 74].

Whereas spherical infall models relate halo density pro-
files to the precursor mass distribution, a complementary
paradigm empirically studies the distribution of halo den-

sity profiles as a function of cosmology and redshift. In
this paradigm, cosmological N -body simulations are used
to tune a parametric model that describes the density
profile of a halo as a function of its mass, and models
built in this paradigm are known as concentration-mass
relations1. The distribution of halo masses can be subse-
quently obtained using Press-Schechter theory [75–77], so
these models can predict the full population of halos and
their density profiles. Concentration-mass relations have
been studied extensively. The simplest models describe
the halo distribution in a particular cosmological scenario
and at a particular time of interest [78–95]. Other works
have framed a halo’s density profile in terms of its age or
assembly history [1, 2, 96–106], and progress has been
made in isolating the physical variables most directly
relevant for predicting density profiles [107–110]. Never-
theless, due to their empirical nature, concentration-mass
relations do not readily extend beyond the cosmological
scenarios, times, and halo mass ranges over which they
are tuned.

Broadly, spherical infall models attempt to explain
the structures of halos from first principles, while
concentration-mass relations endeavor to predict these
structures pragmatically. Our analysis constitutes a hy-
brid between these two procedures that is specialized to
the first halos. Forming by direct collapse, these halos
are well-suited to the spherical infall description. At
the smallest radii, we use ellipsoidal collapse arguments
[76, 77, 111] to predict the coefficient of the ρ ∝ r−3/2

inner profile. Beyond the inner asymptote, we employ
the simplest spherical infall models to predict the larger
profile, parametrized by the maximum circular velocity
vmax and the radius rmax at which it is attained [112]. By
building from such first-principles descriptions, our pre-
dictive models are valid in any cosmological scenario: we
demonstrate this by validating and tuning the models us-
ing six high-resolution cosmological N -body simulations
carried out in wildly disparate cosmological scenarios.
Our models nominally predict a halo’s density profile
from the density peak whence it collapsed. However,
modulo the influence of halo mergers (which we discuss),
the statistics of peaks [113] may be applied to thereby
predict the full halo population at a given time.

This paper is structured as follows. In Section II,
we detail our simulations and the procedure we use to
connect halos with density peaks. Section III devel-
ops a model that predicts the small-radius asymptote
ρ ∝ r−3/2 of a halo’s density profile, while Section IV
compares models that predict the profile at larger radii.
In Section V, we discuss prospects for predicting whole
populations of halos, including discussion of halo mergers
in Section V B. Section VI concludes and discusses av-
enues for future work. Appendices A and B further detail

1 The concentration is a parameter in the NFW profile (and
extended to other profiles) describing how centrally distributed
the halo’s mass is.
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how we extract simulation data. Finally, in Appendix C,
we present a procedure to directly sample halos from a
power spectrum using our model.

II. SIMULATIONS

We first build a halo catalogue on which to test our
model. For this purpose, we simulated six different sim-
ulation boxes drawn from different initial power spectra.
These power spectra are shown in Fig. 1. Three of these
power spectra are constructed as “spikes” centered at the
scale ks = 6.8 kpc−1 with the form

P(k) =
A√
2πw

exp

[
−1

2

(
ln(k/ks)

w

)2
]

(1)

for different values of w. These spectra are primarily
intended as artificial testbeds for halo formation, but
they do have qualitative motivations in inflationary phe-
nomenology [114–123]. A fourth power spectrum repre-
sents the impact of an EMDE with reheat temperature
TRH = 100 MeV and ratio kcut/kRH = 20 between the
free-streaming cutoff and the largest scale affected by the
EMDE (see Ref. [39]). Finally, the last two power spectra
include only the free-streaming cutoffs associated with
cold dark matter with mass mχ = 100 GeV and kinetic
decoupling temperature Tkd = 33 MeV (corresponding to
a typical weakly interacting massive particle [124]) and
warm dark matter (WDM)2 with mass mχ = 3.5 keV
(close to lower bounds from the Lyman-α forest [126]),
respectively. The particular parameter choices for these
power spectra are intended to represent very different
cosmological scenarios, so that we can test the broad
applicability of our models.

We generate the three spiked power spectra from
Eq. (1) at a starting redshift of z = 104, normalizing
A = 2×10−7 at this time in order to effect abundant halo
formation by z ∼ 100. To generate the latter three power
spectra, we begin with a primordial curvature power
spectrum of amplitude As = 2.142 × 10−9 and spectral
index ns = 0.9667 [127]. We then use the Boltzmann
solver Camb Sources [128, 129] to produce a matter
power spectrum at z = 500 in a scenario with no thermal
dark matter motion. Next, we apply transfer functions
from Refs. [39], [130], and [125] to create respectively
the EMDE, CDM, and WDM spectra. Finally, we use
linear theory [131] to evolve these power spectra to their
initial redshifts. Note that we include radiation in our
simulations, and the linear evolution accounts for this;
see Paper II for details3. We also include a cosmological
constant, although it is of minimal relevance.

2 For WDM, we also take the dark matter particle to be fermionic
with two degrees of freedom (so gX = 1.5 in Ref. [125]).

3 Modes that were subhorizon during an EMDE grow in an altered
way during radiation domination [39], and we modify the linear
growth function for this scenario accordingly.
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FIG. 1. Top: The (linear-theory) dimensionless matter
power spectra of our six simulations during matter domina-
tion. In linear theory, P(k, a) ∝ a2 when matter dominates,
which motivates the y-axis scaling (with a = 1 today).
Bottom: The same power spectra, but each is scaled to
its density variance and characteristic correlation length (see
text). The shaded region marks the range of box sizes for the
six simulations: larger modes (smaller k) have wavelengths
longer than the simulation box, so they are not sampled.

The starting redshift zinit, ending redshift zfinal, and
periodic box size of each simulation are listed in Ta-
ble I. Also listed are the root-mean-squared (RMS) den-
sity variance σ0 and comoving characteristic correlation
length R∗ associated with each power spectrum in linear
theory. These spectral parameters are defined [113]

σj =

(∫ ∞
0

dk

k
P(k)k2j

)1/2

(2)

R∗ =
√

3
σ1

σ2
. (3)

To illustrate the significance of these quantities, Fig. 1
also shows the correspondingly rescaled power spectra.
This rescaling is useful because it factors out the scale
differences between the spectra, leaving only their shapes.
For this reason, we will use these spectral parameters as
our units. The mass unit is munit ≡ ρ̄0R

3
∗, where ρ̄0 is the

background matter density today. Meanwhile, the phys-
ical distance unit is runit ≡ [a/σ0(a)]R∗, where σ0(a) is
evaluated using linear theory during matter domination
(so σ0 ∝ a) and a = 1 today. For each simulation, the
ending redshift is tuned so that σ0 ∼ 3 (in linear theory)
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TABLE I. The simulation list with basic parameters. Also
listed are σ0, the RMS density variance, and R∗, the comoving
characteristic correlation length, both calculated in linear
theory. When matter dominates, σ(a) ∝ a, which motivates
the scaling in this column (with a = 1 today).

simulation zinit zfinal box (kpc) σ0(a)/a R∗ (kpc)

w = 0.1 104 50 7.4 164 0.25
w = 0.3 104 50 7.4 164 0.19
w = 0.5 104 50 7.4 164 0.12
EMDE 3× 104 100 1.5× 10−3 330 4.1× 10−5

100 GeV 500 9 0.15 30 1.9× 10−3

3.5 keV 150 2 4.4× 103 7.6 66

at simulation termination, and the comoving box size
is tuned to be roughly 30 to 80 times R∗. The initial
redshift is chosen so that the largest fractional density
excesses δ ≡ (ρ− ρ̄)/ρ̄ are of order 0.2 or smaller.

For each simulation, we draw a random density field
from the matter power spectrum at zinit and gener-
ate initial conditions using the Zel’dovich approximation
modified to account for radiation as described in Paper
II4. Finally, we carry out the simulations using a version
of the cosmological simulation code Gadget-2 [132, 133]
that we modified to include the effects of radiation (see
Paper II). All simulations employed 10243 particles and a
comoving force softening length set at 3% of the initial in-
terparticle spacing (with forces becoming non-Newtonian
at 2.8 times this length).

Figure 2 shows the initial and final density fields for
three of these simulations. This sample illustrates the
characteristic differences between the density fields and
halo populations that result from the different power
spectra. The w = 0.1 spectrum produces fluctuations
only on a characteristic scale, and the resulting halo
population is relatively uniform in size and separation.
Meanwhile, the w = 0.5 spectrum produces fluctuations
on a wider range of scales, yielding very small halos as
well as larger halo clusters and voids. Finally, the 100
GeV power spectrum includes fluctuations at scales up
to and exceeding the box size5. Accordingly, the bulk
of the halos in the box reside within a few clusters, and
some halos are growing exceedingly large.

At the final redshift of each simulation, we use the
Rockstar halo finder [134] to identify every halo with
mass larger than a cutoff Mcut = (4π/3)k−3

maxρ̄0, where

4 For the EMDE, the methods in Paper II were adapted to the
post-EMDE growth function.

5 In fact, the entire boxes of the 100 GeV and 3.5 keV simulations
should be collapsing by the final redshift, a fact that cannot be
reflected in these simulations. Thus, we do not expect these two
simulations to accurately capture the large-scale dynamics; for
example, halo mergers are probably underrepresented. We focus
on understanding the halos that form by direct collapse from
peaks in the density field, so we do not expect this shortcoming
to impact our main results.

TABLE II. For each simulation, we list the halo count Nhalo

above the mass cutoff at the final redshift, the number of
peaks Npeak in the linear density field, and the number Nmatch

of successful halo-peak matches. Of these matches, also listed
are the number NA with density profiles resolved at small
radii, the number Nr with rmax < rvir, and the subsets
N<3MM

A and N<3MM
r that also underwent fewer than three

major mergers.

simulation Nhalo Npeak Nmatch NA N<3MM
A Nr N<3MM

r

w = 0.1 696 439 411 408 350 404 347
w = 0.3 801 933 565 561 481 537 457
w = 0.5 1011 3896 795 790 683 738 634
EMDE 610 730 424 416 366 388 339

100 GeV 216 6108 157 153 141 82 73
3.5 keV 581 4401 463 455 430 322 303

kmax is the wavenumber k at which P(k) is maximized.
This cutoff is intended to exclude most of the artificial
fragments [135, 136] that are normally expected to ap-
pear in simulations with a small-scale cutoff in density
fluctuations. Roughly speaking, fluctuations at the scale
kmax are the first to collapse, so we do not expect to
find many real halos at smaller scales. Table II lists the
number Nhalo of such halos found in each simulation.

Next, we wish to associate each halo with the density
peak whence it collapsed. To do this, we use Rockstar
to generate halo catalogues at intervals of roughly 5%
in the scale factor, and we use the Consistent Trees
merger tree code [137] to improve the consistency of halo
tracking through time. Starting at the final redshift, we
trace each halo back to its formation time, defined as
the time when its mass first exceeded Mcut. In case
of a merger, we follow the larger progenitor. We then
identify all particles in the halo at its formation time,
find their positions in the initial particle grid at zinit,
and compute the center of mass xCM and RMS spread
rCM of these positions. Finally, we consider the initial
grid δ(x) of fractional density contrasts and find the
largest value of δ(x) within a sphere of radius rCM about
xCM . If this maximum is also a local maximum in δ(x)
(a condition that could fail if the maximum lies at the
sphere’s boundary), we take it to be the initial density
peak for this halo. Otherwise, we discard the halo from
further consideration, suspecting it to be an artificial
fragment6. Moreover, when this procedure associates
multiple halos in the final box with the same initial peak,
we discard all but the most massive halo. Table II lists
both the number Npeak of peaks in the initial density
field and the number Nmatch of peak-halo identifications
made through this procedure.

To test our models, we must still make further cuts to
the halo-peak population. For the small-radius asymp-

6 We explored the alternative procedure of following the density
gradient to a local maximum, but the only consequence was the
introduction of unphysically distant halo-peak associations.
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FIG. 2. The projected initial (top) and final (bottom) density fields for the w = 0.1 (left), w = 0.5 (middle), and mχ = 100 GeV
(right) simulations. The color scale is logarithmic; lighter is denser.

tote of the density profile (Section III), we consider
the subset of our peak-matched halos that have well-
resolved inner density profiles7. The number NA of such
halos in each simulation is listed in Table II. Moreover,
Ref. [10] found that successive major mergers alter the
inner asymptote of a halo’s density profile, and we con-
firm this effect in Section V B. We aim to model the
initial density profile of a halo before it undergoes any
disruptive dynamics, leaving a treatment of mergers for
future work8. Thus, we also restrict our sample to halos
that underwent fewer than three major mergers, which
we define to be mergers between two halos with a mass
ratio smaller than 3. The number N<3MM

A of these halos

7 In particular, we require that at least 100 particles reside within
the simulation softening length. Otherwise, the central density is
small, usually implying that the density profile was not centered
on the halo’s cusp, which is only true of a handful of halos not
found by Rockstar but filled in by Consistent Trees. Due to
the minuscule fraction of halos affected, we did not make further
efforts to find the true center.

8 We prefer to exclude the impact of mergers in this work because
mergers are a continuing process, so their impact is sensitive to
the arbitrarily-chosen simulation termination redshift.

is also listed in Table II. The particular threshold of
three major mergers is chosen as a compromise between
minimizing the impact of mergers on our results and
maximizing the sample of halos from which our results
draw. As we will see in Section V B, the first two major
mergers only marginally alter halo density profiles.

Meanwhile, for the larger-radius density profile (Sec-
tion IV), we consider the subset of our peak-matched
halos that have rmax, the radius at which the circular
velocity is maximized, inside their virial radius, defined
as the radius rvir enclosing average density 200 times the
background9. The number Nr of these halos is listed for
each simulation in Table II. Mergers only minimally alter
rmax (see Section V B), so when testing models for rmax,
it is not necessary to restrict to halos that underwent
few mergers. However, mergers can significantly alter

9 The requirement rmax < rvir culls a significant fraction of the
halo population in the 100 GeV simulation, but this is not a
serious concern. It turns out that the models we discuss predict
very large rmax for these halos as well, and rmax > rvir only
implies that the halo’s outermost profile has not yet steepened
to the point that d lnM/d ln r < 1.
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the mass M(rmax) enclosed within rmax (or equivalently
vmax), so to test our mass predictions, we restrict the
sample to the subset N<3MM

r of halos that underwent
fewer than three major mergers. This number is also
listed in Table II. Altogether, it is evident from Table II
that only a small fraction of the full peak and halo
populations are used to test our models. Section V
explores the impact of these restrictions by returning to
the full peak and halo populations.

We now have a catalogue that matches peaks in an
initial density field to collapsed halos at much later time.
All that remains is to collect the halo density profiles and
the parameters of each peak, and we detail these pro-
cesses in Appendices A and B respectively. With these
data, we are now prepared to test any model relating the
structure of a dark matter halo to its precursor density
peak. In the following sections, we develop such a model.

III. THE DENSITY PROFILE AT SMALL RADII

We first study the coefficients A of the ρ = Ar−3/2

asymptotes of the density profiles of the first halos. It
is of prime importance to accurately predict the den-
sity profiles in this regime because these radii source
the bulk of the prospective signal from dark matter
annihilation, and this remains true even if these halos
relax toward ρ ∝ r−1 profiles due to mergers. Moreover,
there is another reason to study small radii separately:
the ρ ∝ r−3/2 inner density profile is established almost
immediately after collapse. To illustrate this fact, we
simulate10 the collapse of the isolated density peak shown
in Fig. 3. This peak represents a typical 3σ peak drawn
from the w = 0.3 power spectrum using the statistics
of peaks as described in Ref. [113]. The shallowing of
this profile toward r = 0 is associated with the absence
of small-scale fluctuations, and this is the single feature
common to density peaks drawn from all of the power
spectra we are studying. Indeed, it has been suggested
that this feature is responsible for the development of the
ρ ∝ r−3/2 profile [8].

Figure 4 shows the halo resulting from this initial peak
in the moments after collapse. We also compute the
expected collapse time from the initial peak using both
the spherical collapse model, δ(asc) = 1.686, and the
ellipsoidal collapse model described in Ref. [76]. The
redshifts zsc and zec of spherical and ellipsoidal collapse,
respectively, are indicated in Fig. 4. The critical ob-
servation is that the ρ ∝ r−3/2 asymptote of the den-
sity profile develops almost immediately after collapse,
matching closely the late-time density profile as early as
a ' 1.15aec. Subsequently, the profile grows outward in
radius alone, gradually steepening as accretion of new

10 This simulation employed about 9 million particles in a comoving
vacuum-bounded sphere of radius 1.5 kpc. The starting redshift
was z = 106.
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FIG. 3. The radial profile of a density peak drawn from
the w = 0.3 power spectrum at redshift z = 106. The peak
is ellipsoidal, and the shading indicates the variation in the
profile along different axes. The vertical line marks qmax

computed using the turnaround model (Section IV A).
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FIG. 4. The density profile of the resulting halo during and
after collapse of the peak in Fig. 3. The numbers denote the
redshifts z at which the density profile is plotted, while zsc

and zec are the redshifts of spherical and ellipsoidal collapse,
respectively, computed from the initial peak. The black curve
shows the density profile long after collapse.

material slows. The interval ∆a/a ' 0.15 over which
the profile develops is not arbitrary. The characteristic
dynamical time ∆t =

√
3π/(16Gρ) [138] of a virial-

ized region with density 200 times the background is
∆t = 0.16/H, where H is the Hubble rate. This interval
corresponds to ∆a/a = 0.16, implying that the inner
density profile develops over a single dynamical time
interval.

A. Spherical collapse

The rapid development of a halo’s inner ρ = Ar−3/2

profile implies that the coefficient A can only be influ-
enced by the immediate neighborhood of the precursor
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FIG. 5. The coefficient A of the ρ = Ar−3/2 density profile asymptote, plotted against the prediction from our models. Top:
The spherical model, Eq. (5). Bottom: The ellipsoidal model, Eq. (7). The left panels plot all of the halos, while the right
panels plot a density estimate: the color scale indicates the density f(lnA, lnApred) of the distribution, where Apred is the
x-axis quantity. We also plot the line corresponding to the median proportionality constant for each model.

density peak. To make this argument precise, we define11

δ̃(x) ≡ δ(x, a)/a, (4)

where δ(x, a) is evaluated using linear theory during
matter domination (when δ ∝ a). Here, x is a comoving
coordinate, and we define a = 1 today. We now claim
that the inner ρ ∝ r−3/2 asymptote is only sensitive to
the local properties δ̃ and ∂i∂j δ̃ of the precursor density
peak. If we neglect deviations from spherical symmetry,
the peak reduces to two parameters: its amplitude δ̃ and
curvature |∇2δ̃|. During matter domination, spherical

collapse theory implies that asc ∝ δ̃−1. Meanwhile,
|∇2δ̃| defines a comoving length scale qpk ≡ (δ̃/|∇2δ̃|)1/2

associated with the peak. At the time of collapse, this
comoving length corresponds to the physical length scale
ascqpk ∝ (δ̃|∇2δ̃|)−1/2. There is also a physical density

scale ρ̄0a
−3
sc ∝ ρ̄0δ̃

3, i.e. the cosmological background
density at collapse. If these are the only scales, then up
to a constant coefficient, there is a unique prediction for
the coefficient A of the ρ = Ar−3/2 asymptote of the
density profile:

A = αρ̄0δ
9/4|∇2δ|−3/4, (5)

11 After this section, we will omit the tilde, and any quantity related
to the linear density field should be understood to be evaluated
on the scaled linear density field δ̃(x) unless otherwise specified.

where α is a proportionality constant. We omit the
tildes in Eq. (5), but all quantities related to the linear

density field are understood to be evaluated on δ̃(x).
This convention applies to the remainder of this work.
The parameter α must be calibrated by simulations, but
this calibration is only necessary once: it should be the
same for any power spectrum.

We test this model on the N<3MM
A peak-matched halos

in each simulation that have well-resolved inner density
profiles and underwent fewer than three major mergers
(see Section II). For these halos, Fig. 5 plots the left-
against the right-hand side of Eq. (5) in order to test the
model. Evidently, our model works well for how simple it
is, predicting the asymptotes with reasonable success in
all six simulations. There does, however, appear to be a
correlated effect wherein halos with the densest predicted
asymptotes tend to exceed that prediction, and vice versa
at the less dense end. In fact, this effect is caused by
the assumption of spherical collapse. Peaks of smaller
amplitude tend to be less spherical, thereby collapsing
later and forming less dense halos than their amplitude
would suggest. We next account for this effect.
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FIG. 6. A comparison of the scatter from the two asymptote
models. For each model, we plot a histogram of the coefficient
α between the asymptote A and its model prediction, scaled
to the mean coefficient for all halos. Vertical lines mark 1σ
deviations from the mean, computed in log space.

B. Ellipsoidal collapse

Equation 5 neglects deviations from spherical sym-
metry. However, it can be immediately generalized in

the following way. Since A ∝ a
−3/2
sc , we can use the

theory of ellipsoidal collapse [76, 77, 111] to predict how
the three-dimensional shape of a peak alters its collapse
time. In particular, ellipsoidal collapse occurs later than
spherical collapse by a factor fec(e, p) ≡ aec/asc, which
is a function of the ellipticity e and prolateness p of the
gravitational potential φ in the vicinity of the peak (see
Appendix B for definitions). To compute fec, we use the
approximation [76]

fec(e, p) = 1 + 0.47
[
5(e2 − p|p|)f2

ec(e, p)
]0.615

. (6)

Accounting for ellipsoidal collapse,

A = αρ̄0δ
9/4|∇2δ|−3/4f−3/2

ec (e, p), (7)

where α is a proportionality constant.
Figure 5 compares the predicted asymptotes in the

ellipsoidal collapse model to their measured values. The
correlated scatter associated with the spherical model is
no longer apparent, confirming that the spherical collapse
assumption was the source. Figure 6 compares the overall
scatter between these two models: the ellipsoidal collapse
model is clearly superior. We remark that not all of the
scatter depicted is physical: there is numerical noise in
our simulated density profiles and finite density grids.
Nevertheless, there are still clear sources of physical
scatter. Absent an understanding of why the ρ ∝ r−3/2

profile develops, we constructed our model using purely
scaling arguments, and these arguments can break down
in two ways. First, the inner profile does not develop
instantly, so it is sensitive to a small region about the
density peak instead of only its immediate neighborhood.
Also, as depicted in Fig. 4, the inner asymptote is not
completely static but instead grows marginally after it
develops, implying that it exhibits some sensitivity to
the larger density field. Second, we only accounted for

nonspherical peak shapes by altering the time of collapse.
The sensitivity of the asymptotic coefficient A to the
shape of the peak may be more complicated.

Nevertheless, it is a significant success to obtain a mere
∼ 30% scatter across such a broad range of cosmologies
from a model as simple as the one presented here. The
proportionality coefficients and their statistics for our
models are summarized in Table III. Thus calibrated,
the model developed in this section may be employed
to predict the inner asymptotes of the first halos’ density
profiles in any cosmological scenario.

IV. THE DENSITY PROFILE AT LARGE RADII

We next study the density profile beyond the inner
ρ ∝ r−3/2 asymptote. These larger radii, containing
the bulk of the halo mass, are relevant to gravitational
lensing signatures as well as to the dynamical evolution
of the halo through mergers and tidal stripping. In this
section, we discuss and validate models that can predict
the density profile at large radii. We focus on three
physical models.

1. A “turnaround” model, tracing back to Ref. [55],
in which each mass shell freezes at a fraction of its
turnaround radius, or the radius of first apocenter;

2. A “contraction” model, expressed most concisely
by Ref. [63], that accounts for contraction of halo
particle orbits due to subsequent infall; and

3. A “virialization” model, put forward by Ref. [73],
where the final radius of a mass shell is determined
by enforcing that the shell’s enclosed energy be
distributed according to the virial theorem.

All of these models rely on the assumption that mate-
rial is accreted gradually. Hence, they are not applicable
to the density profiles at small radii, and none of them
predict the ρ ∝ r−3/2 asymptote. We will explore in
Section IV D precisely where these models are accurate.
In the meantime, we validate and tune the models by
using them to predict the radius rmax at which the
halo’s circular velocity is maximized along with the mass
M(rmax) within this radius. The maximum circular

velocity itself follows as vmax =
√
GM(rmax)/rmax.

The radius rmax characterizes where the profile bends
away from its inner asymptote12. It is more common in
the literature to study the scale radius rs, often defined
to be where d ln ρ/d ln r = −2, instead of rmax, which is
where d lnM/d ln r = 1. However, we favor rmax over
rs for several reasons. First, rmax can be read from a
simulation more robustly than rs, since the mass profile

12 For example, if ρ(r) = ρs(r/rs)−3/2(1 + r/rs)−3/2 [53, 139]
(where ρs and rs are scale parameters), rmax = 1.055rs.
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is less noisy than the density profile. Second, rmax turns
out to be cleaner to predict from the linear density field.
Finally, since rmax characterizes the total mass rather
than the local density, it is the more relevant quantity
for understanding halo dynamics [112] and for predicting
gravitational lensing signatures. The combination of A
and rmax serves to mostly characterize the density profile
of a halo, and the mass M(rmax) (or velocity vmax)
supplies an additional constraint.

A. Turnaround

To develop a model that can predict the full density
profile of a collapsed halo, we must relate this profile to
the spherically averaged fractional density excess profile
δ(q), where q is comoving radius, about the correspond-
ing peak in the linear density field. Following the conven-
tion established in Section III, we define δ(q) ≡ δ(q, a)/a
evaluated in linear theory during matter domination
(with a = 1 today). We will also use

∆(q) =
3

q3

∫ q

0

δ(q′)q′2dq′, (8)

the fractional enclosed mass excess defined under the
same convention. As in Ref. [55], we consider the sim-
plified spherical infall model where each spherical shell
freezes at a fixed fraction of its turnaround radius. A
mass shell initially at comoving radius q turns around
at physical radius rta = (3/5)q/∆(q). Hence, the final
physical radius r of this shell is

r = βq/∆(q), (9)

where β is a proportionality constant to be measured in
simulations. But in this model, mass shells never cross,
so the mass enclosed within this shell, now at r, is still

M(q) = βM
4π

3
q3ρ̄0 (10)

(at zeroth order in ∆) with βM = 1. This equation gives
the mass profileM(r) of the collapsed halo if q is obtained
from r by inverting Eq. (9).

To find rmax (up to the proportionality constant β),
we may maximize M(r)/r. Alternatively, we can write

d lnM

d ln r
=

3

1 + 3ε(q)
, (11)

where we define13

ε(q) ≡ −1

3

d ln ∆

d ln q
= 1− δ(q)

∆(q)
. (12)

13 We define ε(q) as a generalization of the index ε of δM/M ∝M−ε
in self-similar theory [58]. Consequently, Eq. (11) has exactly the
same form as its analogue in the self-similar theory.
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FIG. 7. For the turnaround model, this figure plots the val-
ues of rmax measured in our simulations against the predicted
values. For visual reference, an example proportionality curve
is plotted (not a fit). The model dramatically overpredicts
rmax for a subpopulation of the halos, a problem that we
attribute to the finite time at which the simulated density
profiles are measured (see text).

In this case, rmax is obtained as the solution to
d lnM/d ln r = 1, or equivalently, ε(qmax) = 2/3 with
rmax computed from qmax using Eq. (9).

This model, at first glance, seems to be far divorced
from a realistic description. However, it turns out to
be a reasonable approximation of late accretion. At late
times, halo density profiles are stable in time; see e.g.
Papers I and II. This observation is explained by noting
that once the halo is established and accretion begins to
slow, newly accreted mass only contributes significantly
to the outskirts of the halo: there is too little new matter,
spending too small a fraction of its orbital period at small
radii, to substantially raise the interior density. Since the
density profile is static, a newly accreted particle settles
into a stable orbit with time-averaged radius proportional
to its orbital apocenter: the turnaround radius14. The
final radius in this model is to be understood as that
orbital average.

We test this model on the Nr peak-matched halos for
which rmax < rvir (see Section II). In the top panel of
Fig. 7, we plot the measured rmax against the prediction
from this model. The model appears to work well for
the bulk of the halos. However, there is a significant
population of halos, especially coming from the broader
100 GeV, 3.5 keV, EMDE, and w = 0.5 power spectra,
for which the predicted rmax is much larger than the
measured value. In fact, in these simulations, there are
many peaks for which the mass shell with ε = 2/3 has
not yet accreted onto the halo by the final redshift. In
these cases, it makes no sense to use the properties of
this shell to predict rmax.

A minimal correction, for these halos, is to instead
relate rmax to the outer boundary of the halo. In the
spherical collapse model, a mass shell virializes when it

14 The orbital apocenter actually decays over time, an effect the
“contraction” model accounts for.
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FIG. 8. For the corrected turnaround model, we plot the values of rmax measured in our simulations against the predicted
values. At top, we show the turnaround model with halos with qmax > qv excluded, while at bottom, we use qv to predict rmax

for the previously excluded halos. This separation corrects the discrepancy seen in Fig. 7. The left panels plot all of the halos,
while the right panels show density estimates; the color scale indicates the density f(ln rmax, ln rmax,pred) of the distribution,
where rmax,pred is the x-axis quantity. The solid line corresponds to the median proportionality constant.

falls to half of its turnaround radius: at this point, its
energy is distributed according to the virial theorem. The
halo’s outer boundary may be taken to be the physical
radius of the last shell to virialize in this way, and we
define qv to be the Lagrangian radius of this shell. If we
are considering the halo population at scale factor a, then
qv is the smallest q that satisfies ∆(q, a) = a∆(q) ≤ δv,
where δv = 1.583. If rmax is proportional to the halo
boundary so defined, then

rmax = β′qv/∆(qv), (13)

where β′ is another proportionality constant, and this
model is understood to apply only to the halos whose
ε = 2/3 mass shells have not yet virialized, i.e. qmax > qv.
In Fig. 8, we plot the turnaround model for only those
halos whose ε = 2/3 shells have virialized, separately
plotting the qv model for the remainder of the halos.
Evidently, the halos whose ε = 2/3 shells had not yet
virialized were indeed the population whose rmax was
severely overpredicted, and the ε = 2/3 model exhibits
significantly less scatter with them excluded. Meanwhile,
using qv to predict rmax for these halos works reasonably
well, although the scatter here is significantly larger. The
top panel of Fig. 9 depicts these differences in scatter
more transparently.

Finally, we test how well this model predicts M(rmax)
in similar fashion by using Eq. (10) and allowing βM to
float. In this case, we employ the N<3MM

r halos with
rmax < rvir that also underwent fewer than three major

mergers (see Section II). As above, we set q = qmax when
qmax < qv and q = qv otherwise. The bottom panel of
Fig. 9 shows the scatter in these predictions. For both
rmax and M(rmax), Table III lists the tuned coefficients
β and βM and their statistics.

B. Contraction

The turnaround model assumed that each new shell
freezes at a fixed fraction of its turnaround radius, con-
tributing mass to that radius alone. In reality, a shell
contributes mass to a large range of radii. Figure 10
shows the density profiles15 laid down by a range of initial
mass shells. These shells consist of successive factors
of 1.5 in initial radius, so that the lowest shell contains
the mass initially in the comoving radius band 0.044 to
0.066 kpc, the second shell contains the mass initially
in the band 0.066 to 0.10 kpc, and so on. Notably,
each shell has a characteristic radius within the final halo
below which it contributes roughly constant density. As
Ref. [63] argues, the constant-density contribution follows
from the notion that particles from large-radius mass

15 This figure depicts a halo that collapsed from an isolated 3σ
peak drawn from the w = 0.3 power spectrum. This peak was
simulated with about 70 million particles in a comoving vacuum-
bounded sphere of radius 1 kpc.
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FIG. 9. Comparisons of the scatter in the rmax (top) and
M(rmax) (bottom) predictions. For each model, we plot the
distribution of the coefficient β or βM between the halo quan-
tity and its model prediction, scaled to the mean coefficient for
all halos. “t.a. (qmax)” and “t.a. (qv)” denote the turnaround
models using qmax and qv and applied only to halos with
qmax < qv and qmax > qv respectively. “s = 0” and “s = 1”
denote the respective contraction models. “vir. (qmax)” and
“vir. (qv)” denote the virialization models using qmax and qv
and applied only to halos with qmax < qta and qmax > qta
respectively. Note that the contraction models have more
scatter than the turnaround and virialization (qmax) models
only because the latter describe a smaller range of halos; see
the footnotes in Table III.

shells cross the lower radii at such high velocity that their
motions are effectively unaccelerated.

Consider a halo particle initially orbiting with apocen-
ter radius r that encloses halo mass M(r). As time goes
on, newly accreted shells contribute to the enclosed mass,
increasing M(r). In a spherically symmetric and self-
similar system, the quantity

∮
vrdr ∝ [M(r)r]1/2 is an

adiabatic invariant, implying that as the enclosed mass
grows, r shrinks as r ∝ 1/M(r). While the quantity Mr
need not be conserved in a more general picture, Ref. [65]
found that it remains nearly invariant for each particle
even with spherical symmetry relaxed.

For a mass shell with apocenter r′, let f(r, r′) be
the fraction of the shell’s mass that is within r. It is
readily seen that the mass enclosed within a shell with
Lagrangian radius q and final apocenter r(q) increases by
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FIG. 10. The density profile of a halo (black curve) along
with the density profiles contributed by different initial mass
shells (colored curves). The lowest shell contains the mass
initially in the comoving radius band 0.044 to 0.066 kpc, the
second shell corresponds to the band 0.066 to 0.10 kpc, and
so on. The dashed vertical line marks rmax.

the factor

X(q) ≡ 1 +
3

q3

∫ qv

q

q′2dq′f [r(q), r(q′)] . (14)

due to the contribution of shells with q′ > q. As before,
qv is the Lagrangian radius of the latest shell to virialize:
it is the smallest q that satisfies a∆(q) ≤ δv, where a
is the scale factor at which we wish to characterize the
halo population (and a = 1 today). If orbital apocenters
shrink according to r ∝ 1/M , then

r(q) = β
q

∆(q)

1

X(q)
(15)

describes the apocenter of the q shell after contraction,
with β = 3/5.

As a simple model, let us assume that each shell
contributes density ρ(r) ∝ r−s below its apocenter radius
and 0 above it, so f(r, r′) = (r/r′)3−s. With this shell
profile, Eq. (14) yields the ordinary differential equation

d lnX

d ln q
= −3− [3(3− s)ε(q)− s] (X − 1)

1 + (4− s)(X − 1)
(16)

with initial condition X(qv) = 1. This equation is
equivalent to the simpler expression in Ref. [63], but
since it is expressed with respect to the variable q, it
is more straightforward to integrate over a numerically
tabulated peak profile ε(q). The enclosed mass profile
after contraction is now

M(q) = βM (4π/3)q3ρ̄0X(q) (17)

(to zeroth order in ∆) with βM = 1. Note that X ranges
from 1 (at qv) to O(10). Using these equations, one may
maximize M(q)/r(q) to obtain qmax, after which rmax

and M(rmax) are obtained immediately. Alternatively,

d lnM

d ln r
=

3 + d lnX/d ln q

1 + 3ε(q)− d lnX/d ln q
(18)
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FIG. 11. For the s = 0 (top) and s = 1 (bottom) contraction models, this figure plots the values of rmax measured in our
simulations against the predicted values. The left panels plot all of the halos, while the right panels show density estimates;
the color scale indicates the density f(ln rmax, ln rmax,pred) of the distribution, where rmax,pred is the x-axis quantity. The solid
line corresponds to the median proportionality constant.

with d lnX/d ln q given in Eq. (16), so one may solve
d lnM/d ln r = 1 to obtain qmax. Finally, since we do
not expect to employ the correct form of f(r, r′), we will
allow β and βM to vary, tuning them to simulations.

We test the contraction model using s = 0 as well as
s = 1. While Fig. 10 suggests that s = 0 at small radii,
a nonzero choice of s is motivated by noting that for a
given mass shell q, most of the enclosed mass contributed
by higher shells comes from shells just slightly above
q. Meanwhile, Fig. 10 shows that the density profile
contributed by a mass shell does not level off to a constant
value until well below its apocenter radius. Therefore, the
bulk of the mass contribution comes from shell density
profiles ρ ∝ r−s with s > 0. The particular choice s = 1
is partly arbitrary, but it is roughly the slope of the shell
profiles in Fig. 10 slightly below their apocenters16.

Figure 11 plots rmax against its model prediction
for both contraction models using the Nr halos with
rmax < rvir. Both models successfully predict, with some
scatter, the values of rmax for the halos in all six simula-
tions. In fact, both models work equally well, as Fig. 9
demonstrates. Moreover, comparing the results of these
models to those of the turnaround models, which used
the ε = 2/3 or qv shells to predict rmax, we see that the
main difference is that the contraction models can handle
all of the halos in a single model requiring just one tuned

16 The choice s = 1 also corresponds roughly to the ρ1/2 model in
Ref. [63], since ρ ∝∼ r−2 at r = rmax.

parameter. Adiabatic contraction can produce a bend
in the density profile, and hence an rmax, near the halo
outskirts because the outskirts are uncontracted while
the rest of the halo is contracted. Other than this, there
is no significant advantage to the contraction models for
predicting rmax, as the top panel of Fig. 9 shows.

We also use the s = 0 and s = 1 contraction models
to predict M(rmax) using Eq. (17) with βM allowed to
float. For this test, we employ the N<3MM

r halos with
rmax < rvir that underwent fewer than three major
mergers. The scatter in these predictions is depicted in
the bottom panel of Fig. 9. The tuned values of β and
βM and their statistics are listed in Table III.

C. Virialization

Reference [73] developed a model for halo density
profiles in which a mass shell freezes where its enclosed
energy is virialized17. In this model, the final radius of
the q shell is r(q) = −(3/10)GM(q)2/E(q), where M(q)
and E(q) are respectively the mass and energy enclosed
within the q shell in the linear density field. This model
may be expressed as

r(q) = β
q

κ(q)
, κ(q) ≡ 2

q5

∫ q

0

q′4dq′∆(q′) (19)

17 Note that a model in which a shell freezes where its own energy
is virialized is equivalent to the turnaround model above.
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TABLE III. A summary of the predictive models along with their simulation-tuned coefficients. In each model, the halo
quantity is proportional to the peak quantity with the given coefficient between them. The mean and RMS deviation σ in the
proportionality coefficient are computed in log space. We express the spread as a ratio: in particular, the middle 50% spread
is the ratio between the 75th and 25th percentiles, while the 1σ spread is the ratio corresponding to the log-space σ. We also
list the number of halos contributing to the coefficient statistics.

Halo
quantity Peak quantity Model

Median
coef.

Middle 50%
spread

Mean
coef.

1σ
spread

Sample
size

Section
ref.

A ρ̄0δ
9/4|∇2δ|−3/4 spherical collapse 8.76 1.43 8.50 1.44 2451 III A

A ρ̄0δ
9/4|∇2δ|−3/4f

−3/2
ec (e, p) ellipsoidal collapse 12.1 1.31 12.2 1.36 2450a III B

rmax qmax/∆(qmax) turnaround, qmax < qv 0.131 1.34 0.132 1.39 1759 IV A
rmax qv/∆(qv) turnaround, qmax > qv 0.088 2.18 0.085 1.75 712 IV A
rmax qmax/[∆(qmax)X(qmax)] s = 0 contraction 0.414 1.40b 0.406 1.52 2471 IV B
rmax qmax/[∆(qmax)X(qmax)] s = 1 contraction 0.846 1.39c 0.848 1.49 2471 IV B
rmax qmax/κ(qmax) virialization, qmax < qta 0.042 1.36 0.042 1.37 1578 IV C
rmax qv/∆(qv) virialization, qmax > qta 0.092 1.95 0.087 1.70 893 IV C

M(rmax) (4π/3)q3
maxρ̄0 turnaround, qmax < qv 0.273 1.64 0.258 1.84 1514 IV A

M(rmax) (4π/3)q3
vρ̄0 turnaround, qmax > qv 0.134 2.97 0.123 3.13 639 IV A

M(rmax) (4π/3)q3
maxρ̄0X(qmax) s = 0 contraction 0.441 1.76 0.396 2.30 2153 IV B

M(rmax) (4π/3)q3
maxρ̄0X(qmax) s = 1 contraction 0.658 1.73 0.619 2.23 2153 IV B

M(rmax) (4π/3)q3
maxρ̄0 virialization, qmax < qta 0.150 1.59 0.145 1.71 1341 IV C

M(rmax) (4π/3)q3
vρ̄0 virialization, qmax > qta 0.143 2.79 0.129 2.98 812 IV C

a One peak is so ellipsoidal that Eq. (6) has no solution, so this peak is discarded from analysis.
b The s = 0 coefficient has spread 1.33 and 1.74 over halos for which the turnaround model predicts qmax < qv and qmax > qv

respectively, implying that the contraction model is superior or comparable to the turnaround model in both cases.
c Similarly, the s = 1 coefficient has spread 1.33 and 1.68 in these two cases.
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FIG. 12. For the virialization model, this figure plots
the values of rmax measured in our simulations against their
predicted values. For visual reference, an example proportion-
ality curve is plotted (not a fit). Like the turnaround model,
this model dramatically overpredicts rmax for a subpopulation
of the halos, a discrepancy that can be corrected in similar
fashion (see text).

with β = 3/10 and M(q) defined as in Eq. (10). For
this model, d lnM/d ln r = 3/[6 − 2∆(q)/κ(q)]. As
before, qmax is obtained by maximizing M(q)/r(q) or
by solving d lnM/d ln r = 1. We test this model in
similar fashion, allowing β to float and plotting in Fig. 12
the simulated rmax against the model prediction (using
the Nr halos with rmax > rvir). Evidently, this model
performs similarly to the turnaround model. Again, there
is a multitude of halos whose qmax shells have not yet
accreted, leading to dramatically overpredicted values of
rmax. In this case, the qmax < qv condition turns out to

be too restrictive: it eliminates too many halos. Instead,
we require qmax < qta, where qta is Lagrangian radius of
the last shell to turn around. In particular, qta is the
smallest q satisfying a∆(q) ≤ δta, where δta = 1.062 and
a is the scale factor at which we are studying the halo
population. If qmax < qta, we use qmax to predict rmax

using Eq. (19); otherwise, we use qv to predict rmax using
Eq. (13). We also use this model to predict M(rmax) in
similar fashion (again using the N<3MM

r halos that also
underwent fewer than three major mergers), allowing βM
to float. The scatter and statistics of these predictions18

are shown in Fig. 9 and Table III, and we find that this
model’s scatter is comparable to that of the turnaround
model.

D. Discussion

Table III summarizes the rmax and M(rmax) models
and the statistics of their simulation-tuned parameters.
Evidently, all of these models exhibit similar scatter. For
instance, when qmax < qv or qta, each model’s predicted
rmax exhibits about 30% scatter in the middle half of its
predictions. These similarities suggest there may be a
statistical floor limiting the precision of all three models
equally. We propose two sources of such a floor: the
first is artificial discreteness noise in our simulations. As

18 We remark that the optimal β ' 0.042 is much smaller than the
exact value 3/10 claimed in Ref. [73].
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noted in Paper II, there is discreteness noise in each radial
bin of the density profile that is significantly larger than
Poisson noise and may be associated with the accretion
of artificial fragments. Our procedure of averaging radial
profiles over a finite time interval (see Appendix A)
mitigates but does not eliminate this noise19.

The other probable source of a statistical floor is phys-
ical and owes to a simplifying assumption common to all
three models: spherical symmetry. Observe in Fig. 3 that
at the initial radius of the qmax shell, the density profile
of the peak that is depicted—a typical peak drawn from
the w = 0.3 power spectrum—is highly ellipsoidal. It is
likely that a substantial fraction of the ∼30% scatter in
rmax results from deviations from spherical symmetry in
the initial density peaks. To correct this, models must
be employed that move beyond the assumption of spher-
ically symmetric initial conditions, perhaps employing
ellipsoidal collapse arguments [76, 77, 111] or drawing
from nonspherical self-similar infall theory [64, 65]. The
principal difficulty in moving beyond spherical symmetry
is that the three-dimensional shape of a peak is different
at each radius, an effect no model has accounted for (to
our knowledge). However, the spherical models presented
here exhibit just ∼ 30% scatter in rmax and ∼ 60%
scatter in M(rmax) over the full range of cosmologies we
simulated, a success that should not be understated. As
we will see in Section V, halo mergers present a larger
source of error.

Beyond predicting rmax and M(rmax) (or equivalently
vmax), we may ask how well the spherical infall models
can predict the full density profiles of the first halos. No
model successfully predicts ρ ∝ r−3/2 at small radii20,
and this is not surprising because in the moments after
halo collapse, the accretion of new material is not adi-
abatic with respect to the orbits of the already bound
material. Nevertheless, we may explore the radial range
over which the spherical infall models do accurately pre-
dict the density profiles. Figure 13 compares the mass
profiles of a small halo sample to their predicted profiles
using the median proportionality coefficients in Table III.
Evidently, the turnaround and virialization models do
not accurately predict the density profile below rmax,
although they may succeed at larger radii. The s = 0 and
s = 1 contraction models, and especially the latter, more
accurately capture the shape of the profile at smaller
radii. However, as shown in Fig. 10, the true density

19 There are other sources of discreteness noise in our analysis, but
they are minor. The binning of our density profiles in factors of
1.1 introduces artificial scatter, but this scatter does not exceed
5% in rmax and is further reduced by our use of interpolation
(see Appendix A). There is also noise in the predicted values of
rmax because they arise from a finite density grid, but since qmax

is typically much larger than a grid-cell [so δ(qmax) averages over
a large number of cells], the resulting scatter is small.

20 An s = 3/2 contraction model predicts ρ ∝ r−3/2 at small radii,
but only in a contrived way: the adiabatic approximation is not
valid when this part of the profile develops.
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FIG. 13. The mass profiles (thick, dark lines) of a few halos in
the w = 0.3 (top) and EMDE (bottom) simulations compared
to their model predictions (thin lines). This figure is intended
to depict how the shapes of the profiles compare, so the
sample was selected to have little discrepancy in the overall
normalization of M/r. The simulated profiles are plotted out
to their virial radii. The turnaround and virialization model
predictions largely overlap.

profile of a mass shell is more complicated than ρ ∝ r−s,
so a more sophisticated model for a shell’s density profile
should yield still better results.

In this section, we presented models that can predict
the outer portions of the density profiles of the first halos
in any cosmology. While the models themselves are not
new, our calibrations enable their use as predictive tools.
Moreover, our simulations demonstrate the universality
of these models by showing that they succeed across
wildly dissimilar cosmological scenarios.
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V. PREDICTING HALO POPULATIONS

So far, we have studied the relationship between a
density peak and its resulting halo. However, our ulti-
mate goal is to study the larger populations. Recall from
Section II that not all peaks matched to halos in our
simulations, and not all halos matched to peaks. These
discrepancies are reflected in Table II and may arise from
physical processes, such as halo mergers, or numerical
artifacts in our simulations. We have shown that if we
know that a peak developed into a halo that persisted to
some later redshift, then we can predict the properties
of that halo from the properties of the peak. Ultimately,
however, we wish to predict an entire population of halos
directly from a population of peaks. In light of the halo-
and peak-count discrepancies, can our models proceed in
this way?

A. Population comparisons

We first study the population of halos distributed in
the asymptote A. In Fig. 14, we compare the entire halo
population found in our simulations to the population
predicted by accounting for every peak in the initial
density fields that would have collapsed by simulation
termination. We use the ellipsoidal collapse model. Gen-
erally, we see that for the narrower w = 0.1, w = 0.3,
and EMDE power spectra, the predicted population
matches the simulated population reasonably well. In
these scenarios, our model underpredicts halos at the
low-density end, a surprising result that may owe to
artificial fragmentation. In simulations with a small-scale
power-spectrum cutoff (like ours; see Fig. 1), discreteness
noise causes filamentary structures to fragment into halos
even below the scales of the smallest density fluctuations.
These halos have been shown to be unphysical simulation
artifacts [135, 136], but they could contribute to the
excess of less-dense halos in our simulations relative to
model predictions in the cases of the narrower power
spectra.

Otherwise, Fig. 14 shows a tendency for the model
to overpredict halos at the middle density range and
underpredict at the highest-density range. This discrep-
ancy can be attributed to mergers, which our model
does not account for. Halo mergers reduce the number
of halos while raising the central density of the merger
remnants. For the broader w = 0.5, 100 GeV, and 3.5
keV power spectra (bottom panel of Fig. 14), the merger-
based discrepancy is amplified: the model underpredicts
the densest halos and dramatically overpredicts the rest.
Evidently, while our model can predict the density pro-
files of individual halos, an understanding of halo mergers
is necessary to accurately predict halo populations in
scenarios with more broadly supported power spectra.
We will return to this point.

We next study the distribution in the radius rmax.
Many of the simulated halos had rmax > rvir, and while
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FIG. 14. A comparison between the simulated halo popu-
lation, as solid lines, and the population predicted from the
peaks in the linear density field, as dashed lines, distributed
in the inner asymptotic coefficient A. We use the ellipsoidal
collapse model to predict A. Top: The three simulations with
narrower power spectra. Bottom: The three simulations with
broader power spectra. The vertical axis is logarithmic here to
accommodate the differences in scale. We find that our model
can capture halo populations arising from more narrowly
supported power spectra, but it does not well describe the
populations arising from broader power spectra because of
the predominance of halo mergers in those scenarios.

we discarded those halos from previous analyses, doing so
now would alter the populations. Instead, we account for
this problem here by substituting rvir for rmax in those
cases. As Fig. 15 shows, the s = 0 contraction model
predicts the rmax-distribution reasonably well for the
narrow power spectra, with the bulk of the discrepancy
arising from overprediction of the total halo count due to
halo mergers. The predicted distributions are also more
sharply peaked, an effect that may owe to the model’s
neglect of spherical asymmetry (see Section IV D). For
the broader power spectra, the halo count discrepancy is
magnified due to the much larger frequency of mergers.
However, unlike in the case of the asymptote A, we
will soon see that the radius rmax does not significantly
increase due to mergers beyond what the models already
predict. Hence, there is no significant underprediction of
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FIG. 15. Similar to Fig. 14, but studying the halo population
distributed in the radius rmax instead. We use the s = 0
contraction model. As in Fig. 14, we find that our model
describes the halo populations arising from more narrowly
supported power spectra with reasonable success, although
the predicted distributions tend to be more sharply peaked.
However, halo mergers greatly alter the halo populations in
scenarios with broader power spectra.

the largest-radius halos.
We can also ask how well our models predict aggre-

gate observational signals. If we assume that all halos
have ρ ∝ r−3/2 inner density profiles, then the total
dark matter annihilation rate in halos is proportional to
the sum

∑
A2 over all halos21. In Table IV, we show

how accurately the ellipsoidal collapse model predicts
the aggregate annihilation signal. Remarkably, despite
not accounting for halo mergers, we successfully predict
the annihilation signal to within a factor of 1.3 for all
simulations. The increased central density within merger
remnants has compensated for the drop in halo count.
One caveat is that in this calculation, we did not account
for changes in the slope γ of the ρ ∝ r−γ inner profile re-
sulting from mergers. This change must be accounted for
separately and will significantly reduce the annihilation
signal (see Paper II).

We also consider an aggregate microlensing signal.
The apparent image of a background star is deflected
by an angle proportional to M2D(ξ)/ξ, where M2D(ξ)

21 There is a logarithmic sensitivity to rmax, which we neglect.
Also, note that there is a density cap imposed by annihilations
[140], so the signal converges even for ρ ∝ r−3/2.

TABLE IV. This table shows how accurately our models pre-
dict aggregate halo signals. We consider simplified aggregate
signals

∑
A2 for annihilation and

∑
M(rmax)rmax for lensing,

each summed over the population of predicted or simulated
halos. In each case, we list the ratio of the signal predicted
from the linear density field to the signal aggregated over
halos in the simulation box. We use the ellipsoidal collapse
and s = 0 contraction models.

simulation
∑
A2 ∑

M(rmax)rmax

w = 0.1 0.91 0.56
w = 0.3 0.89 0.69
w = 0.5 0.91 2.2
EMDE 0.78 0.66

100 GeV 1.15 33
3.5 keV 1.16 14

is the projected mass enclosed within impact parameter
ξ. As an approximation, we claim that the deflection
due to a halo is proportional to M(rmax)/rmax and a
function related to the impact parameter. Integrating
over impact parameters introduces a factor r2

max, the
characteristic area of the halo. Hence, for a halo pop-
ulation, the aggregate lensing signal, considered as the
expected deflection of a given image, is proportional to∑
M(rmax)rmax summed over all halos.
In Table IV, we show how accurately the s = 0 contrac-

tion model predicts this signal. We find that our models
predict the lensing signal significantly worse than the
annihilation signal, although in four of the simulations,
the prediction still agrees to about a factor of 2. For the
simulations drawn from the 3.5 keV and 100 GeV power
spectra, however, the model overpredicts the lensing
signal by an order of magnitude. These power spectra
yield the greatest prevalence of halo mergers, and unlike
in the case of annihilations, mergers do not sufficiently
boost the remnant’s lensing signal relative to its model
prediction to compensate for the loss of halo count in
mergers. Hence, the lensing signal in the simulations is
much smaller than that predicted from the linear density
field. We remark, however, that the story may change if
instrument sensitivities are taken into account. Mergers
predominantly destroy smaller halos, and their signals
may have been beyond sensitivity limits regardless.

It is clear from these results that an accurate ac-
counting of halo mergers is necessary to predict a halo
population in any generality. However, for narrower
power spectra such as our w = 0.1, w = 0.3, or EMDE
cases, mergers are subdominant, and our models can
predict the populations reasonably well. Moreover, when
considering aggregate annihilation signals, halo mergers
may not have a significant impact beyond altering the
slope γ of the ρ ∝ r−γ inner density profiles. For these
uses, we describe in Appendix C a method to sample the
halo population directly from the matter power spectrum
P(k), bypassing the step of drawing a density field δ(x).
Halo populations predicted using this method are slightly
different from those predicted using our density fields,
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but we propose that they are more accurate: the method
we describe can easily sample a much larger number of
peaks, and it is not subject to errors related to the finite
size and finite grid-spacing of a sampled density field22.

B. Halo mergers

A full treatment of mergers is beyond the scope of this
work, but we are poised to make some observations. Our
procedure for matching a halo to its predecessor density
peak involved tracking each halo backward through time.
During this process, we counted the number of major
mergers this halo underwent, which we define to be a
merger between two halos with mass ratio smaller than
3. Over half of our halos with well-resolved asymptotes
experienced at least one major merger, and 12% experi-
enced at least three.

In an effort to find a simple way to cull halos that
end up merging, we explored cutting out density peaks
that were too close to an earlier-collapsing density peak.
We considered two characteristic comoving length scales
below which to make these cuts: the scale qpk associated
with the density peak (see Section III), and the scale qmax

where ε(qmax) = 2/3 (see Section IV A). Unfortunately,
neither of these cuts produced sensible results. The qpk-
cut culled far too few halos, while the qmax-cut culled far
too many. Ultimately, we expect that a more sophisti-
cated accounting of mergers will be necessary, possibly
following along the lines of extended Press-Schechter
theory [141] or the Peak Patch algorithm [111, 142, 143].

Another question is how halo density profiles change
due to mergers. Reference [10] found that successive
mergers cause the slope γ of the small-radius asymptote
of the density profile, ρ ∝ r−γ , to become shallower than
its initial value of γ = 3/2. The same work also found
that successive mergers increase the central density. Fig-
ure 16 shows that both of these results are borne out
in our own simulations as well. There is a clear trend
wherein more major mergers lead to successively denser23

but shallower inner structures. On the other hand, we
also see in Fig. 16 that major mergers do not significantly
increase rmax beyond what our models already predict,
although they do increase M(rmax).

22 If sampling directly from the power spectrum is more accurate,
one may wonder why we chose to compare our simulation results
to those predicted from the less-accurate finite density fields
(Figs. 14 and 15). The reason for this choice is that it leads to a
more explicit test of our model. Since we compare a simulation’s
results to model predictions using the same simulation’s initial
density field, any discrepancy that is not a simulation artifact
can be attributed to the model.

23 While the coefficient A is only well-defined if γ = 3/2, our proce-
dure for measuring A (see Appendix A) obtains a logarithmically
averaged value of ρr3/2 over the inner density profile regardless.
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FIG. 16. The impact of major mergers on the density
profiles in our simulations. Top: The effect on the power-
law index γ of the ρ ∝ r−γ inner asymptote. Since we do
not well resolve these radii, much of the scatter likely arises
from numerical noise. Middle to bottom: The effects on the
asymptote A, radius rmax, and mass M(rmax) respectively,
plotted as the ratio between the measured value and the
prediction using our models. For the asymptote, we use the
ellipsoidal collapse model, while for rmax and M(rmax), we
use the s = 0 contraction model. The color scale, which is
logarithmic, represents a density estimate (in log space for α,
β, and βM ; darker is denser), while the lines mark the median
and the 25th and 75th percentiles at each merger count.

VI. CONCLUSION

The first halos form by direct collapse of peaks in the
primordial density field. If some of these halos survive the
subsequent hierarchical clustering process, as evidence
suggests [7, 9, 10, 12–16], then they would be the densest
dark matter objects in the Universe. In this work, we
presented models that predict the density profiles of these
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halos directly from the properties of the density peaks
that formed them, and we used high-resolution cosmolog-
ical simulations in a variety of different scenarios to tune
and validate these models. The models are described in
Sections III and IV and summarized in Table III. They
have simulation-tuned parameters, but these parameters
are independent of cosmology and do not need to be
retuned to accommodate different scenarios.

We treated small and large radii separately, with the
understanding that these regimes form under radically
different circumstances. At small radii, the first halos
develop ρ = Ar−3/2 density profiles [4–9, 53, 54], and
our model predicts the coefficient A with remarkable
success. Over the full range of cosmologies we explored,
the scatter from our model is only in the vicinity of 30-
40%, and it is likely that a significant fraction of that
scatter arises from numerical noise in our simulations.
The density profiles at large radii are more varied, but we
parametrize them using the radius rmax at which the cir-
cular velocity is maximized along with the mass M(rmax)
enclosed within that radius. For this regime, we employ
models already present in the literature [55, 63, 73], but
we supply calibrations that enable their use as predictive
tools applicable to any cosmology. The scatter from our
models is roughly 40-50% in rmax and a factor of two in
M(rmax), and similarly, not all of this scatter is physical.

In this way, the models we presented can predict the
halo arising from a given density peak. Our goal, how-
ever, is to predict populations of halos. For a power spec-
trum of density fluctuations that is narrowly supported,
such as the spectrum imprinted by an EMDE [36–39] or
certain inflationary models [114–123], our models repli-
cate the entire halo population reasonably well. Thus,
our models can serve as a tool to predict the observational
signals of such cosmologies. However, for more broadly
supported power spectra, such as those arising from a
scale-invariant initial spectrum, halo mergers dramati-
cally alter the halo population, causing the populations
that arise in our simulations to differ substantially from
the populations our models predict. Interestingly, mod-
ulo changes in the slopes γ of the ρ ∝ r−γ inner density
profiles, dark matter annihilation signals seem to be
sufficiently close to additive in halo mergers that our
models still predict the aggregate annihilation signal to
within 30% in every cosmology we tested.

Nevertheless, it is not clear that this additivity in
the annihilation signal should extend beyond the time
scales spanned by our simulations. More broadly, our
models predict the initial halo population, but a proper
understanding of halo mergers is needed in order to ro-
bustly connect it to the population today. It is necessary
to understand both how mergers are distributed across
halos and time and how they impact halo density profiles.
Methods exist that can predict the distribution of merg-
ers, the most prominent of which is the extended Press-
Schechter theory [141]. The Peak Patch algorithm [143]
represents a method that may be easier to adapt, among
other advantages, if more computationally expensive to

apply. Meanwhile, the larger challenge is to predict how
halo mergers alter density profiles. References [9, 10, 12]
(for major mergers) and [14–16] (for minor mergers)
represent steps toward this goal, but there is not, as yet,
a sufficiently general model.

Moreover, there is room for improvement in our models
themselves. In predicting the density profiles at large
radii, we assume that each mass shell contributes density
in a profile that is a single power law up to a maximum
radius. In reality, shell profiles follow more complicated
forms that are sensitive to the total density profile; see
Fig. 10 and Refs [63, 65]. Utilizing more accurate shell
profiles would likely improve the model predictions for
the density profile, especially in predicting its broader
shape rather than only rmax and M(rmax). Also, our
model for the density profile at large radii completely
discounts any deviations from sphericity in the initial
peak. Another avenue for improvement may be to in-
corporate ellipsoidal collapse. At small radii, the reason
the ρ ∝ r−3/2 profile arises is not well understood, and its
accuracy has only been confirmed down to the resolution
limits of N -body simulations. A physical understanding
must be developed of the mechanism by which this pro-
file arises in order to confirm whether the profile truly
extends to arbitrarily small radii.

The primordial density field and its power spectrum
of density fluctuations comprise a valuable window into
the early Universe and the nature of dark matter. Our
work in this paper was carried out as part of an effort to
use the observational signatures of dark matter halos to
probe these fluctuations. Further research is still needed
to understand the impact of mergers on halo populations
before these signatures, or their nonobservation, can be
employed to robustly constrain cosmology. Nevertheless,
the models presented in this work, which predict the
initial halo population, represent a step forward in our
capacity to use this probe.

ACKNOWLEDGMENTS

The authors thank Dragan Huterer for bringing
Ref. [63] to their attention. The simulations for this work
were carried out on the KillDevil and Dogwood comput-
ing clusters at the University of North Carolina at Chapel
Hill. M. S. D. and A. L. E. were partially supported by
NSF Grant No. PHY-1752752. Several key figures in
this work employ the cube-helix color scheme developed
by Ref. [144].

Appendix A: Collecting halo data

In Section II, we carried out six simulations and cata-
logued all halos present at the final redshift of each. The
models we present in Sections III and IV require data on
the density profiles of these halos, and in this section, we
detail our methods for collecting these data.
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FIG. 17. The density profiles of three random halos from
each simulation’s final box.

We first need to obtain the density profile and en-
closed mass profile of each halo at the final redshift of
each simulation. To reduce random noise, we use the
procedure described in Paper II wherein the profiles are
averaged over a time interval. The profiles are binned
at successive factors of 1.1 in radius, but to mitigate
noise associated with the binning scheme, we use a cubic
spline to smoothly interpolate them. These profiles are
only valid down to the radius rsoft corresponding to the
separation below which simulation forces become non-
Newtonian; for Gadget-2, rsoft is 2.8 times the force
softening length. At large radii, we cut off the density
profile at the radius rvir inside which the mean enclosed
density is 200 times the background density. Figure 17
shows a random sample of halo density profiles from each
simulation.

The model developed in Section III predicts the co-
efficient A of the ρ = Ar−3/2 asymptote of the density
profile at small r. Thus, we wish to extract A from each
density profile. Starting at rsoft, we find the cumulative
(logarithmic) average of ρr3/2 across radial bins, and we
set A to be the maximum of this cumulative average.
The averaging procedure is intended to minimize noise
resulting from employing a narrow range of radii while
at the same time minimizing the influence of any bend in
the density profile at larger radii. However, we also tested
the alternative procedure of simply finding the average of
ρr3/2 within a factor of 3 in radius above rsoft and found
it to yield similar results.

We also wish to accommodate deviations from
ρ ∝ r−3/2 at small radii. Unlike those of Paper II, our
simulations do not have the resolution to clearly resolve
the power-law index of the small-radius asymptote, but
we may still hope to see statistical correlations in our
large sample. For each halo, we measure the slope γ of
the small-radius asymptote ρ ∝ r−γ by considering the

radius range from rsoft to 3rsoft and fitting a line in log-
space to the density profile within this range.

To test the models presented in Section IV, we also
need to compute the radius rmax at which the circular
velocity is maximized along with the mass M(rmax).
Since we already obtained the enclosed mass profile M(r)
for each halo, we simply find the maximum value of
M(r)/r. The parameters rmax and M(rmax) are then
defined to be the radius and enclosed mass at which
M(r)/r is maximized.

Appendix B: Collecting peak parameters

The models we present in Sections III and IV em-
ploy data on the peaks in the linear density field
δ(x) ≡ δ(x, a)/a (evaluated during matter domination).
We obtain these data using Fourier methods, defining

δ(k) ≡
∫

d3x e−ik·xδ(x). (B1)

The derivatives of δ at a peak located at x immediately
follow as

∂i∂jδ = −
∫

d3k

(2π)3
eik·xkikjδ(k). (B2)

Similarly, using Poisson’s equation, the derivatives of the
(peculiar) gravitational potential are

∂i∂jφ = 4πGρ̄0

∫
d3k

(2π)3
eik·x

kikj
k2

δ(k). (B3)

The ellipsoidal refinement described in Section III B re-
quires the three-dimensional shape parameters eφ and pφ
for the potential φ about the peak. Taking λ1 ≥ λ2 ≥ λ3

to be the eigenvalues of ∂i∂jφ, these parameters are
defined

eφ ≡
λ1 − λ3

2(λ1 + λ2 + λ3)
and pφ ≡

λ1 + λ3 − 2λ2

2(λ1 + λ2 + λ3)
. (B4)

Our model in Section IV requires the density profile
δ(r) and mass profile ∆(r) about the peak. For a peak
centered at x, these profiles are computed as δ(r)

∆(r)
ζ(r)

 =

∫
d3k

(2π)3
eik·xδ(k)

 sinc(kr)
W (kr)
cos(kr)

 , (B5)

where sinc(x) ≡ sin(x)/x and W is the top-hat window
function, W (x) ≡ (3/x3)(sinx − x cosx). The third
profile ζ(r) is useful because it is related to the derivative
of δ(r). In particular, to numerically integrate Eq. (16),
we interpolate δ(r) and ∆(r) with piecewise polynomials,
using the relations

dδ

d ln r
= ζ(r)− δ(r) and

d∆

d ln r
= 3 [δ(r)−∆(r)] (B6)

to fix their derivatives.
Figure 18 shows the density profiles δ(r) of three peaks

from each of the six simulations. The peaks displayed are
those that later collapse into the halos depicted in Fig. 17.
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FIG. 18. The density profiles of three peaks from each
simulation’s initial box. These peaks are chosen to match the
halos whose density profiles are depicted in Fig. 17.

Appendix C: Predicting the halo population from
the power spectrum

A primary goal of this work is to enable a prediction
of the halo population given a power spectrum P(k) of
density fluctuations. One option is to sample a density
field from the power spectrum, use the methods described
in Appendix B to characterize the peaks, and then apply
the models developed in this work. However, it is possible
to exploit the statistics of a Gaussian random field to
compute the halo distribution more directly. In this
section, we outline a practical procedure to perform this
computation by sampling from the peak distribution.
Similarly to earlier sections, we define P(k) ≡ P(k, a)/a2,
where P(k, a) is the dimensionless matter power spec-
trum evaluated using linear theory during matter domi-
nation. All quantities derived therefrom, such as σj and
δ(x), inherit similar scaling.

1. The number density of peaks

The first step is to find the total number density n of
peaks. As derived in Ref. [113], the differential number
density of peaks in a Gaussian random field, in terms of
parameters ν ≡ δ/σ0 > 0 and x ≡ −∇2δ/σ2 > 0, is

d2n

dνdx
=

e−ν
2/2

(2π)2R3∗
f(x)

exp
[
− 1

2 (x− γν)2/(1− γ2)
]

[2π(1− γ2)]1/2
,

(C1)

where γ ≡ σ2
1/(σ0σ2), σj and R∗ are defined in Eqs. (2)

and (3), and

f(x) ≡x
3 − 3x

2

[
erf
(√

5/2x
)

+ erf
(√

5/8x
)]

+

√
2

5π

[(
31

4
x2 +

8

5

)
e−

5
8x

2

+

(
x2

2
− 8

5

)
e−

5
2x

2

]
.

(C2)

The ν-integral can be carried out analytically, leading to

dn

dx
=

f(x)

8π2R3∗
e−x

2/2

[
1 + erf

(
xγ√

2(1− γ2)

)]
, (C3)

and this equation can be integrated numerically over
x ≥ 0 to obtain n.

2. The asymptote A

Next, we use Monte Carlo methods to compute the
distribution of coefficients A of the ρ = Ar−3/2 small-
radius asymptote. The model described in Section III
predicts this asymptote from the amplitude δ and cur-
vature |∇2δ| of the density peak along with the shape
parameters24 e and p associated with the potential about
the peak. Equation (C1) supplies the peak distribution in
ν ≡ δ/σ0 and x ≡ −∇2δ/σ2. Meanwhile, the conditional
distribution of e and p for a peak of height ν, derived in
Ref. [76], is

f(e, p|ν) =
1125√

10π
e(e2 − p2)ν5 exp

[
−5

2
ν2(3e2 + p2)

]
.

(C4)
To compute the distribution of A, we now employ a

Monte Carlo procedure. We use rejection methods to
sample x from Eq. (C3) and then ν from Eq. (C1). Next,
we employ the cumulative distributions of e and p,

F (e|ν) = e−
15
2 e

2ν2 (
1− 15e2ν2

)
erf
(√

5/2eν
)

− 3
√

10/πeνe−10e2ν2

+ erf
(√

10eν
) (C5)

and

F (p|e, ν) =
1

2

{(
5e2ν2 − 1

)[
erf

(√
5

2
eν

)
+ erf

(√
5

2
pν

)]

+
√

10/πν
(
pe−

5
2p

2ν2

+ ee−
5
2 e

2ν2
)}

×
[(

5e2ν2 − 1
)

erf

(√
5

2
eν

)
+

√
10

π
eνe−

5
2 e

2ν2

]−1

,

(C6)

24 Since these parameters describe the potential, they are different
from the parameters e and p in Ref. [113].
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FIG. 19. A test of the Monte Carlo halo-sampling method of
Appendix C. This figure plots the peaks drawn from our six
power spectra distributed in the predictions for A from Sec-
tion III B (with simulation-tuned parameter α factored out).
The solid lines show the distributions in the initial density
field used for our simulations, while the dashed lines show the
distributions computed using the Monte Carlo method.

numerically inverting them to inverse transform sample e
and p. This procedure yields a sample of peaks with pa-
rameters ν, x, e, and p. Finally, we use Eqs. (6) and (7)
to convert this sample into a halo sample distributed in
the asymptote A, and we multiply the distribution by the
total number density n to obtain the differential number
density dn/d lnA.

As a test, we sample 400,000 density peaks from each
of our six power spectra, and for each peak, we com-
pute its predicted asymptote A (without the propor-
tionality constant) using the ellipsoidal collapse model
of Section III B. We plot the resulting distributions in
Fig. 19 superposed with the distributions we find in the
randomly generated simulation boxes. We find that the
two distributions match well for all of our power spectra
except for the 100 GeV spectrum. For this power spec-
trum, directly sampling the power spectrum yields halos
of higher predicted density that we find in the box. This
discrepancy is explained by noting that the simulation
box only samples fluctuation modes up to the size of the
box. The 100 GeV power spectrum has sufficient power
at larger scales that neglecting it significantly reduces the
amplitudes of fluctuations and therefore the density of
the resulting halos. In this way, sampling peaks directly
from the power spectrum is more accurate than using the
intermediate step of sampling a density field.
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FIG. 20. Same as Fig. 19, but distributed in the predictions
for rmax from Section IV B using s = 0. Here, the simulation-
tuned parameter β is factored out. The solid lines show the
distributions in the initial density field used for our simula-
tions, while the dashed lines show the distributions computed
using the Monte Carlo method.

3. The outer profile: rmax and M(rmax)

So far, we have obtained the halo population dis-
tributed in the small-radius asymptote A. The next step
is to extend this computation to find the multivariate
distribution in A and the outer profile parameters rmax

and M(rmax) using the models discussed in Section IV.
This calculation is more difficult because instead of the
finite number of Gaussian variables relevant to the neigh-
borhood of each peak, we must now handle a Gaussian
distribution in the infinitely many variables correspond-
ing to the density profile about the peak at each radius
q. Nevertheless, a numerical computation is tractable.

The idea is to Monte Carlo sample the full density
profile δ(q) about the peak. To accomplish this, we must
discretize the radial coordinate such that

0 ≤ q1 < q2 < ... < qN (C7)

for some large N . The maximum radius may be initially
set at some qN >∼ R∗ and raised as needed. As shorthand,
we will write δi = δ(qi) and use δ to represent the
full vector of δis. We now seek the distribution of δ
conditioned on the data we already used to find the
asymptote A. In fact, δ has vanishing covariance with
the three-dimensional shape of the peak, so we need only
the conditional distribution f(δ|ν, x). This distribution
is Gaussian with mean

δ̄i =
(〈δiν〉 − γ 〈δix〉) ν + (〈δix〉 − γ 〈δiν〉)x

1− γ2
(C8)
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FIG. 21. The peaks drawn from the 3.5 keV power spectrum
distributed in the predictions for A and rmax from Sections
III B and IV B respectively (with simulation-tuned parame-
ters α and β factored out). Top: The distribution computed
using the Monte Carlo method of Appendix C. Bottom: The
distribution in the initial density field used for our simulation.
This figure shows that the Monte Carlo method accurately
reproduces the correlations between A and rmax found in the
density field. The color scale indicates the differential number
density d2n/(d lnAd ln rmax) in units of R−3

∗ .

(recalling γ ≡ σ2
1/[σ0σ2]) and covariance matrix

Cij = 〈δiδj〉 −
1

1− γ2

[
〈δiν〉 〈δjν〉+ 〈δix〉 〈δjx〉

− γ (〈δiν〉 〈δjx〉+ 〈δix〉 〈δjν〉)
]

(C9)

with the necessary covariances given by σ0 〈δiν〉
σ2 〈δix〉
〈δiδj〉

 =

∫ ∞
0

dk

k
P(k)

 sinc(kqi)
k2 sinc(kqi)

sinc(kqi) sinc(kqj)

 .

(C10)
It is helpful to diagonalize C = PDPT so that P

is an orthogonal matrix and D = diag(λ1, ..., λN ) is
diagonal. If we define a new vector κ ≡ PT (δ − δ̄), then
κ is distributed as

f(κ|ν, x) =

N∏
i=1

1

(2πλi)1/2
exp

(
− κ2

i

2λi

)
. (C11)

We then sample each κi from its respective univariate
Gaussian distribution, and the density profile δ immedi-
ately follows using δ = δ̄+ Pκ. From the density profile
δ → δ(q), we can find the mass profile ∆(q) using Eq. (8).
With these profiles in hand, it is now a simple matter to
apply any of the models detailed in Section IV.

To test this procedure, we sample density profiles for
the same 400,000 peaks from each power spectrum for
which we already sampled the peak parameters. Using
the s = 0 contraction model in Section IV B, Fig. 20
compares the rmax distributions binned from our initial
density fields to those computed using the Monte Carlo
method. As before, the distributions from the 100 GeV
power spectrum are discrepant, likely owing again to
the finite size of the random density fields. Also, there
is a tendency for the random density fields to produce
less sharply peaked distributions than the Monte Carlo
method, especially for the w = 0.1, w = 0.3, and EMDE
power spectra. It is unclear where this discrepancy arises,
but it could be connected to the finite grid resolution of
the random density fields. As a second test, we also plot
the combined A-rmax distribution for the 3.5 keV power
spectrum in Fig. 21. The Monte Carlo method proposed
in this section accurately reproduces the correlations
between A and rmax found in the density field.
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Mon. Not. R. Astron. Soc. 352, 1109 (2004), astro-
ph/0312221.

[69] Y. Lu, H. J. Mo, N. Katz, and M. D. Weinberg,
Mon. Not. R. Astron. Soc. 368, 1931 (2006), astro-
ph/0508624.

[70] Y. Ascasibar, Y. Hoffman, and S. Gottlöber, Mon. Not.
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