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Abstract

We investigate if the observed small and nearly scale-invariant primordial cosmic perturbation, i.e. the
perturbation amplitude P ~ 10~ and the spectral index n, ~ 0.965, is typical in the landscape of vacua
after imposing anthropic selections on them. We consider the situation where the universe begins from
a metastable vacuum driving a precedent inflation, a curvature-dominated open universe is created by
tunneling, and the curvature energy is inflated away by new inflation. We argue that the initial inflaton
field value is homogeneous but typically non-zero because of the quantum fluctuation of long wavelength
modes created during the precedent inflation, and only the universe which accidentally has a small inflaton
field value is anthropically selected. We show that this bias, together with certain distributions of inflation
model parameters that are physically well-motivated, makes the observed small and nearly scale-invariant
spectrum typical.
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1 Introduction

Inflationary paradigm not only solves the horizon and flatness problem [1] (see also [2]), but also elegantly
explains the nearly scale-invariant and Gaussian cosmic perturbation imprinted in the cosmic microwave
background (CMB) and the large scale structure of the universe [3-7], given that inflation is driven by a
scalar field with a very flat potential [8, 9] (see also [10]). However, despite the phenomenological success
of the generic paradigm, the underlying physical origin of cosmic inflation is still an open problem.

We investigate the inflation paradigm in the view point of the string landscape (see [11] for a review).
The string theory predicts that there are numerous vacua, and each vacuum yields an effective field theory
with a different set of fields and parameters. An example leading to various cosmological constants is
given in [12]. The landscape of vacua supports the notion of the anthropic principle. The parameters of
the nature which we observe is not necessarily explained by the dynamics of the theory, but may be chosen
so that the human civilization can exist. There would be multiple vacua on which we can live. We can
calculate the distribution function of the parameters sampled from those habitable vacua weighted by the
number of observers in the vacua. The parameter we observed would be around the most plausible one
(the principle of mediocrity [13]). This notion succeeded in predicting a rough value of the cosmological
constant [14].

In the landscape the expected inflationary dynamics is the following [15, 16]. The universe would
be initially inhomogeneous, with length/energy scales set by the fundamental scale. A scalar field resides
in a meta-stable vacuum and the potential energy eventually dominates the universe, driving a precedent
inflation which erases the inhomogeneity. The scalar field tunnels toward the vacuum with a small
potential energy, and the universe becomes open and curvature dominated [17, 18]. For habitability,
inflation with a sufficient number of e-foldings must occur afterward, since otherwise the galaxy formation
is prevented [19, 20]. Then the flatness of the inflaton potential is not necessarily the one to be explained
by the property of the theory, but may be as a result of the anthropic selection. Still, we should ask
if the small, P: ~ 1079, and nearly scale-invariant, ns ~ 0.96, cosmic perturbation [21] is a plausible
one. We investigate this question by considering the inflationary dynamics as well as the post-inflationary
evolution of the universe.

Anthropic arguments from the post-inflationary evolution alone do not seem strong enough to enforce
the amplitude of primordial perturbation power spectrum P ~ 1072, A larger energy density from
cosmological constant p, requires a larger primordial perturbation so that structure can be formed in our
universe. In particular, the density contrast at the time of matter-dark energy equality needs to be larger
than a certain threshold to allow structure formation [14, 22, 23]
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Here the subscripts R—Meq, M — DE eq, and * denote the time of radiation-matter equality, matter-dark
energy equality, and the time of horizon re-entrance respectively. We approximated the density contrast
dp/p at the time of radiation-matter equality by that at horizon re-entrance because the density contrast

only evolves logarithmically during radiation dominant era. With (6p/p)? ~ P, this means that for a
given P, the maximum energy density the cosmological constant can have is then'

et o P22, (1.2)

'There are other criteria proposed for the anthropic conditions for the dark energy density (see, e.g., [24, 25]), which can
lead to different powers than 3/2. In this paper we consider the original criterion in [14, 22].



Assuming the energy density of the cosmological constant follows a uniform probability distribution
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this translates to a contribution to the probability distribution of P of the form Pg /2 which biases toward
large Pp.

A universe with a very large P may be anthropically disfavored by the property of the galaxy [26, 27].
If (0p/p) is too large, the galaxy would be too dense such that the time scale of orbital disruption
and close encounter with nearby planets is too short. Although it is not clear what kind of encounter
kills the earth-like planet, and the corresponding bound on dp/p is uncertain, we adopt the bound of
(6p/p) < O(107%) [26, 27]. Although the typical value of dp/p is PS/Q, even if P, > O(107%), it is still
possible that we live in a part of the universe with a small energy contrast. Assuming the probability
distribution to populate at the region with a density contrast 6 = dp/p in a universe with a primordial
perturbation amplitude P is Gaussian, the probability to be in the habitable region is?
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In Figure 1 we schematically summarize the probability distribution Ppest(F;) of having a universe
with primordial perturbation amplitude P; based on the anthropic consideration of post-inflationary
evolution we discussed. We see that by just considering the post-inflationary evolution, the observed
value P; ~ 1079 already require a fine-tuning of about a few percent. In addition, to obtain the full
probability of having a P, one also needs to consider the probability stemming from inflation dynamics.
In doing so, as most of the realistic measures suggest [28-33], we do not weight the increase of the volume
due to inflation. If the inflation scale V' is simply given by a mass parameter, it is biased toward the
fundamental scale. Then Pr = ﬁ is also biased toward larger values. For example, in the appendix,
we consider a generic small field inflation model with Z5 symmetry and find that the probability from
anthropic consideration on inflation alone strongly bias toward large Py with Pne(FPr) o PCl 9% In this
type of model the small primordial perturbation is highly implausible. An inflation model with P not
biased toward large values is required.

A spectral index close to unity is apparently challenging. The spectral index n; is given by

v 1/V'\?
ng=1+2n—06e, n=—, € () . (1.5)
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Having a spectral index ns ~ 0.96 requires n ~ 0.02 < 1. In order to explain the nearly-scale-invariant
spectrum, we essentially need to solve the n-problem [34-38]. It is not obvious if the requirement of the
large enough number of e-foldings can ensure such small 1 parameter.

Ref. [39] investigates the distributions of P; and ng, assuming that the inflaton potential obeys a
Gaussian distribution, and find that the observed values are highly implausible unless the inflaton field
value is as large as the Planck scale. Ref. [40] investigates the inflection point inflation also assuming
the Gaussian distribution. In this set up the number of the e-folding tends to be larger for a small and
positive n parameter. After imposing the anthropic requirement, the spectrum tends to be blue, but the
probability of ny < 0.97 is found to be about 0.2, which is reasonably high. The observed F; is found to
be plausible under certain assumptions [41].

2The property of the galaxy may depend on P;. For example, for larger P: the formation of proto-galaxies occurs earlier,
which will change the initial metallicity of the galaxy. We do not consider this effect in this paper.
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Figure 1. The schematic summary of the probability distribution Ppegs(FP;) of having a primordial perturbation
amplitude P, from anthropic consideration of post-inflationary evolution.

In this paper we investigate the distributions of Pr and ng for a new inflation model where the
inflaton is trapped around the origin during the precedent inflation by a Hubble induced mass. Although
the field value of the inflaton is homogeneous inside the horizon because of the damping during the
precedent inflation, quantum fluctuation of long-wave length modes is produced, which effectively works
as a homogeneous but non-zero initial condition of inflation, unless the Hubble induced mass is much
larger than the Hubble scale to suppress the quantum fluctuation. We show that this probabilistic
nature of inflaton initial condition is an important key to understand ng close to unity. We focus on a
supersymmetric model. As we will see, the smallness of I is then also explained, as some of the parameter
of the theory can be biased toward small values or logarithmically distributed in supersymmetric theories.
Our results are summarized in Figure 9, where we show the probability distribution P¢Ppet(Fr, k) of FPr
and k ~ —n, taking into account of both inflationary and post-inflationary dynamics. In the contour plot
we can see that the probability distribution is biased toward smaller k£ value and hence the n-problem
is solved. In addition, with an anthropic bound on the density contrast 6p/p < O(10™%), the observed
universe with Pr ~ 107Y and ng ~ 0.965, which is marked by the blue star in Figure 9, is actually a
typical one.

This paper is organized as follows. In the next section We first elaborate on the necessity of including
the probability distribution of inflaton initial condition in generic new inflation models. We then consider
a supersymmetric model and parametrize the probability distributions of the couplings. We find that, for
a certain distribution of the couplings of the model, the observed small (P ~ 107Y) and scale-invariant
(ns ~ 0.96) curvature perturbation is probabilistically favorable. We then discuss and summarize our
results in Sec.3. In the appendix we show our study on the general new-inflation-type model with Zs
symmetry, where observed spectral index ny is probabilistically favored but the smallness of primordial
perturbation cannot be explained.

2 New Inflation in the Landscape after Quantum Tunneling

In this section we consider new-inflation-type models in the landscape. We assume that the last inflation
which explains the flatness of the universe and the observed cosmic perturbation is a new-inflation-type
model with an inflaton ¢. In the theory with multiple vacua, it is expected that a singlet scalar field x
stays at its metastable vacuum and drives a precedent inflationary expansion, leading to a homogeneous
universe. After the quantum tunneling of the singlet scalar field, the universe becomes an infinite open
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Figure 2. Schematic figure of the proposed scenario.

curvature dominated Friedmann-Robertson-Walker (FRW) universe while the scalar field rolls down to a
local minimum with a small potential energy. The universe is eventually dominated by the potential energy
of the inflaton (Figure 2). One may naively expect that a coupling between the y field and the inflaton
(leading to so-called the Hubble induced mass) can trap the inflaton to the origin and the initial inflaton
field value ¢; is automatically small enough to initiate the last inflation. This is generically not true. As
we will see, after the tunneling the Hubble induced mass of the inflaton is not effective. Therefore the
inflaton fluctuation mode that just exited the horizon before quantum tunneling may survive. Although
the inflaton field value is homogeneous inside the horizon, the field value must be fine-tuned for the last
inflation to occur and last long enough. We investigate the impact of this observation by computing
the distribution function of the curvature perturbation P and the spectral index ng (equivalently the
n parameter) after requiring enough number of e-folds A°* during the last inflation. We find that P
as well as 7 may be biased toward small values, explaining the observed very small (Pr ~ 107?) and
scale-invariant (ns >~ 0.96) curvature perturbation.

2.1 Hubble Induced Mass and the Initial Condition after Tunneling

Let us follow the dynamics of the singlet scaler field x and the inflaton ¢ before the inflation starts. The
mass of the inflaton in general depends on the energy density of the universe. Its evolution is summarised
in Figure 3.

When the singlet field is at its metastable vacuum xpre, the potential energy V) of the singlet field
dominates and the universe is in a precedent inflationary expansion. In the meanwhile, the inflaton
acquires a Hubble induced mass and can be driven toward ¢ = 0. For example, in supergravity when the
potential energy is dominated by the potential of the moduli field V,, the potential includes

Vi 1.2
Vo ﬁfw' , (2.1)
where M, is the cutoff scale. We expect that V,, ~ M2, and hence the Hubble induced mass of the inflaton,
mg(x), during the precedent inflation is as large as M,. The similar is true for non-supersymmetric
theories. We expect a coupling of the form

M f(5)8 (2:2)
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Figure 3. The evolution of inflaton’s Hubble induced mass.

where f is some function, leading to the Hubble induced mass of O(M,). The Hubble scale Hp, is on the
other hand of O(M2/Mp,) < M,. If the Hubble induced mass is positive, the inflaton is driven toward
¢ =0.

After the quantum tunneling of the singlet field y (denoted as ag in Figure 3), the universe is
dominated by the curvature energy density px and the singlet field x is fixed by the Hubble friction.

Because the Hubble induced mass mi is proportional to p,, we have m?ﬁ < H? = pg/3M?2, right after

the tunneling. Note that the curvature energy density alone does not give a Hubble induced mass term.3

As the universe expands, px decreases and when it becomes smaller than mnge ~ M2M?2,, the singlet
field x starts to roll down to the global minimum and oscillates.? At this point the mass of the inflaton
is as large as the Hubble scale. However, since the energy density of the singlet field decreases as a3,
the mass of the inflaton mg ~ p>1</ 2 /Mp, does not exceed the Hubble scale of the expansion and hence
the inflaton can be regarded as massless after the tunneling. When pg drops below the inflaton potential
energy Hi%f ~ p¢/Mge, the inflation begins.

Let us discuss the evolution of the fluctuation of the inflaton based on the above observation. Ex-

panding the field into comoving momentum modes ¢ = | (gjrlfg ngeiE'f , the modes fluctuate with decreasing

amplitude as the spacetime expands. During the precedent inflation era, after a mode exit the comoving
horizon, k = aHp,., the amplitude is continually damped because of the Hubble induced mass and even-
tually vanishes in the superhorizon limit aHp.. > k. Hence, right after tunneling, the superhorizon mode
that has the largest amplitude is the one that exited the horizon right before tunneling. This mode has
an amplitude

Hpe M

mg(Xpre) M3

Opre = Hpre (2.3)

The horizon after the tunneling resides inside the horizon before the tunneling. The comoving horizon
1/aH remains constant during curvature dominant era, and hence there is no horizon entrance nor exit.
Thus inflaton fluctuation modes inside the horizon continue to be suppressed, while the long wavelength
superhorizon modes are frozen as the inflaton is essentially massless during the curvature dominant era.

3The coupling |¢|*>R , where R is the Rich scalar, gives a Hubble induced term through a potential energy of the universe.
"When pg is larger than M2M3,, the inverse of the size of the horizon exceeds the cut off scale M, and the validity of the
effective field theory is questionable. The discussion here is applicable even if pr after the tunneling is as small as MZM32,.



Those frozen modes effectively work as the zero mode ¢; which obeys a Gaussian distribution with a zero
mean and a variance (6@pre)?. ¢; is nothing but the initial condition of the new inflation.

In order to wipe out the curvature energy density and to have structures on the galaxy scale, the
inflation needs to last long enough with an anthropic bound Nt > N2 In [15], it is found that in
order to have typical galaxies being formed, the comoving Hubble scale at the time of photon decoupling
should satisfy

Cde]{dc

—de—de 30, 2.4
oI, (2.4)

where the subscript ¢ denotes the time right after the quantum tunneling.® With some manipulation we

have
ageHge asHy  aengHend aiH;

> 30. 2.5
GentHent GenaHena  aiH;  ayHy ( )

Here aentHent denotes the coving Hubble scale of the horizon re-entrance of the CMB scale, which is
equal to that of horizon exit a,Hy. GengHeng and a; H; are the comoving Hubble scales at the end and
beginning of the inflation respectively. Because the period between the time right after quantum tunneling
and the beginning of inflation is curvature dominant, the comoving Hubble scale remains the same, i.e.
(a;iH;)/(atHy)=1. We assume the Hubble scale during the inflation is nearly constant, H; ~ H, ~ H.p4.
Also, the comoving Hubble scale does not evolve much between the horizon re-entrance of the CMB scale
and the photon decoupling, so (ageHgc)/(aentHent) =~ 1. Putting everything together, we then have a
constraint

NI > N~ N 3.4 (2.6)

where NV is the number of e-foldings between the end of the inflation and the horizon exits of the CMB
pivot scale.

For potentials of a new inflation type, the initial field value ¢; must be close to zero to have long
enough inflation. For a large enough M, d¢pre is larger than the required initial field value and hence
some tuning of the initial field value is required. As ¢; obeys a Gaussian distribution, which is flat for
small ¢;, the probability distribution of ¢; in the region of interest is approximately uniform;

Py, deb; o dep;. (2.7)

The anthropic constraint N > N2 Jeads to the upper bound ¢; < @ant, Where ¢ay is the field
value of the inflaton such that the number of e-foldings after the inflaton pass the field value is A28t

The fact that the initial condition ¢; has a probability distribution over a certain range instead of
having to start at ¢; ~ 0 plays an important role to solve the n-problem in new inflation. Particularly,
as now the inflaton tends to start from an initial condition away from zero, the anthropic constraints
Not > Afant requires the potential around the origin to be flatter. The n parameter is biased toward
smaller values after the anthropic constraint is imposed. On the contrary, for a small enough M, so that
¢; ~ 0 is forced, then the inflation can easily last longer than N e-folds and the anthropic constraints
on N plays no significant role. We will see this point quantitatively in the following.

2.2 A Supersymmetric New Inflation Model

In the appendix we study a new inflation model with Z5 symmetry, assuming that the parameters of
the potential are uniformly distributed. We find that the resultant P is strongly biased toward a large
value, and the observed one is probabilistically disfavored. Here we in stead investigate a supersymmetric
model where it is sensible that the parameters of the model, including the scale of the inflation, obey

5The effect of spatial curvature on structure formation is also discussed in [42].



distributions different from uniform ones. We expect that for certain distributions of the parameters,
P, is biased toward small ones. In particular, we consider an R-symmetric single field new inflation
model [43-46] with a discrete R-symmetry Zoy is present and the superpotential

g N+1
W =v2®d - —2 & 2.8
TN+ (2.8)

where @ is a chiral superfield while v and g are constants. Here and here after, we work in the unit where
the reduced Planck scale is unity. The Kahler potential is

1
K=9%®+ Zk(qﬂ@)? e (2.9)

where the ellipses denote higher order terms that are irrelevant to the inflationary dynamics. From
Eqgs.(2.8) and (2.9), the potential of the scalar component of ® which we call ¢ is given by

V(p) = |v* = g™ [* — kvl + -+
= vt — kvt|p)? — (gU2<,0N + h.e)+---. (2.10)

In terms of the radial and angular components, ¢ = %eie, the potential can be rewritten as

1
V=t - Zkote? — —L_ 126N cos(N). 2.11
2 N—-2

2

For simplicity we assume that the inflaton has an initial condition around 6 = 0 mod 27 /N (which
are minima along the angular direction) and focus only on the radial direction.

In the appendix we study general new-inflation-type models with Zy symmetry. Here the resulting
potential has the form of Eq.(B.2) without the ¢, perturbation term. Using Egs.(B.9) and (B.10) with
a=v%b=kv* ¢, = gv?/2N=2/2 and ¢, = 0, we have

ng~1—2k—2N(N — D)kf: | (2.12)
1
{g2v4(N73)k72(N71) ;—2} N-2

P = , 2.13
¢ 2472 (1 + N f7) (2.13)

where ] 1
= k,N.) = — 2.14
fN fN( e) N ([1+(N_ l)k] e(N—Q)kNe — 1) ( )
and f% = fy(k,NF) in which N is the number of e-folds between the horizon-exit of the CMB scale and
the end of inflation.
The spectral index ng, as given in Eq.(2.12), is a function of the parameter k, and the number of e-
folds V¥ between the horizon exit of the CMB scale and the end of inflation. Assuming instant reheating,

this is determined by the inflation energy scale,

v
F~62+1
NI ~6 —i—n(M

Pt

> . (2.15)

Using Eq.(2.13) with & = 0.01 and the observed P; to get an estimate on v, we have N ~ 52. Setting
NZF =52, we plot the spectral index ny as a function of k in Figure 4. One can see that N = 4 and 5 are
ruled out by the observation, while NV = 6 fits the observation very well in a certain region of k. Even if
we relax the assumption of instant reheating, such that AV < 52, the maximum ng(k) of N = 6 case lies
in the observational allowed region unless the reheating temperature is very small. In below we frequently
use N = 6, i.e. the model with discrete Z15 R-symmetry, as a reference point.
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2.3 Probability Distribution of the Observables

A natural question now arises: what is the probability for k to lie in the region that yields observationally
allowed ns? From Figure 4 we see that the observed n, requires k to be of the order of 0.01, while in general
k would be much larger. Note that the slow-roll parameter 7 is related to k by n = —k. Therefore, making
the observed spectral index ng ~ 0.96 probabilistically favorable is equivalent to solving the n-problem,
and this requires a probability distribution that biases toward small k.

To investigate the probability distribution function of the observables, we need to first make as-
sumptions on the probability distribution of the Lagrangian parameters. As k is a coupling in the Kéhler
potential, it would be natural that k& obeys a uniform probability distribution P(k)dk « dk. The pa-
rameters v2 and ¢ are superpotential couplings and may obey distributions different from uniform ones.
Furthermore, those parameters are related with the vacuum expectation value (vev) of the superpotential
Wo = (W) ~ 02(+1/N)g=1/N " which is related with the electroweak scale and the cosmological constant.
Let us start from the distribution of v2, g, the supersymmetry breaking scale F and the p term of the

electroweak Higgs,
dv*v® x dgg? x dFF" x duu’. (2.16)

If a parameter is given by a dimensional transmutation, the index (p’,¢’,r,s) of the distribution is —1,
while it is 1 if the parameter is a complex parameter biased toward a large value. The electroweak scale
U%W is given by

U%}W = FQ/Mied — 17 (2.17)
where My,eq is the mediation scale of the supersymmetry breaking. We assume that the electroweak scale
must be in a certain range close to the observed one® as is argued in [47, 48],

2 2 ' 2
CVEW obs < VEW < C UEW obs: (2.18)

5This assumption is not crucial for our discussion. Without the anthropic constraint on the electroweak scale, the distribution
is given by Eq.(2.22) with s = 1.



where ¢ and ¢’ are constants which we do not have to specify. The scanning over the u parameter yields

J

2 2 /02
vEW,obs<UEW <c vEW,obs

F s—1
dpp® = VFyy o <Md> o Fo7H, (2.19)
me:

where we have used F'/Muyeq ™~ p > Ugw obs as is suggested by the non-discovery of supersymmetric
particles so far. The cosmological constant is given by

pr = F? — 3WZM?2,, (2.20)

where Wy is the vev of the superpotential. A change of variables gives gives
/ AFF 1 oc Wit =2dpy. (2.21)

Here we have used F? ~ 3WZM?2, > py. We omit the measure dpa, which leads to the uniform dis-
tribution of the cosmological constant, in the following. Using the relation Wy ~ v2(+1/N)g=1/N the
distribution of v? and ¢ are given by

1 1
dv?v® x dgg?, p=p +(1+ N)(T +s5—-2), ¢=q — N(r +s—2). (2.22)
For —1 <p',¢',r,s <1, a wide range of (p,q) can be obtained.

Putting everything together, the probability distribution of the parameters to start with is

/ do; dk dg dv? g7 v?P. (2.23)

The distribution of the initial condition ¢; is uniform as discussed in Sec.2.1. If the anthropic bound ¢ant
is smaller than the amplitude of quantum fluctuation d¢p,. given by Eq.(2.3), then the integration of d¢;
ranges from 0 to ¢ani. On the other hand, if ¢ant > ddpre, the integration of d¢; is capped by d¢pre and
the anthropic constraint is no longer effective. In other words, integrating out d¢; yields

/ dk dg dv2 gq 02p¢bounda d)bound = min[¢anta 5¢pre]- (2'24)

Using Egs.(B.6), (B.11) and (2.13), the field value ¢y is given by

1

1
N5 VRN [24772 (1+N fj;)z} " pant vy pAN)

N

1
Gant = \/59 N3k
_1
_ \@gfﬁf;ntﬁkﬁhmpgwfg) , (2.25)

where we have defined N2
h(k) = KN7Ufz [24n*(1+ N f3)?] = (2.26)

for future convenience. It is instructive to understand the behavior of h(k) and the contribution of ¢ant,
if Pant < O¢ppre, to the final probability distribution of k£ which we plot in Figure 5. Most importantly,
we can see that ¢ gives a bias toward small k, which is the key of solving the n-problem and making
observed spectral index ng probabilistically favorable.

Using the relation between v? and P derived from Eq.(2.13),

(2.27)
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we can perform a change of variable to obtain the probability distribution in terms of cosmic perturbation
Pe. For the parameter region where ¢ant < ddpre, we have

/ dk dg dv? g7 v*P pant (2.28)
_ 8p2 (N=2)(p+1) 1
_\/(;ZIN 2)3) /dk % dggq(NNspr 2h((Nt13)) PC 2(N-3) [(kf]%nt)zvlz h(N—S)l(N—2)PC2(N3)] , (2.29)
- ¢

where we have left the contribution from ¢y to k- and FPe-distribution in the square brackets for future
convenience. We now need to integrate out g to obtain the final probability distribution. When ¢(N —
3) —p+ N — 5 # 0, the integration yields

(N -2) gy OB [ 1egomenes] e gy JOSERR 2.30
V2lgN=3)—p+n-5) TP [? ‘ 0

min

where the ellipses in the square brackets represent the contribution from ¢,y as in Eq.(2.29). The lower
cutoff of the integral g, is given by Eq.(2.27) with the natural requirement v? < M2, i.e. the energy
scale v should not be larger than the cut off scale. Particularly, we have

(N-3)

N-2
Imin = hPC 2 M* < 1. (231)

On the other hand, ¢mnq. is determined by the cutoff scale M,. After restoring Mp, and M, to the
superpotential, we have

1 g N+1 1 c N
Wo—— N+l =__~ 9 N+l 2.32
N+1pmN—2 N +1pN-2 (2:32)

Assuming the dimensionless coupling ¢, is bounded by unity, the coupling g is bounded by

Mo\ V2
M, '

9 < Gmaz = ( (2.33)

Therefore, if (N —3) —p+ N — 5 > 0, the g—integration merely gives a proportional constant and does
not affect the probability distribution of & and F:. We therefore have

Punt(k, Po)dk dP; = PyPp.dk dP; = PyP:Pp.dk dinPe (2.34)

10



where Py,s is the probability distribution from inflationary dynamics with

S [ (1 50\ 752 v

Pr o< h (kfy) N2 h , (2.35)
(N=2)(p+1) 1

PPp, o< P, 207 pX, (2.36)

The quantity P.Pp, can be understood as the relative probability to obtain the curvature perturbation
of O(P¢). When ¢(N —3) —p+ N —5 = 0, Eq.(2.30) does not apply and the integration over g
yields a logarithmic contribution In(gym,) instead. This logarithmic contribution changes the probability
distribution of k and P only slightly, and we may use Eqgs.(2.35) and (2.36) as a good approximation.

If ant > 0Ppre, then @ane plays no role and the integration of ¢; and g merely yields a proportional
constant which do not affect the probability distribution of the observables:

dPCh, (p+1) N2t

/dk dg dv? g7 v* Ppoung x /dk 7 N=3) P, 2N=8 (2.37)
¢
Thus for ¢ant > 0Ppre, we obtain
(p+1)
Pr x h(V=3) (2.38)
(N=2)(p+1)
PPp, o< B, 270 (2.39)

Note that in the parameter region ¢(N —3) —p+ N —5 > 0, the probability distribution is parametrized
only by p but not by q.

In the parameter region where ¢(N —3) —p+ N — 5 < 0, the integration over g is dominated by the
lower cutoff contribution, where g = gy < 1. Recall that ¢gn: o g_l/ o _3), and hence for such a small
g, Gant is much larger than Mp,. This means the inflaton field value at the CMB scale will also be much
larger than Mp,, and therefore the assumption of small field inflation breaks down.

In Figure 6 we plot the distribution function using Egs.(2.35), (2.36), (2.38) and (2.39) in the
parameter region ¢(N —3) —p+ N — 5 > 0 for both ¢ant < dPpre and Pany > dPpre. Let us first look at
the upper left panel of Figure 6. We see that P} is largely suppressed for large k£ as long as p > —2. To
understand how the parameter p alters the probability distribution at large k, note that the functions fy
and h behave as

fv o kT lem(N=2)kNe (2.40)
hoc KV =2 (N=2)kNe (2.41)

when k — oo, and hence

(N-2)(p+1)+1 (N-2)(p+2)
= - N—g kNe

P x k N-3 e (2.42)

for large k. It is therefore clear that in order to solve the n-problem, one requires p > —2 so that the
distribution is suppressed for large k.

The behavior of Py, for negative p can be understood as follows. Recall that the primordial pertur-
bation is given as

|4 v
P~ — 2.4
¢ € k2¢zmb ( 3)

where ¢¢np, is the inflaton field value when the CMB scale exited the horizon. Therefore, for a fixed F,
smaller v? requires smaller kdemp,. For a given e-folds N, the field value ¢y is in fact related to the
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Figure 6. The probability distribution functions in the parameter region ¢(N —3) —p+ N — 5 > 0 when
Gant < OPpre (upper panel) and Pane > ddpre (lower panel), respectively. We take N = 6 and N = 52.

parameter k. For larger k, the potential is steeper and hence ¢¢np, has to be smaller to maintain the same
number of e-folds. (This relation is explicitly shown in Figure 13 in the appendix.) The full k-dependence
of the denominator k?¢? , (k) is thus nontrivial, and is worked out in Eq.(B.6). It turns out that when &
decreases, ngbgmb(k‘) increases. Therefore, for a given F, if v? is biased toward small values as when p
is negative, then k is biased toward large values. This is why large k is favored when p is too negative,
where the bias toward small k from ¢,y is defeated.

So far we have only discussed the probability distribution in terms of k but not the observable n;.
Since the spectral index ng is a function of k only, as given in Eq.(2.12), the probability distribution of
k is sufficient to give the probabilistic information of ngs. That being said, the probability distribution
of ns displays an important feature of R-symmetry new inflation which we now discuss. To this end, we

perform a change of variable from k to ng,

/dkPk —/dns

As shown in Figure 4, the function ns(k) is not monotonic and has a maximum n**
observed value ng ~ 0.965. These two properties have important implications in P,, we show in Figure
7. The first feature of P, is the jump due to non-monotonicity of ns(k). The second, and probably more
important, feature of P, is that ns will never reach ny; = 1 and Py, diverges at nl"** because the Jacobian

ok
ong

Pr(k(ns)) = / dns P, (2.44)

* very close to the
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Figure 7. The normalized probability distribution function for & (left) and ng (right). The shaded areas corresponds
to the parameter region where ng > 0.96.

factor ‘8‘9—71’2‘ diverges at n2'**. Once the probability distribution of large k (ns < 1) is suppressed due to

the probabilistic nature of initial field value ¢;, in R-symmetry new inflation we not only can explain why
ng is very close to one, but can also predict an ng # 1 that is near the observed value ns; ~ 0.965. For
NZ =52 and p = —1, the probability for 0.96 < ny < nI"** is

ns
/ Pr, dng
JO96  ~ (.48, (2.45)

n
/ P, dns
— 0o
max

and the probability distribution diverges at n'** ~ 0.966. Note that p = —2 yields a similar result.
Move on to the probability distribution of F¢, the upper right panel of Figure 6 shows that P is
biased toward smaller values for a sufficiently negative p. This is simply because F; is proportional to
the inflation scale, and hence a bias toward small v? results in a bias toward small Pe. For p = -2, the
perturbation P is biased toward small value strongly. For p = —1, P is biased toward large values only
mildly. The power of P:Pp,, as shown in Eq.(2.36), is given by
pPN-2)+(N—-1) (+2)(N-2) 1

2(N — 3) T 2(N-3) 2 (246)

Po.96<ny<nmaz =

In order to solve the n-problem simultaneously, we need p > —2. The most negative power we can get for
the probability of Pr from inflationary dynamics is then —1/2.

As we mentioned in the introduction, the anthropic consideration on the post-inflation dynamics
gives an additional bias on F:Pp, that scales as Pg /? for small P, and scales as PC_ Y2 for large Pr where
the turning point is at Py ~ 1078, See Figure 1. Combining this with the contribution from inflationary
evolution, we see that the power of P Pp, should be smaller or equal to %, since otherwise Pr ~ O(1) is
much more favored than Py ~ 107Y. This requires

p < _72
- N-2
Recall that in order to solve the n-problem, one requires p > —2. Hence, to simultaneously solve the
n-problem and explain the smallness of perturbation power spectrum, we need
-2
N -2

(2.47)

_a<p< (2.48)
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The probability to obtain the observed value P ~ 2.1 X 10~ is maximized when p = —2: With an
anthropic bound on the density contrast dp/p < O(10~%) from the property of galaxies, the probability
is O(10)%, which is reasonable.

To show the impact of the bias from ¢ant, in the lower panel of Figure 6, we show the distribution
functions without the ¢, contribution originated from the probabilistic nature of the initial field value
¢;, which is the case when @ant > d¢pre. Comparing with the upper panel, we see that this does not affect
the distribution of P much. However, for the distribution of %, the probability for large & is suppressed
only for p =0 and 1. For p = —1, without the additional suppression at large k from ¢,y as illustrated in
the right figure of Figure 5, we have a uniform distribution in k£ and hence it is more likely to find k to be
of order 1, instead of order 0.01. Comparing both distributions in the lower panel of Figure 6, it is clear
that without scanning the initial condition ¢;, it is impossible to simultaneously solve the n-problem and
explain the smallness of .

We summarize the discussion of the (p,q) parameter space for N = 6 in Figure 8. The gray-shaded
region is where (N —3) —p+ N — 5 < 0 and the small field assumption breaks down; the red region
is where the probability distribution of P biases toward large value even though the parameter k tends
to be small; the orange region is the opposite, where the n-problem persists despite the smallness of the
perturbation power spectrum can be explained. In between the two regions we have parameter sets that
can solve both problems. Those values of (p, q) can be obtained by appropriate choice of (p', ¢, r,s). For
example, (p/,q¢,r,s) = (—1,1,1,1) and (1,1,—1,1) yield (p,q) = (—1,1) and (—4/3,4/3) respectively,
both lie in the open window of Figure 8. As we mentioned previously, if the parameters (p/,q’,r,s) in
Eq. (2.16) have a value of -1, it can be originated from dimensional transmutation. On the other hand,
if the parameters v2, g, F' and p are free complex parameters with uniform probability distributions, the
values of the parameters (p’, ¢, r, s) would be 1.

In claiming the existence of viable (p,q), we assume the contribution to the distribution of P
from the post-inflationary dynamics shown in Figure 1. If the power of the distribution at large P
increases/decreases because of possible biases we have not considered, the white region in Figure 8
shrinks/expands. The white region exists as long as the power is smaller than 1/2.

It is worth emphasizing again that the viable parameter sets, the white region in Figure 8, exists
because of the probabilistic nature of the inflaton initial field value ¢;. Without this contribution, the
window between the red and orange regions is closed. We examine in which part of the parameter space
is Pant < d¢pre and does the contribution of ¢ne kick in. Recall that the amplitude of the quantum

fluctuation d¢pre is proportional to M /2 as given in Eq.(2.3). On the other hand, ¢,y also depends on
M, through the superpotential coupling g. The probability distribution then has the form

/ dkdg dv® g7 v dnomalk, Prgs M.)

N -2 dP, aN-3)-p—1  (pt1) =D+l
:\/(i(]\f—)?,) /dk‘ ?CC dgg- N3  hIN-3) Pg 2(N-3) Gbound (K, P, g; M.). (2.49)

The parameter region of interest is ¢(N —3) —p+ N — 5 > 0. Therefore after integrating out g, the
integration is dominated by gmaez = (Mp,/M,)N 2, at which

¢bound(k7 PC; M*) = min [¢ant(ka PQ gmax)a 5¢pre] . (250)

Combining with the contribution from the anthropic constraint discussed in the introduction,

Prost (P;) = min [(P</10_8)3/2, (P</10—8)—1/2} , (2.51)
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Figure 8. Illustration of the result in (p, ¢) parameter space for N = 6. The white region represents the parameter
space where both the n-problem and the smallness of cosmic perturbation can be explained.

the net probability distribution P:Puet(k, Pr) in the (k, P¢) space that includes both inflationary and
post-inflationary dynamics is proportional to

(p+1) (N=2)(p+1)

hO=3 P, 2N min [Goni (K, P, gmaz), 0¢pre] min [(P</10_8)3/2,(P</10_8)_1/2 . (2.52)

The distribution P Ppet normalized with respect to P Pret ‘ Koy for N =6, p=—2and M, = 1072M,,

o 7chobs
is given in the left panel of Figure 9, where k.35 >~ 0.0134 and Pé’bs ~ 2.2 x 1079 are the observed value for
the parameter k and the cosmic perturbation P respectively and (Kops, Pgbs) is marked by the blue star.
To the right of the blue dashed line, ¢ant < d¢pre and the anthropic constraints ¢ane plays an important
role to solve the n-problem. The observed point (k:obs,Png) lies deep inside the region and hence the
proposed scenario can indeed explain the nearly scale invariant small cosmic perturbation. Note that the
cusps at P; ~ 1078 originate from the turning point of Ppost (), while the cusps at the blue dashed line
are due to min [qbant(k, Pt, 9maz)s 5d>pre]. The distribution for M, = 107" M, is given in the right panel,

where the blue dashed line is absent because d¢pre o< M /2 i always larger than ¢ant.

3 Summary and Discussion

In this work we have investigated the typicality of the small and nearly scale-invariant perturbation in
the landscape. Anthropic consideration of the cosmological constant yields a probability of P that biases
toward large perturbation, until the anthropic constraint due to the density of the galaxy kicks in. In
order for the observed small Py ~ 10~ to be typical, the inflationary evolution has to give a bias toward
small F;. Closeness of the spectral index to the unity should be also explained.

We consider the following scenario that naturally fits into the landscape scenario: The inflaton is
coupled to a singlet scalar field that was initially trapped in a metastable vacuum and drove a precedent
inflation. After the quantum tunneling of the singlet field, the universe became an open FRW universe
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Figure 9. The contour plot of LPucelbP) g N = 6, p=—2and M, = 1072M,, (M, = 10~'M},) on the left
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(right). To the right of the blue dashed line, ¢any < d¢pre and hence the anthropic constraints ¢; < ¢any contributes
to the probability distribution. The blue star marks the point (kgps, Pgbs)

dominated by the curvature energy density while the singlet field rolled down to a stable vacuum with
negligible energy density. After a sufficient period of cosmic expansion, when the curvature energy density
dropped below the potential energy of the inflaton, the inflation which explains the flatness of the universe
and the cosmic perturbation occurred.

In this scenario, the inflaton field value is homogeneous inside the horizon because of the trapping
during the precedent inflation. However, after the quantum tunneling the universe is curvature dominated
and the trapping is no longer effective. As a result quantum fluctuation of long wavelength modes produced
during the precedent inflation survive, which leads to a probabilistic nature of the initial field value of the
inflaton. As the inflaton tends to start from the an initial condition away from the origin, the anthropic
lower bound on the total number of e-folding during inflation favors the inflaton potential flatter around
the origin, namely a smaller n parameter.

We investigated a supersymmetric new inflation model in detail. We find that for certain distributions
of the parameters, the probability to obtain Py ~ 1072 is O(10)%, while the observed ng is favored. We
emphasize that both the model-building and the anthropic selection from the landscape play important
roles in explaining the observed properties of the cosmic perturbation, P: and ns, — 1. From the model-
building side, the distribution function of the model parameters, which is not uniform owing to the
supersymmetry and the R symmetry, yields the distribution of P not biased toward large values. From
the landscape side, the requirement of large enough number of e-foldings and the probabilistic nature of
the initial inflaton field value set by the precedent inflation dynamics favor small 1 parameter, thereby
explaining the observed ng.

The result is encouraging for the project on understanding the universe by the anthropic principle
in the landscape. Further study is required toward this goal. For instance, in this paper we assume the
contribution to the distribution of P from the post-inflationary dynamics shown in Figure 1. As we
comment in Sec. 2.3, our result holds qualitatively as long as the power of the distribution at large F; is
smaller than 1/2. It will be important to investigate the distribution at large P more carefully, taking
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into account the effect of e.g. the behavior of proto-galaxies.
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A Fine-tuning in General New Inflation

In the appendix we study fine-tuning problems in general new-inflation-type models. The only symmetry
we impose here is Zo symmetry, where the most generic potential is of the form

o +§:1c2n <J\jm>2n] (A1)

Hereafter we will work in the Planck unit where the reduced Planck mass Mp, is set to unity. We study
how much fine-tuning is required to yield the observed perturbation amplitude and spectrum. We assume
that the probability distributions for the dimensionless coefficients Vj and |c,,|’s are uniform between
zero and one, and vanish outside this interval. Certainly, not all possible values of c¢,, allow inflation, as

slow-roll conditions

1N 2

LV L (R 2t (A.2)
2\V 2 Vo ’

V(¢) - Mﬁe

n= VT ey 2n(2n — 1)c,, ¢?n2
vV Vo ’

(A.3)

are violated if coefficients are too large. The primes in the above equations denote derivative with respect
to ¢. The parameter region in the {co, ¢4, cg, ... }-space where inflation can occur and generate the observed
power spectrum is bounded by some ¢ for each c,,. As we will see below, ¢3**’s are determined by the

energy scale parameter V. As we assume the probability distribution is uniform, the probability to have
the inflation to occur around the energy scale V; is

max

Qant o0 e 0o
P oc/ dqﬁi/dVg 11 </ ’ d02n> o Vodane | ] 5 (A.4)
0 n=1 0 n=1

Note that we have simplified the problem by assuming c;**’s are independent on each other and a more
detailed treatment will result in a probability slightly smaller than Eq.(A.4). Nevertheless, the main
takeaway we can learn from such analysis will not be affected as we will explain below. Also note that we
have included the probability distribution of the inflaton initial field value as advocated in Sec.2.1, and

impose the anthropic constraint that inflation needs to last for more than N2t
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Figure 10. For new inflation, the inflationary expansion occur mostly on the hilltop where ¢ is close to the origin.
The inflation ends at ¢.,q where the potential violates the slow-roll condition and ¢eng > Gemb-

To find what cp** is, we need to first know the field value ¢enq when the inflation ends. This is
determined by the number of e-folds N between horizon exit and the end of the inflation, the inflation
energy scale Vg, and the perturbation power spectrum F. In particular, one has

N, = /Hdt /d¢__/vl d — / ~ Pend chmb_jij
A¢ =¢end — Pembs (A.5)

where we assumed the e parameter to be nearly constant over the period of inflation. Its value can be
determined by the perturbation power spectrum,

I Vo

= —— A6
2472 Py (A.6)

For potentials of a new inflation type, we typically have A¢ ~ ¢enq. For example, for the potential
1 2 n
V:a_§b¢ — ", (A7)

for which the relation between ¢eng and @emp is explicitly computed in Appendix B, the ratio ¢end/®cmb
depends only on the parameter k¥ = b/a and is plotted in the right of Figure 10. We see that the ratio
grows for larger k, which is not surprising as a larger k requires a smaller ¢¢n, to maintain the same
e-folds of inflation. As A¢ = Pend — Pemb and Gend = Gemb, We actually have A¢p ~ ¢eng and hance

Gena = \/f\ﬁw\/VO (A.8)

We define 5, to be the value of c,, such that the c,, ¢>"
condition, i.e.

term alone in Eq.(A.2) can violate the e slow-roll

end

2
1 [ 2nc, o2t
_ — 2nr7end =1 A9
; (2t , (A.9)
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which yields

1-2n
T (NP
m o \/ﬁn 127T2P§
2n

end

(A.10)

Similarly, we define cJ, such that the c,,¢
which yields

term alone in Eq.(A.3) can violate the 1 slow-roll condition,

Vv *QV 1-n
= 0 NV (A.11)
2n(2n — 1) \ 12n2F;
We then define ¢2* to be the minimum of ¢, ¢7, and one,
™ = Min|c§,, ¢, 1]. (A.12)

Lastly, we estimate ¢,nt originating from scanning over the initial inflaton field value. From the total
number of e-folds, we have

V i0 i0 Vb
tot ~ ~ - ~ _—
N, v do ~ / S e do ~ / 3 an pere do ~ / » an poT do (A.13)

where in the third equality we used cj to replace ¢, because when the potential terms are relevant to the
inflationary dynamics, their coefficients will be bounded by ¢!%* and ¢] < ¢§, when the energy scale 1
is small. In the last equality, we approximated the summation by the n-th term because all the relevant
potential terms are comparable. After performing the integral from ¢; to ¢enq, because the integral is
dominated by the ¢; term, we obtain

om—1 [12r2P\'"" _
tot q 2(1 n) A.14
=g () 4 S

Gant X \/Zz (A.15)

The probability P o< Vogant [ [7—1 ¢ is a function of Vj and P;. We plot the unnormalized prob-
ability function in the left panel of Figure 11 for three different P:’s. One can see that the probability
is strongly biased toward large perturbation. In addition, there are several kinks along each curves. To
understand these kinks more, it is illustrative to plot the first few c;**’s. In the right panel of Figure 11,
we see that the coefficients for higher dimensional operators, those with n > 3, have ¢j> = 1 for small
Vo. This is because ¢eq < vV as shown in Eq.(A.8) and hence for small Vp, the higher-dimensional
operators are Planck-suppressed and irrelevant to inflationary dynamics. This is also the reason why
assuming cy*’s are independent on each other does not change the qualitative result. Only the lower
dimensional coefficients can affect the higher ones but not vice versa. As we increase the inflation energy
scale, the field displacement becomes larger and hence higher-dimensional operators become relevant and
their required coefficients start to decrease from one. This translates to the kinks shown in the left panel
of Figure 11. For instance, in Figure 11 we see that, for P = 1072, ¥y ~ 1077 indicated by the orange
dashed line is precisely the scale where the octet term starts to be relevant and require fine-tuning. Also
note that, regardless of the value of P, the amount of fine-tuning is minimal when the octet operator
just became relevant.

which gives
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Figure 11. Left: The probability P for different primordial perturbation amplitude Pr. Right: The values of

e gmax emax cmex and ¢m* as a function of Vy with Pr = 1072, Notice that ¢ starts to decrease from 1 at

Vo ~ 10716, where P reaches maximum.

We compute the probability to obtain a cosmic perturbation P:. As we have observed, the probability
P peaks at the point when the octet becomes relevant, i.e. when ¢J = 1. This gives us the energy scale
V" where the fine-tuning is minimal,

3
2

1 N*Q -
Vmaa: — € X A16
0 2v/14 <127r2P<> (A-16)

When we integrate out Vj the integration is dominated by the region around V;j"**, we therefore have

P meaquantcg@awczmaxcgmax x P4 (A]_?)

This can be understood as P obeying the distribution

15
P(P;)dP; o P;* dP. (A.18)

The probability is strongly biased toward large P:. Unless there exists a strong anthropic bound disfa-
voring P larger than the observed one, it is unlikely that general new inflation with Zs symmetry results
in our observed universe. Our analysis is also applicable to the case with U(1) symmetry because the
radial direction is essentially Zs symmetric, while the angular direction is flat and does not affect the
inflationary dynamics at the background level.

For completeness, we continue our further analysis of general new inflation with Z symmetry in the
next section. In particular, assuming that the perturbation amplitude P is fixed to the observed value
for some reason, we investigate the probability distribution of spectral index ng. We will find that it is
probabilistically favored to have a spectral index ng ~ 0.96, which is quite remarkable.

B New Inflation and the Most Probable Spectral Index

In Appendix A we found that when considering inflation with Z5 symmetry, we need to fine-tune terms
at least up to the octet order,

V =V + c0® + 0™ + cs0® + cs0®. (B.1)
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Nevertheless, for simplicity we will consider potential of the form
1
V=a-— §b¢2 — Cp " — ™ (B.2)

where the ¢, term dominates over the ¢, term and the latter is treated perturbatively. Namely, we
consider the case where ¢,, is sufficiently small and ¢,,¢™ < ¢,¢". We can then extract the physics of
the complete octet model, Eq.(B.1), by extrapolation. In Eq.(B.2) we make quadratic term explicitly
negative as we now consider cases where the inflaton rolls down from ¢ = 0.

The number of e-folds N, which the inflation would last before it ends and the corresponding field
value ¢, has the relation

N Ne Y J
o= /Q5 ovjos ™

PNe a
~ / do
—bg — ncn¢n_1 - mcm¢m_1

end

¢Ne 1 m(bm*l
~o | [ - . cm] do
& bp + ne, @ bo + ncp @

end

_ 1 kol" + < 1
- (n — 2)k In (kﬁﬁ,:; cann> - % [f(¢end) - f(¢Ne)] Cm (B.3)

where we defined k£ = b/a and

m ¢m 2 n—m m—2 n+m—4  nc, ,_o ak
= F (1 : ;D g %l (B4
F(#) n—2 ak {(m—2)2 1<’n—2’ n—2 "' akd) >+ak+ncn¢”_2} (B-4)

Here o F7 is the hypergeometric function and ¢.,g is the field value where the inflation ends, determined
by the slow-roll condition. In particular, the inflation ends when the n-parameter reaches -1, which yields

n—2 . a

end —

e (B.5)

Solving Eq.(B.3) for ¢, (Ne) perturbatively in ¢,,, that is, with ¢, (V) = qb,(\(f)j +cm @ge), one has

o = [Lhn)] o) = v g ) B0
where
fn(k) = L ! (B.7)
T ([L+ (n - 1)k eln2RNe — 1) '
and
___m(n—m)
Gn.m (k) = (= 2)(m =) (1+nfn) x
mon T=2 m—2 n+m-—4 1
fi o (1222 )«
1 \"21 m—2 n+m-—4 1 1
_<n(n—1)> k 2F1<1’ 2" n-2 ’_(n—l)k>+1+(n11)k”
(B.8)
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The spectral index ns and perturbation power spectrum P when inflation can last another N, of e-folds
before it ends is then given by

ng =1+ 2n — Ge
2

2 -2 an—2 9 725
=1-2k—2n(n—Dkf, —3ar2¢c," k2 (14+nf,)" f

m—2 m—2

+ {Qawc; n-2 [m(l — TrL)k?%;fn”‘2 —n(n—1)(n—2)k f, gn,m]

m-—n+t+2 —T_ 2 m—2 m—2
—6a "2 o " 2knoz £7 2 (1 + nfy) <mk n2 [ 4 kgnm +n(n— 1Dk fp gn,m> }cm,
(B.9)
1V
¢ 7 24n? ¢
m=n m=n %_2
e | e 25 (T g )
= 5 |en —oen T em (B.10)
1272 (1 + nfy) (I+nfn)
By taking the inverse of Eq.(B.10) perturbatively in ¢,,, one obtain ¢, = Cgo) + cm CS) with
(0) 9\n=2 domg g n—2 p5
o =120%) 2 a T K" fy (L+nfp)" " P, (B.11)
and B
_ QG% mk%fnnj +gnm+n(n_1)fngnm
1) _ "2 0% ’ ’
¢, =——¢,) "7 . (B.12)

" 2 " 1+nf,
With Eq.(B.9), (B.11) and (B.12), the relation between the spectral index ns and the parameter k is
plotted in Figure 12 for various set of (n,m). We set the parameter a = 10716, the number of e-folds
Ne = 55, and the perturbation power spectrum to the observed value, Pr = 2.2 x 1079, The parameter
¢m is bounded by the requirement that the perturbation holds, i.e. ¢,,¢" < c,¢". AS Peng > P, the
bound of ¢, is therefore

Cn(b?/zm (7’L > m)v
lem| < (B.13)
et " (n < m).

We first look at the case with quartic and sextic terms, shown on the left of Figure 12. Note that
the quartic-dominant case is excluded by observation. One generic feature that appears for all (n,m) is
that when n < m, a positive perturbation (¢,, > 0) leads to a spectral index closer to scale-invariance,
i.e. ns = 1, while a negative perturbation (¢, < 0) makes ns deviate away from 1. This might be
counterintuitive as the potential

1
V=a- §qu2 — " — ™, (B.14)

is flatter when ¢, < 0 and we would have expected a spectral index closer to 1. However, a flatter
potential also means the inflaton moves slower before it reaches ¢.,q, and hence the field value can be
closer to ¢enq (but farther away from zero) while giving the same number of e-foldings as shown in the
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Figure 12. The ns; — k plot for different set of (n,m). The dashed lines corresponds to the boundary of positive
perturbation, ¢,,, > 0, while the dotted ones represents negative perturbation, ¢,, < 0. The grey region shows the
current observational value.

left of Figure 13. As the field is farther away from zero where the potential is the flattest, the spectral
index can deviate from -1. The two effects, flatter potential and larger ¢,,, compete with each other and
the latter wins when n < m. On the other hand, for n > m the effect of flatter potential dominates and a
negative perturbation (¢, < 0) leads to spectral index closer to 1. The fact that the two cases, n > m and
n < m, behave oppositely and the region of positive perturbation lies between two unperturbed curves
makes us confident that one can extrapolate our perturbative treatment to the case where the ¢, term
and ¢, term comparable — it simply lies between the two perturbative regions where one dominates the
other, as shown in the right in Figure 13.

In Figure 12 we see that sextic dominant models, n = 6, with either quartic perturbation (m = 4)
or octet perturbation (m = 8), fit the observation quite well when k£ < 0.018. We discuss the chance for
k to lie in this region. We will focus on the following analysis without perturbation,

1
V=a- §b¢>2 — " (B.15)
as additional perturbation ¢,,¢™ does not change the end result significantly. We assume the parameter

in the Lagrangian a, b and ¢, has uniform probability distribution and also take the probabilistic nature
of the initial condition into account. Using the definition b = ak, Eq.(B.6) and Eq.(B.11), one has

¢ant n— _n n—>5
/O d@/dadbdcn:/dadPg dk (1277 a T P, 7 K" 2 fr (L4 n f)" 2, (B.16)

where we need to integrate over a to obtain the probability distribution of k£ for a given F;. For n = 6
and 8, the integration over a is divergent with an upper bound @, that is around 107!7 where only
terms below the octec order require fine-tuning. The exact upper bound @, is correlated with the upper
bound for ¢,, but most importantly @, is independent on k and hence the integration over a does not
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Figure 13. (Left) The ¢ — k plot for (n,m) = (4,6). One can see that for the same k, ¢ is larger when
¢m < 0. (Right) Even though our treatment is perturbative, the case where ¢, ¢™ and ¢,,¢™ are comparable should
continuously connect the two perturbative regions.

give an additional k-dependence. In sum, for the cases of interest, the probability distribution of k is
Prdk = k"2 f, (14+n f,)"° dk, (B.17)

where f,,(k) is defined in Eq.(B.7), and the plot for n = 6 is given in Figure 14. The shaded area
corresponds to the interval Z of k that yields spectral index ngs > 0.96. The probability for k to lie in this
region for n = 6 is

fI P dk
1o P dk

and the distribution Pj peaks at k ~ 0.016, which yields a spectral index of ng = 0.963. Overall it is quite
remarkable that once one matches the observed perturbation power spectrum P, there is about a few ten
chance to achieve the observed spectral index without much further fine-tuning in general new inflation
with Z3 symmetry. But as we discussed in Sec.A, the observed F; can be obtained without significant
fine-tuning only if there is a strong anthropic bound on P, right at the observed value which seems to be
unlikely.

Pp,>0.96 = ~ (.49. (B.18)

24



40

0.02 0.04 0.06 0.08 0.10

Figure 14. The normalized probability distribution of k for n = 6. The shaded area corresponds to the interval of
k that yields spectral index ng > 0.96.
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