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In a universe with quintessence isocurvature, or perturbations in dark energy that are independent
from the usual curvature perturbations, structure formation is changed qualitatively. The existence
of two independent fields, curvature and isocurvature, causes the growth rate of matter perturbations
to depend on their initial conditions. The quintessence perturbations cause their growth to depend
on scale. We perform the first separate universe simulations for this cosmology. We demonstrate
that the power spectrum response and the halo bias depend on scale and initial conditions and that
the presence of the isocurvature mode changes the mapping from these quantities to the halo auto-
and cross-power spectra, and the squeezed-limit bispectrum. We compare the bias to several models,
finding reasonable agreement with both a power-spectrum-response model with one free parameter
and a model that fits two independent bias parameters for curvature and isocurvature sourced
fluctuations. We also verify that simulation responses to pure isocurvature and pure curvature
modes can be linearly combined to reproduce responses with different ratios of isocurvature and
curvature. This allows our results to be used to predict the halo power spectrum and stochasticity
with arbitrary large-scale curvature and isocurvature power spectra. In an appendix, we study the
generation of quintessence isocurvature during inflation and show that a modified kinetic term is
typically required to produce observable isocurvature modes in a field with wQ ≈ −1.

I. INTRODUCTION

The nonlinear regime of large-scale structure can
provide a wealth of information about the initial
conditions of our universe and its dynamical evolution.
However, analytic calculations of nonlinear growth
present formidable conceptual and technical challenges.
The separate universe formalism has proven to be a
useful tool for studying mode coupling in the evolution
of large-scale structure, providing a conceptually simple
framework that gives insight into the nonlinear regime.
In the separate universe formalism, the nonlinearity
of structure growth is studied through the effect that
long-wavelength modes have on small-scale observables,
such as the local power spectrum and local number
densities of collapsed objects. Since the long-wavelength
modes are far above the nonlinear scale, their evolution
can be calculated using linear perturbation theory,
while the small-scale observables, extracted from N-body
simulations, can be determined deep into the nonlinear
regime.

Separate universe techniques have been applied
to studies of mode coupling in the production of
primordial density perturbations during inflation [1,
2], including isocurvature modes in multi-field models
[3]. The formalism was then developed for large-
scale structure formation throughout matter and dark
energy domination [4–16]. This approach was applied
to investigations of halo assembly bias [17], adiabatic
perturbations in the presence of clustering quintessence
[18], and the cosmological effects of massive neutrinos
[19]. These latter two studies found that scale
dependence in structure formation can arise from
scale dependent growth of the long-wavelength matter
perturbations. Although, the effect was relatively small

in both cases.
In this work, we apply these separate universe

techniques to the case of clustering quintessence which
sources isocurvature perturbations. Our goal is to
study the clustering of matter on large scales in a
broader context, in which the growth histories of long-
wavelength matter perturbations can differ dramatically.
For this purpose, we chose a model that makes the
effects of history dependence large, allowing us to test
our understanding of the scale dependence and time
evolution of quantities such as the halo bias. The
quintessence model is chosen as an academic example
of a scenario with isocurvature perturbations that are
important at late times and we do not require consistency
of the model parameters with current data. We will,
however, comment on the observational viability and
physical imprint of this type of quintessence on the
observed matter power spectrum, halo bias, and halo
stochasticity.

Quintessence isocurvature is an extension of standard
ΛCDM cosmology, in which a scalar field is both
responsible for the dark energy content of the universe,
and also gives rise to primordial entropy perturbations.
These perturbations are additional degrees of freedom
for the initial configuration of energy densities and
pressures in the early universe. Their presence affects
the evolution of structure growth and halo formation in
a scale dependent way. The effect can be made arbitrarily
large or small by tuning the ratio of primordial curvature
and isocurvature.

The effect of quintessence isocurvature on cosmic
structure enables us to study the history dependence
of structure formation. Matter perturbations that
are sourced by different amplitudes of primordial
curvature and isocurvature will evolve differently in time.
Additionally, the clustering property of the quintessence
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introduces a new physical scale, the quintessence
Jeans scale, which causes scale dependent evolution
for different modes of the matter density perturbation.
Quintessential scale dependent growth was first studied
in [18], using separate universe simulations with a model
that contained purely adiabatic perturbations. In the
current work we use the same model but with different
parameters, allowing for isocurvature perturbations that
are used to amplify the scale dependence in the evolution
of the matter. This allows us to study structure
formation in regions for which the large-scale matter and
quintessence fields arrive at the same final state, but
evolve through significantly different histories.

This paper is organized as follows. Section II
presents the model of clustering quintessence, focusing
on features of the model that allow for isocurvature
perturbations that are conserved on superhorizon scales.
Section III reviews the separate universe formalism and
the numerical linear perturbation theory calculations
that were used to fix the expansion histories of our
separate universe simulations. Section IV summarizes
how the simulations were performed, the parameter
choices that were made, and how the results were
analyzed. Section V shows the results for the
matter power spectrum responses, comparing them to
1-loop perturbation theory calculations. The halo
biases measured from the simulations are presented in
Section VI. In Section VI we also verify that linear
combinations of the individual responses measured from
simulations with pure isocurvature and pure adiabatic
long wavelength modes reproduce the net response for
simulations with different fractions of initial isocurvature
perturbations. This allows us to generate predictions
for halo bias and the squeezed-limit bispectrum for
arbitrary initial curvature and isocurvature power and
cross-power spectra without the need for additional
simulations. Section VII compares the simulation bias
results to models for scale-dependent bias. In Section
VIII we consider the long-wavelength power spectrum,
clustering bias, and stochasticity arising from ensemble
averaging over the long-wavelength primordial curvature
and isocurvature modes. In Appendix A we discuss the
viability of some mechanisms to generate quintessence
isocurvature perturbations in the early universe.

II. ISOCURVATURE PERTURBATIONS

We work with a K-essence [20] type scalar field dark
energy Lagrangian of the form

L =
2c2QΛ

1 + c2Q

(
X

Λ

) 1+c2Q

2c2
Q − V (Q) , (1)

X = −1

2
gµν∂µQ∂νQ . (2)

The quintessence field Q is minimally coupled to the
metric, but its kinetic term is the standard kinetic term

X raised to a power involving the model parameter c2Q .
The constant Λ is not the cosmological constant here, it
is another model parameter with the same dimensions as
X, and its value is important for ensuring that Q behaves
as dark energy at late times. This dark energy model
was considered in [21, 22], and was shown to contain
quintessence perturbations that are conserved outside the
horizon. These dark energy perturbations act as a source
of growing isocurvature modes in cold dark matter.

In the uniform field gauge (which is also the comoving
gauge), where perturbations in Q vanish, the sound speed
is the constant cQ. For cQ = 1, the kinetic term in Eq.
(1) reduces to the canonical one. If this sound speed is
chosen to be small compared to the speed of light, the
dark energy perturbations cluster after horizon crossing.

The equation of state parameter, w
Q

, can be fixed by
choosing an appropriate potential. However, if w

Q
is

chosen to be constant, then the adiabatic sound speed
is

c2a ≡
˙̄p
Q

˙̄ρ
Q

= w
Q
, (3)

Where ρ̄Q and p̄Q are the energy density and pressure
of the homogenous, background quintessence field. The
dots denote derivatives with respect to time. As
we will see in the following, gravitational coupling
between the matter and quintessence perturbations
makes it impossible to have conserved isocurvature on
superhorizon scales under these conditions. The back
reaction of matter onto quintessence will cause it to
evolve even on superhorizon scales.

To avoid this, the equation of state can instead be fixed
by choosing Λ and V (Q) so that the potential is large
in comparison with the kinetic term. In this way, the
equation of state is held at w

Q
' −1 by the large value

of the potential, while the adiabatic sound speed depends
only on the slope of the potential.

The equation of motion for the homogeneous
background field is

Q′′ +

(
3c2Q +

H ′

H

)
Q′ +

c2QV,Q

H2

(
H2Q′2

2Λ

) c2Q−1

2c2
Q

= 0 ,

(4)

where H = H(a) is the Hubble rate and primes are
derivatives with respect to log(a).

For simplicity we’ll assume the potential has a constant
slope V,Q, which allows us to find an exact solution,

Q′ = −
√

2Λ

H2

(
V,Q√
2ΛH2

f(a)

)c2Q
, (5)

f(a) =
H(a)

a3

(∫ a

ai

dx

x

x3

H(x)
+

a3
i

H(ai)
f(ai)

)
. (6)

The integration constant f(ai) fixes the value of Q′ at
some initial time ai. Due to the factor of a−3H(a) in
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Eq. (6), and the small value of the sound speed, the
integration constant is unimportant relative to the first
term in f(a) so we set f(ai) to zero. In particular, during
inflation the solution for Q′ rapidly evolves to a constant
that is independent of the initial condition. The slope of
the potential is not required to be small, since the change
in the field strength is determined by the constant Λ.

Integrating Eq. (5) gives the background evolution
of the quintessence field. However, by assumption, the
background field is dominated by a large integration
constant Q0. For a given potential, V (Q0) is fixed to
reproduce the present day energy density of the universe.
The constant Λ is then used to ensure that the time
dependent term in Q is always small compared to Q0.
This is different from the typical slow-roll assumptions,
which enforce both that w ' −1, and that the fractional
change in w over a Hubble time is small. In our case,
the fractional change in the equation of state is not small
during eras when H ′/H is not small, but the equation of
state was so close to w = −1 initially that Q still behaves
as dark energy today.

The adiabatic speed of sound for this solution is

c2a = c2Q −
1 + c2Q

3

1

f(a)
. (7)

At early times during matter domination, for c2Q � 1,

this gives c2a ' −3/2. Note, the adiabatic sound speed
is only the sound speed of physical perturbations if
they are adiabatic. For stability, the negative value of
c2a indicates that there must nonadiabatic stress, and
therefore entropy perturbations.

The equations for linear perturbations are convenient
to analyze in the synchronous gauge [23, 24].
Linear perturbations in the scalar components of the
quintessence stress-energy tensor are gauge-dependent
quantities. In the uniform Q gauge and synchronous
gauge, they are related by

δρQ
∣∣
u

= δρQ − ρ̄Q′
aH

k

uQ
1 + w

Q

, (8)

δpQ
∣∣
u

= δpQ − p̄Q′
aH

k

uQ
1 + w

Q

. (9)

Here, δρQ is the linear perturbation to the quintessence
energy density, δpQ is the linear perturbation to the
its pressure, and uQ is the velocity potential of the
quintessence field, all evaluated in the synchronous
gauge. The quantities on the left are evaluated in the
uniform field gauge, which is comoving with Q, so the
velocity potential uQ|u vanishes.

From the above transformation, we can obtain the
sound speed in the synchronous gauge, which is

c2sδQ ≡
δpQ
ρ̄Q

= c2QδQ + 3
(
c2Q − c2a

) aH
k
uQ . (10)

The equation of state and synchronous gauge sound
speed can be used to eliminate the pressure and its linear

perturbation from the quintessence continuity and Euler
equations. The continuity equation for the pressureless
matter can be used to eliminate the scalar metric degree
of freedom. The resulting system of differential equations
describing the linear perturbations of the combined
matter-quintessence cosmic fluid is

δ′Q + 3
(
c2s − wQ

)
δQ = − k

aH
uQ +

(
1 + w

Q

)
δ′m , (11)

u′Q + (1− 3w
Q

)uQ =
k

aH
c2sδQ , (12)

δ′′m +

(
2 +

H ′

H

)
δ′m =

3

2

H2
0

H2

Ωm
a3

δm (13)

+
3

2

H2
0

H2

ΩQ

a3(1+w
Q

)

(
1 + 3c2s

)
δQ .

Energy density contrasts δi are defined

δi =
δρi
ρ̄i
− 1 , (14)

with i = m for matter or Q for quintessence.
If w

Q
6= −1, then there are no scaling solutions,

δi ∝ aγi for some constant exponents γi. In this
case, the quintessence perturbations evolve outside the
horizon. Alternatively, if w

Q
= −1, then the matter

does not appear in the quintessence continuity equation,
and the condition for constant superhorizon quintessence
becomes c2s = −1 for k � aH. In the limit where
c2Q � 1, the initial conditions for these perturbations
during matter domination are

δQ(ai, k) = I(k) , (15)

uQ(ai, k) = −f(ai)
k

aiHi
I(k) , (16)

δm(ai, k) =
2

5

(
k

aiHi

)2

R(k)− 1

3

ΩQ
Ωm

a3
i I(k) . (17)

where f(ai) = 2/9 during matter domination. The
matter perturbations are sourced by both primordial
isocurvature fluctuations (I) and curvature fluctuations
(R). The latter correspond to the homogeneous solution
of the linear growth equation for matter.

Introducing transfer functions for the quintessence
energy density contrast, velocity potential, and the
separate curvature and isocurvature components of the
matter density contrast

δQ(a, k) = TQ(a, k)I(k) , (18)

uQ(a, k) = TuQ
(a, k)I(k) , (19)

δm(a, k) = TRm (a, k)R(k) + T Im(a, k)I(k) . (20)

The total linear matter power spectrum is then

Pmm(k) = (TRm (a, k))2PRR(k) (21)

+ 2TRm (a, k)T Im(a, k)PRI(k)

+ (T Im(a, k))2PII(k)

≡ PRRmm (k) + 2PRImm(k) + P IImm(k) , (22)
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FIG. 1. Left: evolution of long-wavelength matter perturbations, normalized to final value 1, sourced by both curvature and
quintessence isocurvature for positively correlated (top) or anticorrelated (bottom) I/R. Right: transfer functions for the
quintessence energy density contrast (top) and velocity perturbation (bottom). The magnitude of the ratio of primordial
isocurvature to curvature is fixed to 100 to emphasize the effect of the isocurvature mode. The sound speed choice cQ = 0.1
puts the Jeans scale at kJ/H0 = 10 today. The evolution of the δm mode with k/H0 = 100 is indistinguishable from the
evolution of a purely adiabatic mode of any wavelength. The legend in the top left applies to all plots.

where PRR, PRI and PII are the auto and cross-
power spectra for primordial curvature and isocurvature.
In the last line we have defined PXYmm as parts of
the matter perturbation sourced by curvature and
isocurvature spectra. On sub-Jeans scales, the total
matter power spectrum is just the contribution from
adiabatic perturbations, PRRmm . In this regime we will
always choose PRRmm (k) to be the usual ΛCDM matter
power spectrum (our specific parameter choices will be
given in Table I). On larger scales, we leave the PRR,
PRI and PII unspecified, but in Section VIII we will
show how different assumptions about the power spectra
impact observables.

The curvature-sourced transfer function depends on
k only through its initial condition. The isocurvature-
sourced transfer function has k-independent initial
conditions, but it has k-dependent evolution. This scale
dependence ultimately originates in the velocity gradient
in the quintessence continuity equation, which becomes
important after horizon crossing. Scale-dependent
growth occurs from the horizon down to the Jeans scale,
below which the quintessence perturbations are pressure

supported so they do not grow. Far below the Jeans scale,
the matter is dominated by its adiabatic component with
scale-independent growth.

Solutions to the linear growth equations are plotted
in FIG. 1, with initial conditions fixed by setting the
final δm0 to be the same value for all matter modes.
To emphasize the effects of isocurvature we fix the ratio
of primordial curvature to isocurvature to be I/R =
±100 outside the horizon. The comoving sound speed
is set to cQ = 0.1, which fixes the quintessence Jeans
scale today to be kJ ' 10 H0. Both the curvature
and quintessence fluctuations are constant outside the
horizon. After horizon crossing, the quintessence grows
until crossing the Jeans scale. Below the Jeans scale,
these perturbations oscillate and quickly decay away, so
k ' 100 H0 is essentially a purely adiabatic mode.

During matter domination, the matter components
sourced by curvature and isocurvature grow as a and
a3 respectively. There are two scale-invariant regimes
for matter growth, the isocurvature-dominated regime
at large scales and the curvature-dominated regime at
small scales. The ratio I/R and the quintessence
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Jeans scale determine where the transition is between
these two regimes. The larger I/R becomes, to closer
the transition is to the quintessence Jeans scale. The
scale dependent growth is most extreme near these
intermediate scales.

For the matter perturbations, the behavior depends
on the relative sign of the primordial curvature and
isocurvature fluctuations. Since the two terms in the
initial condition for the matter have opposite signs,
correlated curvature and isocurvature tends to decrease
the matter perturbations below their adiabatic value,
whereas they are increased by anticorrelated primordial
fluctuations. The net effect is that matter perturbations
grow rapidly at late times in the correlated case, while
they approach a maximum value and then decrease when
R and I are anticorrelated.

III. SEPARATE UNIVERSE

The following summarizes previous work by Hu et
al. [8], in which separate universe techniques were
developed for large-scale structure in the presence
of a long-wavelength Jeans scale. In the separate
universe formalism, we consider a region embedded in
a long-wavelength matter perturbation δL, which is
approximately spatially homogeneous across the region.
In this region, the long-wavelength perturbation appears
as a shift in the average matter energy density

ρ̄mW (a; k) = ρ̄m(a) (1 + δL(k, a)) . (23)

Here, the local quantities in the “windowed” region are
denoted with a subscript W . The wave number of a long-
wavelength perturbation under consideration is k. We
restrict our analysis to windowed regions that are smaller
than the quintessence Jeans scale so that the quintessence
perturbations can be ignored, and the only fluctuations
around ρ̄W are fluctuations in matter. Wave numbers of
modes smaller than the size of this region, and therefore
smaller than the quintessence Jeans scale, will be denoted
below as kS .

Requiring that the local matter density evolves as a−3
W

with respect to the local scale factor gives,

ΩmH
2
0

a3
(1 + δL) =

ΩmWH
2
0W

a3
W

. (24)

Since the long-wavelength perturbation is negligible
at early times, the two cosmologies initially coincide.
At leading order in δL, this condition fixes the

transformation from the global to the local cosmology

ΩmWH
2
0W = ΩmH

2
0 , (25)

aW ' a
(

1− 1

3
δL

)
, (26)

HW ' H
(

1− 1

3
δ′L

)
, (27)

d

d logaW
'
(

1 +
1

3
δ′L

)
d

d loga
. (28)

A. Linear perturbations

Consider a small-scale mode of the local matter
perturbation δmW . The evolution of this mode with
respect to the local cosmology satisfies the same growth
equation as adiabatic matter perturbations with respect
to the global cosmology. For linear perturbations, we
write δmW in terms of a local linear growth factor

δmW (kS , a; k) = DW (a; k)δm(kS , ai) . (29)

where k is the wave number of long-wavelength mode,
and we are choosing DW (ai; k) = 1. If the initial
condition for δmW at scale factor ai is set early enough,
its dependence on the long-wavelength mode is negligible.
The evolution of the linear growth factor is given by

d2DW

d logaW 2
+

(
2 +

d logHW

d logaW

)
dDW

d logaW

−3

2

H2
0W

H2
W

ΩmW
a3
W

DW = 0 . (30)

Small-scale perturbations are well below the Jeans scale,
so at these scales the quintessence perturbations are
negligible, which is why they do not show up on the
right hand side of the above expression. The local matter
growth factor can be decomposed into a term equal to the
global growth factor and a response term sourced by the
long-wavelength mode

DW (k, a) = D(a)
(

1 + ε(a; k)
)
. (31)

Using the transformations in Eq. (26-27) to rewrite Eq.
(30) in terms of the global cosmology gives,

D′′ +

(
2 +

H ′

H

)
D′ =

3

2

H2
0

H2

Ωm
a3

D , (32)

ε′′ +

(
2 + 2

D′

D
+
H ′

H

)
ε′ =

3

2

H2
0

H2

Ωm
a3

δL +
2

3

D′

D
δ′L .

(33)

The small-scale mode is only sourced by curvature,
but the long-wavelength mode has both curvature and
isocurvature contributions. We can define transfer
functions for the response

ε(a; k) = TRε (a; k)R(k) + T Iε (a; k)I(k) . (34)
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During matter domination, the initial conditions are

TRε (ai; k) =
13

21
TRm (ai; k) , (35)

T Iε (ai; k) =
7

33
T Im(ai; k) . (36)

B. Power spectrum growth response

The local matter-matter power spectrum of a region
within a long-wavelength mode will differ from the global
power spectrum. The difference can be characterized
by three contributions: change in comoving wavelengths,
change in the definition of the average background energy
density, and change in the local growth factor [25]. These
contributions are summarized by

d logPmmW
dδL

= Rd +Rρ̄ +Rg . (37)

The first term refers to the dilation of comoving
wavelengths, which is due to the local scale factor’s
dependence on the long-wavelength mode. This term can
be calculated

Rd = −1

3

d log(Pmm)

d log kS
. (38)

The second term refers to the shift in the mean energy
density, which changes the definition of energy density
contrasts. This is simply

Rρ̄ = 2 . (39)

The final term, referring to change in the growth factor
due to the long-wavelength mode, can be estimated by
taking the finite difference derivative between the local
power in overdense and underdense separate universe
regions

Rg =
PmmW (a, kS |+ δL)− PmmW (a, kS | − δL)

2Pmm(a, kS)δL
. (40)

Note, this last term is the only contribution to the power
spectrum response that depends dynamically on the long-
wavelength mode. The other two contributions can be
calculated without separate universe simulations. All of
the references to the power spectrum response below refer
only to the growth part of the response.

Since Rg depends dynamically on the long-wavelength
mode, it will depend on the evolutionary history of
δL [26]. Therefore Rg depends on the particular ratio
of adiabatic and isocurvature modes that comprise δL.
For a single realization, δL = TRmR + T ImI, the power
spectrum response is given by

Rg = 2
TRε R+ T Iε I
TRmR+ T ImI

. (41)

From Eq. (41) it is clear that the total growth response
in Eq. (40) from a single realization of δL is in general

a random variable, dependent on the realization of I
and R. This is in contrast to a cosmology in which a
single degree of freedom determines δL and each mode
of δL(k) has the same evolutionary history (e.g. for
adiabatic perturbations in ΛCDM [6–8], quintessence
[18], or neutrino-CDM cosmologies [19]).

In what follows it will be helpful to define individual
growth responses for the pieces of δL generated by I and
R

RRg = 2
TRε
TRm

, (42)

RIg = 2
T Iε
T Im

. (43)

Unlike the total growth response in Eq. (41), the
individual responses to the adiabatic and isocurvature
terms are not realization-dependent. The existence
of two modes, I and R, changes the usual separate
universe relationships between ε, Rg, and the squeezed-
limit bispectrum. Determining the change in the power
spectrum due to the presence of a long-wavelength mode
from Eq. (37) requires knowledge of the local values of R
and I that generated the long-wavelength mode. As we
shall see, the squeezed-limit bispectrum will depend on
PRR, PRI , and PII .

The power spectrum response for single realizations
of δL is plotted in FIG. 2 as a function of the large-
scale wave number. Far above the Jeans scale, the
response is isocurvature dominated and scale invariant.
Far below the Jeans scale, the response approaches the
purely adiabatic value. Between the horizon crossing
scale and Jeans scale the response is scale dependent. In
the correlated case (I/R > 0), the initial conditions for
the curvature and isocurvature components of the matter
modes have opposite sign. At a given redshift there is a
scale at which the two components cancel, so the total
matter perturbation vanishes, causing the response to
diverge at this scale.

The squeezed-limit bispectrum can be determined
by computing the correlation between the local power
spectrum and δL, 〈PmmW (a, kS |δL)δL〉. Computing the
ratio we find

〈PmmW (a, kS |δL)δL〉
Pmm(kS) 〈δLδL〉

= 〈d logPmmW
dδL

δLδL
〈δLδL〉

〉 , (44)

= Rd +Rρ̄ (45)

+RRg

(
PRRmm (k) + PRImm(k)

Pmm(k)

)
+RIg

(
P IImm(k) + PRImm(k)

Pmm(k)

)
.

The coefficients of the growth responses depend on the
primordial power spectra, PRR, PRI , and PII , which
depend on the mechanism, inflationary or otherwise, that
generates these fluctuations in the early universe. Here
we make no attempt to find a model that would generate
these primordial fluctuations in the early universe.
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FIG. 2. Left: the z = 0 power spectrum response as a function of large-scale wave number for a single realization of the
long-wavelength mode, with I/R = ±100. The divergence in the correlated case (I/R > 0) is due to the initial condition for
the curvature and isocurvature components of the matter perturbations having opposite sign. There is a scale at which the
two components cancel causing the total matter perturbation to vanish. Right: the z = 0 power spectrum response assuming
scale invariant power spectra for the primordial curvature and quintessence isocurvature perturbations. The cross correlation
is taken to be either vanishing, or ±90% the Cauchy-Schwarz bound, with isocurvature amplitude 100 times larger than the
curvature amplitude. The double bracket indicates averaging in the following sense: 〈〈Rg〉〉 = 〈Rgδmδm〉 / 〈δmδm〉.

However, the appendix at the end of this paper considers
the viability of certain models that could produce
isocurvature modes that are significantly correlated or
anticorrelated with the primordial curvature modes.

The last two terms in Eq. (45) can be interpreted as
the growth part of the power spectrum response averaged
over the long-wavelength mode in the following sense:

〈〈Rg〉〉 =
〈RgδLδL〉
〈δLδL〉

. (46)

For the purposes of illustrating the effects of averaging
over long-wavelength modes, we make the assumption
that both of the auto power spectra and the cross power
spectrum of the primordial curvature and isocurvature
fluctuations are scale invariant. FIG. 2 shows examples
of the averaged power spectrum responses with the
isocurvature amplitude taken to be 100 times larger
than the curvature amplitude to emphasize its effect.
Examples are shown with cross correlation vanishing, and
with the cross correlation ±90% its bound with respect
to the Cauchy-Schwartz inequality, |PRI | ≤

√
PRRPII .

Responses of small-scale observables to a long-
wavelength mode that are described by the separate
universe formalism are closely related to angle-averaged,
equal-time cosmic consistency relations. The presence of
quintessence isocurvature violates the assumptions used
to derived the standard cosmic consistency relations [27].
The expression for the squeezed-limit bispectrum shown
in Eq. (45) is a generalization of the bispectrum angle-
averaged, equal-time cosmic consistency relation to the
case of quintessence isocurvature.

IV. SIMULATIONS

Separate universe simulations involve computing the
evolution of an N-body system of particles within the
context of a long-wavelength mode that is treated as a
shift in the homogeneous background energy density. In
our case, the particles are cold dark matter and baryons,
which are treated equivalently because we are interested
in scales much larger than the baryonic Jeans scale. The
system includes Np = (512)3 nonrelativistic particles
interacting only through Newtonian gravity on an FRW
expanding background. The comoving size of the box is
fixed locally to length LW = 500 Mpc/h.

The expansion is characterized by the local Hubble rate
HW as a function of local scale factor aW , which differs
from ΛCDM by a perturbatively small contribution due
to the presence of the long-wavelength mode δL. At
a given wave number, δL is computed by numerically
integrating Eq. (15-17). Values of the local scale factor
and Hubble rate are tabulated using Eq. (26-27). The
background expansion is fixed entirely by δL and the
choice of global cosmology parameters Ωm = 0.3, ΩQ =
0.7, and w

Q
= −1.

The N-body simulations were run using the code
Gadget2 [28], modified to read in tabulated values of
the separate universe scale factor and Hubble rate for
a given long-wavelength mode. Sets of 20 simulations
were run for the long-wavelength modes k/H0=1, 7,
10, 14, and 100 with I/R = −100, and k/H0=1,
10, and 100 with I/R = 100. These range from
the isocurvature to the curvature dominated regime,
capturing features of the scale dependent power spectrum
response. Additional simulations were run for a pure
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Parameter Value

ΩQ 0.7

Ωm 0.3

Ωb 0.05

h 0.7

ns 0.968

As 2.137×10−9

Np (512)3

LW 500 Mpc/h

Mp 1.108× 1011 M�

TABLE I. Cosmological and N-body simulation parameters.

isocurvature mode at k/H0 = 10, and a pure curvature
mode. With both overdense and underdense separate
universe simulations for each mode, 400 separate universe
simulation were run in total. An additional 20 were from
for a larger global universe box of size L = 1000 Mpc/h
with (512)3 particles with standard adiabatic initial
conditions. These were used to measure the clustering
bias as a check on our separate universe results for the
adiabatic response bias.

Initial conditions were generated as realizations of
Gaussian random fields from the matter power spectrum
at the initial simulation time zi = 49. Although the
baryons behave indistinguishably from the dark matter in
the N-body interactions, their presence affects the shape
of the power spectrum through the baryonic acoustic
oscillations. To account for this, the power spectrum
is first calculated at redshift z = 0 with the code CLASS
[29], using the cosmological parameters given in Table
(I). The matter power spectrum is then rescaled back to
the initial simulation time. At early times, the difference
between local and global cosmology is negligible, so the
primordial fluctuations are the same for both. However,
the linear growth factors are not the same. To account for
this, we rescale the power spectrum back using the global
growth factor, and forward to the initial simulation time
using local scale factor

PW (kS , aWi; k) = P (kS , a0)

(
DW (k, aWi)

D(a0)

)2

. (47)

For each long-wavelength mode, the same 20 random
seeds were used to generate the initial conditions for the
particles’ positions and velocities. These were corrected
using a second order Lagrangian perturbation theory
code to reduce transients [30]. Simulation snapshots
were taken at values of the global redshifts z =
1.0, 0.75, 0.5, 0.25, and 0.0. Since the simulations
are run in local time, their snapshot output times are
adjusted according to Eq. (26) to make sure overdense
and underdense boxes are matched at the same the global
time.

1.0

2.0

3.0

R
g

I/R = −100
z = 0.25

k/H0: 1 7 10 14 100

6× 10−2 10−1

kS [Mpc−1]

0.5

1.0

1.5

R
g

I/R = 100

FIG. 3. Power spectrum response at z = 0.25 from separate
universe simulations. The shaded in regions show the 1-
σ bootstrap error, the thin solid lines show the 1-loop
calculation from standard perturbation theory. We note that
the ratios of the different Rg to the adiabatic growth response,
or Rg(k)/Rg(k/H0 → 100), are constant with respect to kS .

V. POWER SPECTRUM RESPONSE

For a given simulation snapshot, the particle positions
were converted to a density field, which was Fourier
transformed using FFTW [31]. The density field was
estimated by distributing the particles to sites on a
(1024)3 grid, using the cloud-in-cell method. The
power spectrum was then calculated from the Fourier
transformed density field, and the power spectrum
response was estimated through the finite difference
derivative in Eq. (40), from the overdense and
underdense separate universe simulations. By resampling
over the 20 random realizations, the bootstrap variance
in the power spectrum response was calculated.

Effects of weakly nonlinear growth can be captured
by calculating the power spectrum using perturbation
theory. At 1-loop we have [32]

P1-loop = P11 + P22 + 2P13 , (48)

where the first term is the linear power spectrum and
last two terms are proportional to (DW )

4
. The 1-loop
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correction to the power spectrum response is

Rg,1-loop =

(
1 +

P22 + 2P13

P11

)
Rg . (49)

Here Rg is the linear power spectrum response. The
power spectrum responses measured from our simulations
at z = 0.25 are plotted in FIG. 3, along with a 1-
loop calculation shown for each value of k that was
simulated. Above the nonlinear scale, the response
measured from the simulations agrees well with the linear
power spectrum response. Agreement with the 1-loop
calculation continues until kS ' 6× 10−2 Mpc−1, which
is approaching the nonlinear scale where perturbation
theory is no longer valid.

VI. HALO BIAS

The Lagrangian bias was determined for each
simulation set by using the abundance matching method
[33], which involves calculating the mass shift at a
fixed cumulative number density between overdense and
underdense separate universes. For a given set of
simulations, a cumulative catalog of halo masses, from all
20 realization of the initial conditions, was constructed
and then sorted in descending order. These sorted
mass catalogs give an estimate of the cumulative number
density of objects above some threshold mass

n(logMth; δL) =

∫ ∞
logMth

d logM

(
−dn

L(logM, δL)

d logM

)
.

(50)

From our sorted halo catalogs, we construct the following
lists

logMi =
logM+

i + logM−i
2

, (51)

si =
logM+

i − logM−i
2δL

, (52)

ni =

(
i− 1

2

)
1

NsimV
. (53)

The ± superscripts refer to overdense and underdense
separate universes. By fitting the above lists with splines,
we obtained estimates of the functions s(logM), which
is the mass shift, and n(logM), which is the halo mass
function. The average Lagrangian bias above mass M is
then estimated

bL = − s(logM)

n(logM)

dn(logM)

d logM
. (54)

Note, all biases reported and discussed below will be
biases averaged above a mass threshold.

The halo finding program Rockstar [34] was used to
extract catalogs of bound objects and their spherical
overdense masses. Halo masses are calculated in

Rockstar by finding the outermost particle position
from the halo’s center of mass at which the average
spherical overdensity inside this radius is greater than
some threshold

Mh = MpN , (55)

3NMp

4πr3
N

>ρTh >
3(N + 1)Mp

4πr3
N+1

. (56)

The density threshold used here is the virialization
threshold

ρTh
ρ̄m

=
18π2 + 82(Ωm(a)− 1)− 39(Ωm(a)− 1)2

Ωm(a)
. (57)

Since Rockstar determines densities with respect to
the local, separate universe comoving distances, the
threshold has to be converted to these coordinates

ρWTh = ρTh(1− δL) . (58)

That is, an overdense separate universe has an apparently
lower density threshold to form collapsed objects.

At small masses, the discreteness of this halo mass
determination introduces an artificial spread in the values
si. We modified this mass calculation, based on the
work [33], to include a contribution from particle N + 1,
assuming its mass to be uniformly distributed in the
spherical shell between rN+1 and rN

Mh = Mp (N + δN) , (59)

δN =
MpN − ρThVN

ρTh(VN+1 − V 2
N )−Mp

. (60)

Here VN is the volume inside the radial position of the
N th particle from the halo’s center. Masses calculated
this way are continuous, and produce less spread in the
values of the mass shift at low mass.

We repeated this calculation of the Lagrangian bias,
resampling with replacement over our sets of random
initial conditions, and calculated the bootstrap variance.
The biases at redshift z = 0 are shown in FIG. 4, along
with the ratio of the Lagrangian biases to the adiabatic
(I = 0) Lagrangian bias. We will refer to the latter
quantity as the relative bias.

The scale dependence is clearly demonstrated within
the bootstrap variances from the simulations, especially
for the anticorrelated case. The recovery of the adiabatic
bias below the Jeans scale is demonstrated for the
k/H0 = 100 mode.

The relative biases are consistent with being mass
independent for the masses we are sensitive to (∼ 1013−
1015 M�). Small variations in the relative bias as a
function of mass is due to the spline fitting. At masses
above 1015 M�, halos are rare and the spline fitting
becomes very sensitive to the choice of knots, so the bias
is not well determined there.

As a test of our bias determinations, we compared
them to measurements of the clustering bias from a
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FIG. 4. Top: Lagrangian bias for each long-wavelength mode at redshift z = 0. Bottom: ratio of Lagrangian bias to the purely
adiabatic Lagrangian bias. Correlated and anticorrelated cases are on the left and right respectively. The shaded regions show
the variance estimated from bootstrap resampling.

simulation with box size (1000 Mpc)3, number of parti-
cles (512)3, and a standard, global ΛCDM background
cosmology with purely adiabatic perturbations. The
clustering bias, b

C
, is measured from the matter-halo

cross power spectrum on linear scales [35–37]

Pmh
Pmm

' bc + b2k
2
S +O(k4

S) . (61)

Treating b2 as a nuisance parameter, we fit the above
function for value of kS up to 0.05 Mpc−1. We found
the cluster bias to be in excellent agreement with our
separate universe response biases for the adiabatic mode.

A. Linearity of responses

Our simulations involve two independent components
of the long-wavelength modes: the curvature and the
quintessence-sourced isocurvature. We fix the initial
relative amplitudes of these as part of our simulation
parameters. However, since both components of the long-
wavelength mode stay perturbatively small, it should

be the case that responses can be decomposed into two
terms, one for each component.1

Suppose we have a small-scale observable OW , which
responds to the long-wavelength mode

RO =
d logOW
dδL

, (62)

=
d logOW
dδRL

δRL
δL

+
d logOW
dδIL

δIL
δL

. (63)

In this way, we can take linear combinations of responses
from simulations with purely adiabatic and purely
isocurvature long-wavelength modes and obtain the

1It is always, of course, a working assumption of the separate
universe approach that responses computed from simulations with a
particular realization of the long-wavelength mode can be combined
to produce the response for a different realization, e.g. for a larger
or smaller amplitude δL or a δL with a different density profile. We
nevertheless want to verify this assumption for the more extreme
examples of different δL considered in this paper.
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FIG. 5. Linear sum of simulation results for individual components of long-wavelength matter perturbation compared with the
total matter perturbation results. The left plot shows the power spectrum responses, and the bottom shows the percentage
difference, which is consistent with numerical errors from taking finite difference derivatives. The right plot shows the Lagrangian
bias. The bottom shows the number of standard deviations between the linear combination and the total matter perturbation
determinations of the bias.

response for any realization of δL with initial relative
amplitude I/R.

The evolution of the total long-wavelength matter
perturbation with both curvature-sourced and
isocurvature-sourced components can differ signifi-
cantly from the purely isocurvature-sourced and purely
curvature-sourced perturbations. The evolution even
becomes nonmonotonic in the case with I/R = −100.
In order to test the linearity of responses, an addi-
tional set of simulations was run with long-wavelength
mode that was purely isocurvature-sourced, at wave
number k/H0 = 10. The power spectrum response
and biases obtained by linearly combining simulation
results with the pure isocurvature and pure curvature
long-wavelength modes are shown in FIG. 5.

Since the responses are estimated using finite difference
derivatives with respect to the long-wavelength mode,
we expect numerical errors on the order of δL ∼ 1%.
In addition to this, we have cosmic variance from the
limited set of realizations for the initial conditions. The
difference in the power spectrum response obtained from
linear combination and the total long-wavelength mode
simulations is< 2% even into the nonlinear regime, which
is consistent with our expected numerical accuracy.

For the biases, the error is dominated by shot noise

and stochasticity. At masses between 1013 − 1015 M�,
the two estimates of the Lagrangian bias are within
1.5 σ, so linearly combining purely isocurvature-sourced
and purely curvature-sourced simulation results gives a
good estimate of the small-scale observable responses. As
a result, our simulation responses can be rescaled and
linearly combined to estimate what the responses would
be in the presence of different long-wavelength modes
with particular realizations of I and R, and ultimately,
different primordial power spectra and cross spectra for
I and R as discussed in III.

VII. BIAS MODELS

The linearity of the biases allows us to identify
two independent bias coefficients, bLR(a) and bLI (a, k),
for purely curvature-sourced and isocurvature-sourced
matter perturbations respectively. In general, these have
different mass dependence, so their ratio depends on both
mass and wave number. For a given realization of I/R,
the total relative bias is



12

bL(M,a; k)

bLR(M,a)
=
δRm(a, k)

δm(a, k)
+
bLI (M,a; k)

bLR(M,a)

δIm(a, k)

δm(a, k)
. (64)

To predict the total relative bias, we must model the
relative bias for the purely isocurvature-sourced modes.
This amounts to describing the scale dependence and
time evolution of the pure isocurvature bias. We define
the isocurvature relative bias:

βL(M,a; k) =
bLI (M,a; k)

bLR(M,a)
. (65)

Different bias models correspond to different choices for
the k-dependence and evolution of βL.

Below we consider two classes of models. The first
class attempts to reproduce the pure isocurvature relative
bias using the transfer functions TRm and T Im. This fixes
the scale dependence and evolution of the isocurvature
bias up to an overall multiplicative factor, which we take
to be independent of scale and fit to the isocurvature
dominated scales (k/H0 ≤ 1.). The transfer function
models generically involve at least one free parameter.

The second class of models assumes that the bias is
proportional to another small-scale observable’s response
to the long wavelength mode, such as the power spectrum
response, or the response of the critical linear density
for spherical collapse. The relative bias for this class of
models is just the ratio between the pure isocurvature
and pure curvature responses, so these models involve no
free parameters.

A. Transfer function models

Models of halo bias that are local in time assume
that the fluctuations in halo number density are fixed
by the configuration of the matter density field at a
single redshift. The evolution of halo abundance is then
an initial value problem, with initial data given by the
matter density field’s configuration on a single time slice.
This is, for instance, the point of view adopted in the
excursion set theory approach to large scale structure.
In this approach, the matter density field at early times
is smoothed over a range of scales and compared to
the critical density for spherical collapse linearly evolved
back to the redshift of the initial data. From this point
of view, it is natural to model the evolution and scale
dependence of the halo bias using the transfer functions
for the linear evolution of the different components of
matter fluctuations.

For these models the Lagrangian biases have simple
evolutions, inversely proportional to the transfer
functions. We will consider two different possibilities
for the evolution and scale dependence of β(a, k). The
first assumes passive evolution of halo abundance, so
that the number density of halos at a given mass is
conserved. Scale dependence in the bias then arises from

scale dependence in the isocurvature transfer function at
late times. The second model assumes that the individual
biases are scale invariant at all times. Scale-dependent
bias in this case arises from when the two bias terms
are combined, through the scale dependence of the total
matter perturbation.

The models we consider are based on the matter
transfer functions TRm and T Im, which is motivated by
the linearity of the Lagrangian response bias. Another
approach would be to include a bias term for the
quintessence density contrast (bQδQ), combined with a
bias term for either the full matter perturbation, or just
the curvature sourced part. This is similar to including
a neutrino bias term for the case of scale dependent
growth arising from massive neutrinos. This approach
was found not to reproduce biases from separate universe
simulations [19]. Similarly, we find that the scale
dependence from the quintessence transfer function,
when combined with the matter transfer functions, does
not reproduce the scale dependence of the simulation
biases. Fits from these models have χ2 ∼ 103 (per degree
of freedom), so we do not consider them below.

1. Passive evolution model

A simple example of bias evolution, based on work
by Hui and Parfrey [38, 39], assumes that the number
density contrast of halos is conserved:

δh(M,ai) = δh(M,a) . (66)

This passive evolution model (PE in what follows) is
accurate so long as merger events between different halos
are sufficiently rare. The evolution of the individual
biases is given by:

bLR(M,a) = bLR(M,ai)
TRm (ai, k)

TRm (a, k)
, (67)

bLI (M,a; k) = bLI (M,ai)
T Im(ai)

T Im(a, k)
. (68)

Each of these individual bias terms are independent of
the realization of the long-wavelength mode. The scale
dependence from the initial condition in TRm cancels
taking the ratio. While the initial condition for T Im does
not depend on k, its subsequent evolution after horizon
crossing does, and this is where the scale dependent bias
originates in this model.

The relative bias for pure isocurvature is:

βLPE(M,a; k) = βLPE(M,ai)
TRm (a, k)T Im(ai)

TRm (ai, k)T Im(a, k)
. (69)

The free parameter βLPE(M,ai) ≡ bLI (M,ai)/b
L
R(M,ai),

can be fit by requiring this relative bias to match the
simulation results on isocurvature dominated scales.

The total relative bias can be written
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FIG. 6. Model comparisons for the Lagrangian relative bias, at redshift z = 0 on top and mass z = 0.25 on the bottom. The
data points in black are the simulation results, and their error bars show the bootstrap variance taken at mass M = 1014 M�.
We choose to show M = 1014 M� since it is relatively well constrained but since the relative bias is consistent with being mass
independent (FIG. 4) model comparisons at other masses will look similar. The χ2 values shown for each model are per degree
of freedom, jointly fitting both I/R = ±100 simulation biases. Note that for k � kJeans the ratio bL/bLR is nearly the same
for both values of I/R = ±100, this is because the isocurvature-generated matter fluctuations dominate δm at low-k.

bL(M,a; k)

bLR(M,a)
=

(
1 + βPE(M,ai)

δIm(ai, k)

δRm(ai, k)

)
δRm(a)

δm(a, k)
,

(70)

Since the initial transfer function TRm (ai, k) grows as
k2, the correct small-scale relative bias bE/bER = 1 is
recovered in the curvature dominated regime (k →∞).

The model fits at mass M = 1014 M� are shown
in FIG. 6 at redshifts z = 0 and z = 0.25. The
model does not reproduce the scale dependence of our
simulation results. Forcing the model to agree with the
isocurvature dominated results causes the relative bias
to be dramatically over estimated for I/R = −100.
For I/R = 100, the relative bias at the Jeans scale is
underestimated. Similar versions of this model were also
shown to give poor reproduction of simulation results for
adiabatic quintessence [18] and massive neutrinos [19].

2. Constant R-I bias model

Suppose that, instead of taking the evolution of bLI
to be determined by the assumption of halo number
density contrast conservation, we instead take it to be
scale independent at all times. Then the total relative
bias is given by

bL(M,a; k)

bLR(M,a)
=
δRm(a, k)

δm(a, k)
+ βRI(M,a)

δIm(a, k)

δm(a, k)
, (71)

We can again fit the parameter βLRI(M,a) to match the
isocurvature dominated scales at each redshift. We call
this model the constantR-I bias model (cRI). Although
the individual components of the bias are assumed to
be independent of scale, the total bias does depend on
scale through the isocurvature transfer function. The
component biases each depend on mass and redshift,
and there is nothing requiring the relative bias to be
independent of mass for this model.
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Fits for this model are have χ2 ' 2 per degree of
freedom. For I/R = 100, the Jeans scale relative bias is
slightly over estimated, whereas the I/R = −100 biases
are underestimated.

Overall, the transfer function models appear to capture
the qualitative features of the relative biases. The scale
dependence seems to be dominated by the shape of
the function δm(a, k)−1, which is what one expects for
passive halo evolution. Quantitatively, the cRI model
gives a much improved reproduction of the simulation
biases compared with the PE model. The quality of
these model fits is not strongly dependent on redshift.
The relative success of the cRI model indicates that the
scale dependence of the isocurvature relative bias is fairly
weak.

B. Response models

If the number density of collapsed objects cannot be
determined from the configuration of the density field
at a single time, but instead relies on the cumulative
growth history of the matter density, then the bias is
nonlocal in time. In this case, we can try to characterize
the local mass function as depending on some other small
scale observable, which, in the separate universe context
depends on the long-wavelength modes that are present
in a given region

nW (M,a; k) = n(M,a;OW (a, k)) . (72)

The response bias is then proportional to the growth
response of OW :

bL(M,a; k) =
d log n

d logO (M,a)RO(a, k) . (73)

The first factor on the right side of the above equation is
evaluated in the global universe, so it is only a function
of mass, time, and the global value of the quantity O.
That is, this factor is independent of the long-wavelength
mode. Then the relative bias is:

βLO(a, k) =
RIO(a, k)

RRO(a)
. (74)

Notice that for this class of models, the relative bias
is predicted to be independent of mass2. Also, unlike
the transfer function models, these models have no
free parameters. The relative biases are completely
determined by linear perturbation theory and the
separate universe formalism.

2If Eq. (73) were evaluated at the object formation time, rather
than the observation time, then the relative bias would be mass-
dependent since objects of different masses typically form at
different times and are therefore sensitive to RO(a, k) at different
epochs.
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FIG. 7. The solid blue line shows the linear combination of
purely isocurvature and purely curvature simulation biases,
with the shaded area showing the bootstrap variance. The
data points, from left to right are from simulations with
I/R = −100, 0, and 100. The dashed lines are the predictions
from the power spectrum response bias model. The bottom
panel shows the residuals between the linearly combined
relative biases and the power spectrum response model.

We considered response models based on two possible
choices for O: the local power spectrum, and the local
critical density for spherical collapse [40]. These were
shown in [18, 19, 41] to perform better than bias models
based on transfer functions. We found that the results
of the spherical collapse model match the results of the
power spectrum response model, so we consider only the
latter model in what follows.

Assume the local mass function in a region depends
on the local power spectrum in a universal way, then the
pure isocurvature relative bias is given

βLRP
(a, k) =

RIP (a, k)

RRP (a)
. (75)

This model is compared in FIG. 6 with relative biases
from the simulations at M = 1014 M� for redshifts z = 0
and z = 0.25. We obtained χ2 = 1.4 per degree of
freedom at the later redshift, and χ2 = 2.6 at the earlier
redshift. It slightly under predicts the Jeans scale bias
in the I/R = 100 simulations, and over predicts the
I/R = −100 biases.

At smaller values of I/R, the power spectrum response
model does much better. The linearly combined pure
isocurvature and pure curvature relative biases are shown
in FIG. 7, for k/H0 = 10. Agreement between the
linear combination bias and the RP model is good for
|I/R| < 100.
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FIG. 8. From left to right shows the matter power spectrum, the clustering bias, and the stochasticity at redshifts from
z = 0 − 3. In this case, we took AII = ARR. The clustering bias and stochasticity are averaged for halos with mass greater
than M = 1014 M�. Since the relative bias is consistent with being independent of mass over a wide range of masses, only the
adiabatic bias is required to determine bc and s at other masses. Top to bottom shows the cases of isocurvature and curvature
that are correlated, uncorrelated and anticorrelated.

VIII. OBSERVABLES

In real surveys or in large box simulations, the
regions covered can be orders of magnitude above the
quintessence Jeans scale considered here. The long-
wavelength mode in these cases can also be sampled over.
The effects of averaging over δL to obtain the squeeze
limit bispectrum were already shown in FIG. 2, assuming
scale invariant auto and cross primordial power spectra.
Here will consider additional observables, including the
large-scale matter power spectrum, the clustering bias,
and the stochasticity.

Clustering bias and stochasticity are defined by taking
correlations between the long-wavelength matter pertur-
bations and the halo number of density fluctuations (e.g.
[38, 42, 43]). Writing separate bias terms for the curva-

ture and isocurvature modes

δh = bRδ
R
L + bIδ

I
L , (76)

where δh is the density contrast for the number halos
and we have suppressed all arguments, including the k-
dependence in bI , δRL , and δIL, for notational clarity. We
then have the following three power spectra for matter
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perturbations and halos

Pmm = (TRm )2PRR + 2TRmT
I
mPRI + (T Im)2PII , (77)

Pmh = bR(TRm )2PRR + (bR + bI)TRmT
I
mPRI (78)

+ bI(T Im)2PII ,

Phh = b2R(TRm )2PRR + 2 bRbIT
R
mT

I
mPRI (79)

+ b2I(T Im)2PII .

Note that for bR 6= bI the above set of equations is non-
degenerate so that equations can be inverted to solve
for the individual contributions to the matter power
spectrum sourced by I andR, e.g. PRRmm , P IRmm, and P IImm,
from the observed Pmm, Pmh and Phh. The clustering
bias is defined as

b
C

=
Pmh
Pmm

. (80)

The stochasticity is defined

s =
PhhPmm − (Pmh)

2

(Pmm)
2 . (81)

Here we will assume that all three primordial power
spectra are scale invariant, and we take the amplitude
of isocurvature fluctuations to equal the amplitude of
scalar curvature fluctuations. Finally, we consider
cases where the cross power spectrum is 65% correlated
or anticorrelated, and the case where it is totally
uncorrelated.

Since we take the isocurvature amplitude to equal the
curvature amplitude, we are well within the regime where
the parameter-free power spectrum response model
adequately describes the bias.

bX = 1 +

(
d log n

d logP

)
RXP , (82)

where X can be either R or I. The biases in this section
are all Eulerian (bE = 1 + bL), although we will omit the
superscript E that indicate this.

Using the biases from adiabatic mode simulations, the
mass and redshift dependent function can be fit and used
to calculate the power spectrum response model biases at
large-scales in the presence of isocurvature. With the
bias determined at five redshifts, we fit this for mass
M = 1×1014 M� as a quadratic function of scale factor.

These observables are plotted in FIG. 8 for redshifts
ranging from z = 0 − 3. The most significant feature
predicted by this model is the growth of power at
very large scales with k < 10−4 Mpc−1. This is
the isocurvature curvature dominated regime, above the
quintessence Jeans scale. Current observations do not
yet extend to scales with k <∼ 10−3 Mpc−1 [44, 45].

The growth of the power spectrum at large,
isocurvature dominated scales is due to that fact that

T Im/T
R
m ∼ k−4. As long as PII/PRR does not scale

as a higher power of k than k4, P IImm dominates the
power spectrum on scales far above the Jeans scale
(k � kJeans ' 2×10−3 Mpc−1), and the power spectrum
will increase with decreasing wave number. Below the
Jeans scale, PRRmm dominates, so the typical ΛCDM
matter power spectrum with adiabatic initial conditions
is recovered on these scales.

Near the Jeans scale, the shape and evolution of
the matter power spectrum depends on the curvature-
isocurvature cross-correlation term PRImm, as well as the
ratio PII/PRR. For positive cross correlation, the
total matter power spectrum has excess power compared
with PRRmm at the Jeans scale due to the peak in the
isocurvature transfer function. The power spectrum
drops below PRRmm at larger scales due to the change in
sign of the isocurvature transfer function. In the limit
of 100% correlation, there is a wave number above the
Jeans scale at which the power spectrum vanishes. The
total power spectrum increases as PII starts to dominate
near and above the horizon scale. Similarly, in the anti-
correlated case, the total matter power spectrum at the
Jeans scale is deficient compared with PRRmm . For the
parameter choices in FIG. 8, the deviation between Pmm
and PRRmm is about 1% at the Jeans scale. For parameters
comparable to the single realizations of our separate
universe simulations, AII = 104ARR, the Jeans scale
matter power spectrum differs from PRR by about 300%.
However, the deviation is less than 1% at scales below
k >∼ 8× 10−3 Mpc−1.

There is also clear scale dependence of the clustering
bias above the Jeans scale. This scale dependence is
sensitive to the cross correlation between curvature and
isocurvature fluctuations. The stochasticity is peaked at
a scale above the Jeans scale. The location of this peak
depends on the ratio of the curvature and isocurvature
amplitudes. For larger isocurvature amplitudes, this
scale approaches the quintessence Jeans scale. The height
and width of the peaks in the stochasticity are sensitive
to the cross correlation. Over time, both the clustering
bias and stochasticity evolve to approach unity, so the
scale dependence is most prominent at earlier redshifts.
However, the scale dependence shows up at larger scales
at earlier times.

For completeness we note that the presence an
isocurvature component in the matter perturbations will
also have an effect on redshift space distortions. An
object, such as a halo, has redshift space coordinate ~s
defined by

~s = (r + r̂ · ~v) r̂ , (83)

where r is the radial distance to the object, ~v is the
peculiar velocity of the object, and r̂ is the line-of-site
direction. Here we will consider the form of the redshift
space matter power spectrum derived by Kaiser [46]. The
Jacobian of the transformation from real space to redshift
space, and the linear matter continuity equation can be
used to express the Fourier modes of the density contrast
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for halo numbers in redshift space

δsh(~k, a) = δrh(~k, a) + µ(~k)2δrm(~k, a)′ . (84)

The coefficient µ(~k) is the cosine of the angle between the
wave vector and the line of sight. The superscripts s and
r denote the density contrast in redshift space and real
space respectively. Substituting the full matter density
contrast with transfer functions and the halo biases, the
halo power spectrum in redshift space, P smm, is

P shh =
(
b2RP

RR
mm + 2bRbIP

RI
mm + b2IP

II
mm

)
(85)

+ 2µ2
(
bRfRP

RR
mm + (bRfI + bIfR)PRImm + bIfIP

II
mm

)
+ µ4

(
f2
RP
RR
mm + 2fRfIP

RI
mm + f2

IP
II
mm

)
where we have defined fR ≡ d log TRm /d log a, fI ≡
d log T Im/d log a. Unlike in the case of purely adiabatic
fluctuations, taking the ratio of the µ4 terms with the
µ2 terms does not isolate the growth rate and bias from
the primordial spectra. On the other hand, at each order
in µ2 the terms in the redshift space power spectrum
contain distinct weightings of PRRmm , P IRmm, and P IImm so
that, even if bR = bI , the isocurvature and curvature
power spectra could be solved for in terms of fR, fI , bR,
and bI .

Since the quintessence isocurvature perturbations are
only important at large scales and at late times, it is
difficult to constrain the amplitude of the isocurvature
auto power spectrum and the correlation between
isocurvature and curvature fluctuations. For instance,
an analysis of the 7-year WMAP data allowing for dark
energy isocurvature leaves the dark energy sound speed
and primordial isocurvature power spectra and cross-
spectra virtually unconstrained [47]. A full analysis
of this model with current CMB temperature and
polarization data, along with large-scale structure data
is needed to determine allowed ranges of the parameters
cQ, PII , and PIR.

IX. CONCLUSION

Quintessence isocurvature perturbations provide a
scenario in which large-scale structure formation can
be studied in a context that is more general than the
canonical ΛCDM model. The scalar field dark energy
perturbations introduce both scale dependent growth,
through the presence of a quintessence Jeans scale,
and also initial condition dependent growth history.
As shown in FIG. 1, large-scale matter perturbations
can have dramatically different, and even nonmonotonic
evolution in this context, depending on scale and initial
conditions.

Using separate universe techniques and N-body
simulations, we have studied the responses of small-
scale observables such as the local power spectrum (FIG.
3) and halo mass function (FIG. 4) to the presence of
long-wavelength perturbations. Our methods have been

validated by comparing the results of the power spectrum
response to 1-loop calculations from perturbation theory
and by comparing the response biases for the adiabatic
case to the clustering bias in larger volume simulations.
We have also verified, in FIG. 5, that the individual
responses to long-wavelength curvature and isocurvature-
sourced perturbations can be linearly combined to study
the effects of varying the initial conditions. That
is, the separate universe simulations can be used to
make predictions for any initial large-scale curvature and
isocurvature power spectra.

The linearity of small-scale observable responses
guarantees that the evolution of the total bias depends on
both scale and initial conditions. While scale-dependent
bias has previously been found, originating from scale
dependent growth due to neutrinos and quintessence
without isocurvature, this is the first instance of bias
evolution that depends on initial conditions of the long-
wavelength matter modes.

In section VII, we tested a number of simple bias
evolution models against our simulation results. These
models break down into two classes: transfer function
models and response models. While all of the models
roughly capture the dependence on scale and initial
conditions of the bias evolution, FIG. 6 demonstrates
that two of the models considered reproduce the scale
dependent features in the bias. One is the the transfer
function model that assumed scale invariant bias factors
for both the curvature-sourced and isocurvature-sourced
components of the matter perturbations (the cRI
model). The success of this bias model is a consequence
of the linearity of the response observables, and the weak
scale dependence of the purely isocurvature-sourced halo
bias. The other viable bias model was based on the power
spectrum response (Rg). This model outperformed the
cRI model at low redshift, but was worse by redshift
z = 0.25. On the other hand, the response model is quite
accurate for more modest amplitudes of isocurvature
perturbations (see. FIG.7). Since this model has no
free parameters, it can be used to make predictions
without running additional simulations. The third model
we considered, based on an assumption of passive halo
evolution (PE), gave poor reproduction of the simulation
results at all masses and redshifts.

The dependence of small-scale observables on growth
history, through the wave number and initial conditions
of a long-wavelength mode, indicates that structure
formation is nonlocal in time. That is, it is not enough to
know the statistics of the density field at a single redshift
in order to predict the statistics of halos at another
redshift. In this work we have provided a demonstration
of history dependent structure formation in a model
where the effect can be made arbitrarily large, in the
sense that the ratio of isocurvature to curvature can be
large. In principle, the relative strength of isocurvature
fluctuations to curvature, as well as the quintessence
sound speed can be constrained by large-scale structure
observations and CMB measurements.
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Appendix A: On the generation of quintessence
isocurvature perturbations

In this appendix we will make some basic observations
about the possibility of generating quintessence isocur-
vature perturbations that are large enough, in compar-
ison with adiabatic perturbations, to have observational
impact at late times.

Dark energy isocurvature perturbations that are
perfectly anti-correlated with the primordial curvature
perturbations have been studied by [22], among others,
for the purposes of producing a low quadrupole
amplitude in the CMB temperature power spectrum.
The mechanism studied involves a delayed, post-
inflationary production of curvature perturbations
sourced by the same field that sources the dark energy
isocurvature perturbations. This is achieved, for
instance, by making the quintessence field the field that
modulates reheating [35, 48] or via curvatons [49–52].

In [22], the authors argue that inflationary genera-
tion of anti-correlated quintessence isocurvature pertur-
bations generally makes the tensor-to-scalar ratio too
large. However, in [22] the scalar perturbations sourced
by the inflaton were neglected. If included, they keep the
tensor-to-scalar ratio small but will unavoidably domi-
nate over the scalar curvature perturbations generated
after inflation. This necessarily makes the isocurvature
perturbations small and only weakly correlated to the
adiabatic modes. On the other hand, we find it is gener-
ally possible to satisfy these criteria with a modified
kinetic term, including the one used in the main text
of this paper (see Eq. (1)).

Consider a scalar field Q with a Lagrangian that is a
general function of X and Q,

L = P (X,Q) , (A1)

where

X = −1

2
gµν∂µQ∂νQ . (A2)

The energy density and pressure are

ρQ = 2XP,X − P , (A3)

pQ = P . (A4)

For a homogeneous background, we have

ρ̇Q = −3H(ρQ + pQ) , (A5)

which gives equation of motion for Q

Q̈+ 3c2QHQ̇+ c2QQ̇
2P,XQ
P,X

− c2Q
P,Q
P,X

= 0 , (A6)

where the effective sound speed is given by

c2Q =
P,X

P,X + 2P,XXX
. (A7)

It will also be convenient to define

c2X =
P,Q

2XP,XQ − P,Q
. (A8)

In absence of derivative couplings of the field to itself,
P,XQ = 0, so we have c2X = −1.

1. Q as dark energy

We define slow-roll parameters for Q as

εQ ≡ −
1

2H

ρ̇Q
ρQ

, (A9)

ηQ ≡
ε̇Q
HεQ

, (A10)

which can be rewritten as

εQ =
3XP,X

2XP,X − P
, (A11)

ηQ =
Ẋ

HX

(
c2Q + 1

2c2Q

)
+ 2εQ +

Q̇P,QX
HP,X

. (A12)

In the limit εQ � 1, we have wQ ≈ −1. The additional
condition ηQ � 1 can be imposed to keep εQ � 1 but
is not necessary for our purposes. In particular, the
example solution used in the main text of the paper has
ηQ ≈ 3

2 (1 + c2Q)(1 + wtot) ∼ O(1) during the matter and
radiation eras while εQ � 1 throughout.

In what follows it will be convenient to rewrite the
continuity equation in terms of the sounds speeds in
Eq. (A7) and Eq. (A8) and the slow roll parameters in
Eq. (A12) and Eq. (A11). This gives an expression for
the change in energy due to change in the field strength
as,

∂ log ρQ
∂Q

= −2εQ
Q′

(
c2Q + 1

c2Q − c2X

)(
1 +

ηQ − 2εQ
3(1 + c2Q)

)
.

(A13)

2. Inflationary generation of δQ

We assume that the field Q is a spectator field during
inflation and that mixing between the inflaton and Q can
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be ignored. The field Q then acquires perturbations δQ
that will have power spectrum [53]

∆2
Q =

H2
i

cQiP̄,Xi4π2
. (A14)

where the subscript i indicates these quantities are to
be evaluated during inflation. The δQ will be our
isocurvature modes. For the isocurvature modes to be
correlated withR, we assume at some time after inflation
fluctuations in the energy density of Q create adiabatic
fluctuations via some mechanism with an efficiency factor
γ,

RQ ≡ γ
δQ

Qi
. (A15)

where Qi is the value of the field at the end of inflation.
The subscript Q in Eq. (A15) indicates that these
perturbations were inherited from δQ after inflation.

In addition, there will be adiabatic perturbations
generated during inflation, we label these perturbations
Ri. For simplicity we assume slow roll inflation so that

Ri = −δφ
φ′

(A16)

where φ is the inflaton and the power spectrum of δφ is

∆2
φ =

H2
i

4π2
, (A17)

so that

∆2
Ri

=
H2
i

8π2M2
plεi

. (A18)

where εi is the usual inflationary slow-roll parameter
εi ≡ −H ′i/Hi.

The net curvature perturbation used in the body of
this paper is the sum of the two components

R = Ri +RQ . (A19)

and its power spectrum is

∆2
RR = ∆2

Ri
+ ∆2

RQ
(A20)

= (1 + ξ) ∆2
RQ

(A21)

where we’ve defined ξ as the ratio of curvature
perturbations generated by the inflaton, to curvature
perturbations generated by δQ,

ξ ≡ cQiP,Xi
2εiγ2

Q2
i

M2
pl

. (A22)

The isocurvature perturbations used in this paper are

I =
δρQ
ρQ

(A23)

=
∂ log ρQ
∂Q

δQ

(
c2Q − c2X
c2Q − c2s

)
, (A24)

' ∂ log ρQ
∂Q

δQ

(
c2Q − c2X
c2Q + 1

)
, (A25)

where c2s is the synchronous gauge sound speed, defined
in Eq. (10) and in the last line we have used the fact
that outside of the horizon, c2s ' −1.

The isocurvature auto and cross power spectra are then

∆2
RI =

Qi
γ

∂ log ρQ
∂Q

(
c2Q − c2X
c2Q + 1

)
∆2
RQ

(A26)

∆2
II =

(
Qi
γ

∂ log ρQ
∂Q

(
c2Q − c2X
c2Q + 1

))2

∆2
RQ

. (A27)

The ratio of isocurvature to adiabatic perturbations is

∆2
II

∆2
RR

=
1

(1 + ξ)

(
Qi
γ

∂ log ρQ
∂Q

(
c2Q − c2X
c2Q + 1

))2

(A28)

and the correlation between them is given by

∆2
RI√

∆2
RR∆2

II
=

1√
1 + ξ

. (A29)

So, to have substantial correlations between R
and I, we need ξ ∼< 1, and to have the

isocurvature also be important (∆2
RR ∼ ∆2

II) we

need
(
Qi

∂ log ρQ
∂Q

(
c2Q−c

2
X

c2Q+1

)
/γ
)−2

∼ 1. On the other

hand, if we don’t care about correlations between
I and R, ξ can be large and we only need

ξ
(
Qi

∂ log ρQ
∂Q

(
c2Q−c

2
X

c2Q+1

)
/γ
)−2

∼ 1 to have isocurvature

effects today.
From Eq. (A22), we can see that both correlated and

uncorrelated cases require

cQiP,Xi
2εi

(
Mpl

∂ log ρQ
∂Q

)−2
(
c2Q + 1

c2Q − c2X

)2

∼< 1 . (A30)

This can be rewritten in terms of ΩQ, and the slow-
roll parameters, using Eq. (A13) and the Friedmann
equation, as

cQi
4

P,Xi
P,X

ΩQ ∼< εiεQ

(
1 +

ηQ − 2εQ
3(1 + c2Q)

)2

, (A31)

where the subscript i indicates that these quantities are
evaluated during inflation, and quantities without this
subscript are evaluated at late times.

For a standard kinetic term, Eq. (A31) becomes

ΩQ ∼< 4εiεQ

(
1 +

ηQ − 2εQ
6

)2

, (A32)

which cannot be satisfied by a field that dominates the
energy density today and behaves as dark energy.

On the other hand, with a non-standard kinetic term it
becomes easier to satisfy Eq. (A31). For the Lagrangian
in Eq. (1) we have,

cQ

(
Xi

X

) 1−c2Q

2c2
Q

ΩQ ∼< 4εiεQ

(
1 +

ηQ − 2εQ
3(1 + c2Q)

)2

. (A33)
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For the solution we considered in this paper,

(Xi/X)

1−c2Q

2c2
Q ∼ H/Hi, which allows the left hand side of

Eq. (A33) to be small even if, ΩQ ∼ 1. The factor on the
right hand side involving ηQ is given by the background
solution:

1 +
ηQ − 2εQ
3(1 + c2Q)

= − 1

3f
, (A34)

where f is defined in Eq. (6). During matter domination,
this gives 1 + ηQ/(3(1 + c2Q)) = 3

2 . This factor,
combined with other factors of f from the expression for
X evaluated on the background solution, combine to a
numerical constant of order ∼ 10 at most on the left hand
side of the above inequality.

Finally, note that the tensors generated during
inflation are

∆2
T =

2H2
i

π2M2
pl

, (A35)

so the tensor-to-scalar ratio is

∆2
T

∆2
RR

=
16εi

1 + 1/ξ
. (A36)

So, if ξ � 1 (inflaton perturbations dominate) we have
the usual expression for the tensor-to-scalar ratio, and as
ξ decreases, the tensor-to-scalar ratio gets even smaller.
Note that even secondary production of gravitational
waves by a spectator field like Q cannot enhance the
tensor-to-scalar ratio [53].
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