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Gravitational lensing has emerged as a powerful probe of the matter distribution on subgalactic
scales, which itself may contain important clues about the fundamental origins and properties of
dark matter. Broadly speaking, two different approaches have been taken in the literature to map
the small-scale structure of the Universe using strong lensing, with one focused on measuring the
position and mass of a small number of discrete massive subhalos appearing close in projection to
lensed images, and the other focused on detecting the collective effect of all the small-scale structure
between the lensed source and the observer. In this paper, we follow the latter approach and perform
a detailed study of the sensitivity of galaxy-scale gravitational lenses to the ensemble properties of
small-scale structure. As in some previous studies, we adopt the language of the substructure power
spectrum to characterize the statistical properties of the small-scale density field. We present a
comprehensive theory that treats lenses with extended sources as well as those with time-dependent
compact sources (such as quasars) in a unified framework for the first time. Our approach uses
mode functions to provide both computational advantages and insights about couplings between
the lens and source. The goal of this paper is to develop the theory and gain the intuition necessary
to understand how the sensitivity to the substructure power spectrum depends on the source and
lens properties, with the eventual aim of identifying the most promising targets for such studies.

I. INTRODUCTION

The distribution of matter on kiloparsec scales and
smaller may hold important clues about the fundamental
nature of dark matter. Within the standard cold dark
matter (CDM) paradigm, for instance, we expect dark
matter at these scales to be distributed among a large
number of low-mass subhalos that are largely devoid of
gas and stars [1]. On the other hand, theories in which
dark matter has a significant free-streaming length [2–
6] or interacts with a relativistic species at early times
(see e.g. Refs. [7–22]) predict a dearth of low-mass dark
matter subhalos. Moreover, the presence of dark matter
self-interaction [23–29] or dissipative dynamics [30–34]
can modify the inner structure of subhalos, hence provid-
ing another potential probe of dark matter microphysics.
Ultra-light axions [35, 36] might also lead to interesting
phenomenology on small scales (see e.g. Refs. [37, 38]).

Several observational techniques can be used to probe
the dark matter distribution on subgalactic scales. In ad-
dition to kinematical studies of ultra-faint dwarf galaxies
within the Local Group [39–44], detailed analyses of po-
tential perturbations to local stellar streams [45–49], to
the Milky Way’s galactic disk [50, 51], or to the tim-
ing of distant pulsars [52, 53] have been been proposed
as methods to put constraints on the abundance of low-
mass subhalos. Analyses of stellar wakes [54] could also
be used to detect starless dark matter subhalos locally.
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Both within and beyond the Local Group, gravita-
tional lensing has emerged as a powerful probe of the
dark matter distribution on the smallest scales. Indeed,
nearby dark matter subhalos devoid of stars could be de-
tected through lensing using subtle time-dependent as-
trometric perturbations of more distant sources [55–57].
Further out, galaxy-scale strong lensing systems in which
a background high-redshift source is multiply imaged by
a massive foreground galaxy are promising laboratories
to study the dark matter distribution on the smallest
scales. For example, the presence of flux-ratio anoma-
lies in quasar lenses [58–64] has led to a measurement of
the typical abundance of mass substructures within lens
galaxies [65, 66], with future measurements appearing
promising (see e.g. Refs. [67, 68]) if potential systematics
can be properly accounted for [69–74]. Quasar flux ratio
measurements have also been used to constrain the po-
sition and mass of potential individual subhalos within
the lens galaxies [75–77]. In a different regime, the strong
magnification near the caustic of galaxy clusters acting
as strong lenses could also be used to probe subhalos [78].

Using images of lensed extended sources, gravita-
tional imaging [79, 80] has led to the statistically-
significant detection of a few subhalos with masses above
∼ 108M� [81–83]. A somewhat similar technique using
spatially-resolved spectroscopic observations of gravita-
tional lenses [84, 85] has also led to the direct detection of
a ∼ 109M� subhalo [86]. Taken together, these measure-
ments can in principle be used to put constraints on the
subhalo mass function (see e.g. Refs. [87–90]), although
interpreting these detections in terms of physical subhalo
masses might be more subtle than initially thought [91].
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In the near future, transdimensional techniques [92, 93]
will allow a better understanding of various lensing de-
generacies associated with subhalo detection within grav-
itational lenses.

Within the CDM paradigm, typical lens galaxies are
expected to contain a large amount of mass substruc-
ture, with the subhalo mass function rapidly rising to-
ward small halo mass [1, 94]. While the smallest subhalos
are likely to be individually too light to be detected with
standard gravitational imaging techniques, their collec-
tive effect might be detectable, in the spirit of the origi-
nal work by Dalal and Kochanek [65]. Such a collective
approach based on Approximate Bayesian Computation
was used in Ref. [95] to put constraints on the abundance
of substructure within the lens RX J1131-1231.

A different approach brought forward by Ref. [96] (see
also [97]) aims at characterizing the mass substructure
through their power spectrum. Interestingly, the sub-
structure power spectrum contains information about the
inner profile, mass function, and abundance of subhalos
within lens galaxies [98–100], hence packing a lot of in-
formation within a single function. More generally, the
power spectrum allows one to capture the effects of over-
densities that cannot be easily described within the tradi-
tional language of the halo model (i.e. pancakes, streams,
etc.) [101]. Since the density field on such small scales
is expected to be nonGaussian, the power spectrum does
not in general capture all its properties. The power spec-
trum can nonetheless contain important clues about the
behavior of dark matter on sub-kiloparsec scales, just
like measuring the nonlinear matter power spectrum of
the large-scale structure of the Universe can lead to im-
portant information about the sum of neutrino masses.
Recently, Ref. [102] provided the first upper limits on the
amplitude of the substructure power spectrum in the lens
SDSS J0252+0039.

In this work, we perform an in-depth analysis of
the sensitivity of gravitational lens images to the sub-
structure power spectrum, focusing on data taken with
charged coupled devices (CCD), which are common in
optical astronomy. We present here a likelihood-based
mathematical framework necessary to extract the sub-
structure power spectrum directly from pixel-based im-
ages. While our general approach follows a similar phi-
losophy to that of Ref. [96], our computational tech-
nique differs at several levels, especially in our use of
a mode function-based approach. Our approach also dif-
fers significantly from Ref. [97] since we make no a pri-
ori assumption about the statistical symmetries of the
lensed source. Importantly, we extend our power spec-
trum mathematical framework to include compact time-
varying sources such as quasars, hence opening substruc-
ture power spectrum measurements to a broader range
of gravitational lenses. Since the goal of this paper is
to present the framework necessary to extract measure-
ments of the substructure power spectrum from lensed
images and develop some intuition about their sensitivity
to this latter quantity, we focus here on simple paramet-

ric source and lens models. Also, to avoid the complexity
related to multi-plane lensing (see e.g. Refs. [103–105]),
we shall concentrate in this work on substructure within
the lens galaxy. We note however that most of the ma-
chinery developed here is likely applicable in the presence
of line-of-sight structure with only minor modifications,
as long as the effects of the substructure (both subhalos
and those along the line of sight) on the lensed image are
small.

Given the unique potential of this technique in prob-
ing sub-kiloparsec structure within galaxies and along
the line-of-sight at cosmological distances from the Milky
Way, we aim this paper at an audience that is not neces-
sarily familiar with galaxy-scale strong lensing. As such,
we carefully review the different ingredients and assump-
tions entering our analysis. Readers with expertise in cos-
mic microwave background or large-scale structure anal-
yses will find several familiar concepts and techniques
throughout this paper. Expert readers could skip di-
rectly to Sec. IV for details about our method to extract
the substructure power spectrum from images of gravi-
tationally lensed sources.

This paper is organized as follows. In Sec. II, we
review the mass decomposition of the lens galaxy into
macrolens and substructure, and then introduce the sub-
structure convergence power spectrum. In Sec. III, we re-
view the impact of mass substructure on observed images
of galaxy-scale gravitational lenses, focusing on extended
sources. In Sec. IV, we present the derivation of our like-
lihood for the substructure power spectrum in the case
of extended lensed images. The numerical implementa-
tion of this likelihood is discussed in Sec. V, and simple
Fisher forecasts are presented in Sec. VI. We present in
Sec. VII complete Markov Chain Monte Carlo analyses of
mock lensed images of extended sources to assess sensi-
tivity to the substructure power spectrum. In Sec. VIII,
we generalize our likelihood computation to include time-
dependent compact sources such as quasars and present
simple Fisher forecasts. We finally conclude in Sec. IX.

Throughout this paper, we assume a Planck 2015 cos-
mology [106]. We also take the redshift of the source
to zsrc = 0.6 and that of the lens to be zlens = 0.25,
which results in a critical density for lensing Σcrit =
5.998 × 1010M�/arcsec2 = 3.686 × 109M�/kpc2 in the
lens plane. A useful number to keep in mind is that for
these choices of cosmology and redshifts, 1 arcsec ≈ 4
kpc in the lens plane.

II. SMALL-SCALE STRUCTURE AND LENS
GALAXIES

We begin this paper by reviewing the distinction be-
tween the so-called macro lens mass model and the small-
scale substructure contained within the lens galaxies or
along the line of sight. We then review the relevant sta-
tistical properties of the substructure that are most in-
teresting from a gravitational lensing point of view.
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A. Mass decomposition for galaxy-scale lenses

In this work, we specialize to the case of galaxy-scale
strong gravitational lenses, in which multiple images of a
background source are generated. In general, the exact
structure of the gravitational potential φlens responsible
for the lensing is the result of the complex assembly his-
tory of the lens galaxy as well as its subsequent dynam-
ical evolution. In addition, structures along the line of
sight can also contribute to the richness of the projected
gravitational potential. Despite this apparent complex-
ity, many observed galaxy-scale gravitational lenses can
be reasonably fitted with relatively simple mass models,
such as power-law ellipsoids (see however Ref. [107]).

A typical lens galaxy contains structure on a variety
of scales, with the larger scale features responsible for
the broad morphology of the observed lensed images,
while the small-scale structure (e.g. satellite galaxies, gi-
ant molecular clouds, globular clusters, etc.) give rise to
small corrections to the lensed observables. This sug-
gests that we can decompose the lensing convergence
(i.e. the two-dimensional projected mass density divided
by the critical surface density for lensing) into a domi-
nant macro component κ0(y), and a small contribution
κsub(y) parametrizing the difference between the actual
projected mass distribution and the dominant component
κ0, that is,

κlens(y) = κ0(y) + κsub(y). (1)

Note that we have absorbed the mean convergence in
the substructure (denoted κ̄sub) within κ0 such that the
κsub field as defined above has zero expectation value,
〈κsub〉 = 0. We note that in the absence of lensing time-
delay observations, stellar kinematic measurements, or
strong priors on the brightness and size of the source, it
is difficult to constrain κ̄sub due to the mass-sheet degen-
eracy [108]. We shall refer to κ0 (and φ0) as the macro
lens (or component) since it is responsible for determin-
ing the broad configuration of the lens. In general, it
contains the contributions from the smooth dark mat-
ter halo, the dominant baryonic structure (disk, bulge,
or otherwise), and possibly from single massive subhalos
significantly affecting the configuration of the lens (such
as those identified in Refs. [83, 86, 88]).

On the other hand, the substructure convergence κsub

(and its related lensing potential φsub) contains contribu-
tions from the usual dark matter subhalos and satellite
galaxies orbiting the main lens galaxy, as well as from
other astrophysical structures such as tidal streams, de-
bris, dense gas clouds, and globular clusters. The struc-
ture of the line-of-sight density field also contributes to
κsub, although we do not explicitly take it into account
here since this would require multiplane lensing. The cru-
cial point is that the perturbations encoded in κsub are
subdominant1 compared to κ0, hence resulting in subtle

1 By construction, if the κsub perturbations were large, they would

disturbances in the lensed images. Detecting the presence
of these small perturbations and characterizing their sta-
tistical properties could yield important clues about the
nature of dark matter.

B. Two-point statistics for substructure
convergence

The typical length scales probed by strong lensing ob-
servations are deep into the nonlinear regime of cosmo-
logical structure formation where both baryon- and dark
matter-dominated objects contribute significantly to the
overall projected mass density. Taken at face value, this
should imply that the statistics of the projected mass
density fluctuations encoded in κsub are highly nonGaus-
sian and difficult to compute from first principles without
resorting to expensive numerical simulations. However,
in the cases where κsub and φsub receive contributions
from a large number of dark matter and baryonic mass
substructures in the lens galaxy, it is possible to invoke
the central limit theorem to argue that the statistics of
κsub and φsub are approximately Gaussian [96, 109, 110].
This occurs for instance in cold dark matter models where
the subhalo mass function rises steeply towards small
halo mass. For such approximately Gaussian scenarios,
the statistical properties of the substructure convergence
field are almost entirely captured by its two-point corre-
lation function, or its Fourier transform, the power spec-
trum.

In a realistic lens galaxy, the mass substructure con-
vergence and potential will never be exactly Gaussian.
As was argued in Ref. [96], the nonGaussian signatures
are dominated by massive subhalos or line-of-sight struc-
ture appearing close in projection to lensed images. In
high signal-to-noise images, these massive halos could in
principle be directly detected through gravitational imag-
ing [80, 85, 111] and incorporated into the main lens
model described by κ0, hence leaving the statistics of the
mass substructures contributing to κsub roughly Gaus-
sian. But even if the statistics of the substructure conver-
gence are not entirely Gaussian, it is nonetheless interest-
ing to measure the substructure convergence power spec-
trum since it still contains important information about
small-scale structure within lens galaxies.

In contrast to the more familiar case of cosmological
large-scale structure, we do not expect the substructure
density field within a single lens galaxy to be either ho-
mogeneous or isotropic. However, given the relatively
small projected area probed by the strong lensing re-
gion, neglecting the spatial variation of the substructure
power spectrum across the lensed image is likely a good
approximation. The relevant quantity is then the lens

lead to easily detectable effects, implying that they should have
been absorbed in κ0.
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plane-averaged substructure power spectrum, which for
a single lens plane is defined as [98]

Psub(k) =

∫
d2r e−ik·r

∫
A

d2s

〈
κsub(s)κsub(s + r)

〉
A

, (2)

where k is the Fourier wavenumber and A is the area of
the strong lensing region where we perform the spatial
average. This power spectrum should be interpreted as
an ensemble average over multiple realization of a given
lens, or for practical purposes, as an ensemble average
over multiple galaxy-scale lenses. As such, we expect
that it will be on average statistically isotropic, and the
monopole power spectrum should carry thus most of the
signal. The latter is simply given by

P
(0)
sub(k) =

1

2π

∫ 2π

0

dθk Psub(k), (3)

where θk is the polar angle of the Fourier wavenumber
k, and k = |k|. In this work, we shall focus our atten-
tion on the monopole contribution to the substructure
convergence power spectrum but we note that the formal-
ism developed below can easily accommodate anisotropic
contributions2 to the power spectrum.

A detailed study of the substructure convergence
power spectrum for a dark matter-only population of sub-
halos was presented in Ref. [98]. We illustrate in the up-
per panel of Fig. 1 examples of the monopole convergence
power spectrum for this idealized scenario. We note that
we only display the one-subhalo term and we thus ne-
glect here subhalo-subhalo clustering. The black dashed
line shows the convergence power spectrum for an unclus-
tered distribution of point masses, which is essentially a
white noise (flat) power spectrum. The amplitude of this
power spectrum is simply given by [96, 98, 109, 110]

P
(0)
sub(k) =

κ̄sub〈m2〉
Σcrit〈m〉

, (point masses) (4)

where 〈mn〉 is the nth moment of the subhalo mass func-
tion [110]. We also display the convergence power spec-
trum for two other populations of subhalos, a truncated
Navarro-Frenk-White (NFW) [113] subhalo population
inspired by standard CDM, and a cored (modeled with
a Burkert [114] profile) subhalo population inspired by
self-interacting dark matter. In both cases, we see that
the convergence power spectrum follows that of the point
masses on scales larger than the size of the largest subha-
los. Once that scale is reached, however, the convergence
power spectrum for both the NFW and cored population
begins to rapidly decay away from the point mass case.

2 Since lens galaxies are generally not spherically symmetric due,
e.g., to the presence of a disk or an elliptical baryonic distribu-
tion, it would be interesting, though likely difficult, to look at
the possible dependence of the convergence power spectrum on
the angle between Fourier modes and the baryonic major axis.
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FIG. 1. The upper panel shows the substructure convergence
power spectra for a population of point masses (dashed black),
of truncated Navarro-Frenk-White (NFW) subhalos (solid
red), and of truncated cored (Burkert) subhalos (dotted blue).
Here, we have assumed a mean substructure abundance of
κ̄sub = 0.01, a power law subhalo mass function dN/dm ∝ mβ

with β = −1.9 and 105M� < m < 108M�. For the truncated
NFW, we take the scale radius to scale with the subhalo mass
as rs = 0.11 (m/106M�)1/2 kpc. The subhalos are tidally

truncated at a radius rt = (m/106M�)1/3(r3D/100 kpc)2/3

kpc [112], where r3D is the three-dimensional distance of the
subhalo from the center of the host. We average over all pos-
sible r3D locations of a subhalo up to a radius of 409 kpc,
as described in Ref. [98]. We adopt similar relations for the
truncated cored subhalos but with a core radius rc = 0.7 rs.
The lower panel shows the dimensionless power per log in-

terval in wavenumber, ∆2
sub(k) ≡ k2P

(0)
sub/(2π), for both the

truncated NFW and cored subhalo population. The two
green bands display the range of scales that could be probed
by space-based observations (dark green) and interferometric
data (light green).

On small enough scales, the convergence power spectrum
starts to probe the inner slope of the subhalos’ density
profile, with the cored subhalo case displaying less power
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on these scales than the more cuspy NFW subhalos. We
refer the reader to the figure caption for more details on
the parameter used to generate these power spectra.

To understand on which scales the mass substructures
matter the most, it is instructive to consider the dimen-
sionless power spectrum

∆2
sub(k) ≡ k2P

(0)
sub(k)

2π
, (5)

which describes the amount of substructure convergence
power per logarithmic interval in wavenumber. We il-
lustrate this dimensionless power spectrum in the lower
panel of Fig. 1 for both the truncated NFW and trun-
cated cored subhalo population. Since we observe that
most of the power lies on scales 0.03 − 10 kpc for these
plausible models, we naturally expect this range of scales
to dominate the constraints that we can put on sub-
structure using lensing data. Remarkably, such length
scales correspond to the typical scales probed by galaxy-
size strong lens observations. Assuming Einstein radii
of 1–2′′ and redshifts of zlens = 0.1–1 which are typical
for galaxy-scale lenses (see e.g. Ref. [115]), the range of
scales that can in principle3 be probed with space-based
lensing observations (assuming a 70 mas image resolu-
tion) is indicated by the dark green band in the lower
panel of Fig. 1. The higher image resolution achievable
with interferometric data (such as those from the Ata-
cama Large Millimeter/sub-millimeter Array) can signif-
icantly extend this range to higher wavenumbers (pale
green band), hence allowing measurements on most of
the length scales where mass substructure matters the
most. Thus, galaxy-scale strong lenses constitute ideal
laboratory to study small-scale dark matter structures.

In the remainder of this paper, we shall use both the
point mass and the truncated NFW power spectra shown
in Fig. 1 as benchmark fiducial models to generate simu-
lated data and test their sensitivity to the amplitude and
shape of the convergence power spectrum.

III. GRAVITATIONAL LENSING IN THE
PRESENCE OF MASS SUBSTRUCTURES

In this section, we review the impact of small-scale
structure on lensing residuals for the case of extended,
time-independent sources. Time-dependent compact
sources such as quasars will be treated separately in Sec.
VIII.

A. Preliminaries

Let us take a source at redshift zsrc with a surface
brightness profile at wavelength λsrc ≡ λ/(1 + zsrc)

3 We say “in principle” since the exact length scales that can ac-
tually be probed depend on the structure of the lensed source.

and time ts described by S̃(u, ts, λsrc), where λ is the
wavelength of the observation. Here, u stands for two-
dimensional angular coordinates in the source plane. We
also take a gravitational lens at redshift zlens specified by
the projected mass density (convergence) κlens(y) and its
related lensing potential φlens(y), which we assume to be
static in time4. Again, y stands for two-dimensional an-
gular coordinates, but in the image plane. The lensing
convergence and potential are related to each other via
the usual Poisson equation ∇2φlens = 2κlens. Let us de-
note the lensed image of the source detected at time t
and wavelength λ by Õ(y, t, λ). Formally, the relation
between the source and the lensed image is [116]

Õ(y, t, λ) =

∫
du

∫
dts S̃(u, ts, λsrc) δ (t− ts − τ(y,u))

× δ
(
u− y + ~∇φlens(y)

)
, (6)

where ~∇ denotes the gradient with respect to y, δ is the
Dirac delta function, and where the excess time delay is

τ(y,u) = t0

[
1

2
|y − u|2 − φlens(y)

]
, (7)

with

t0 ≡
1 + zlens

c

DlDs

Dls
, (8)

where c is the speed of light, Dl, Ds, and Dls are the
angular diameter distance between the observer and the
lens, the observer and the source, and the lens and the
source, respectively. Performing the integrals in Eq. (6),
we obtain

Õ(y, t, λ) = S̃
(
y − ~∇φlens(y), t− τ(y), λsrc

)
, (9)

where we use the shorthand notation τ(y) =

τ
(
y,y − ~∇φlens(y)

)
. In a typical observational scenario,

the lens galaxy itself, the sky background, and possibly
other objects along or close to the line of sight can also
contribute to the observed photon flux in addition to the
image of the lensed source. We take this into account
by adding an external surface brightness contribution
L̃(y, t, λ) to the lensed image Õ(y, t, λ). Furthermore,
the image is usually observed through a filter Fλi(λ) cen-
tered at a characteristic wavelength λi. We thus define
the two following quantities

Sλi(u, ts) =

∫
dλFλi(λ)S̃(u, ts, λsrc), (10)

Lλi(y, t) =

∫
dλFλi(λ)L̃(y, t, λ), (11)

4 On the typical timescale of a single astronomical observation, this
is indeed a very good approximation. However, for a multi-epoch
observational campaign of a given lens system, it is possible to
notice changes in the gravitational potential due to stellar mi-
crolensing. In this work, we treat microlensing separately from
φlens (see Sec. VIII A) and we can therefore take the latter to be
static.
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which are the wavelength-integrated lensed source and
external surface brightness, respectively. In addition, the
light from all sources will be processed by the optics of the
instrument used to observe it, as well by potential atmo-
spheric disturbances. We take this effect into account by
convolving the image with a point-spread function (PSF)
Wλi(y, t), which in general depends on the wavelength λi
and time of the observation. The actual model for the
observed surface brightness Ôλi(x, t) is thus given by

Ôλi(x, t) =

∫
dy
[
Sλi

(
y − ~∇φlens(y), t− τ(y)

)
(12)

+ Lλi(y, t)
]
Wλi(x− y, t).

Finally, the light is usually collected for an exposure
of length Texp on a detector made of an array of two-
dimensional pixels, and then converted to counts per
pixel. Taking Pj(x) to be the pixel response function

of the jth pixel5, and S(λi)
inv to be the inverse sensitivity

of the detector for the filter labeled by λi, the number of
counts in the jth pixel for the kth exposure is

Oλi(xj , tk) =
1

S(λi)
inv

∫ tk+Texp

tk

dt

∫
d2xPj(x)Ôλi(x, t)

≈ ApixTexp

S(λi)
inv

Ôλi(xj , tk), (13)

where we have assumed in going from the first to the
second line that the lensed source, foregrounds, and the
PSF are static on the exposure timescale, and that the
pixel response function is uniform across the detector and
given by a 2D rectangular function. Here, Apix is the area
of a pixel, and xj is the position of the jth pixel.

B. Lensing residuals for extended sources

In this section, we review (see e.g. Refs. [80, 111, 117])
the structure of the residuals between a strongly-lensed
image of an extended source (e.g. a galaxy) created us-
ing only a macro lens κlens = κ0 from an image gener-
ated by a mass model that includes substructure, κlens =
κ0 + κsub. By causality, an extended source can be con-
sidered static on the typical time scales associated with
astronomical observations. We can thus neglect the time
dependence of the source in Eq. (12). However, the PSF
and foreground light can vary from observations to ob-
servations, and we keep their time dependence explicit.
Since the φsub potential causes only small distortions to
the observed image, we can perform a perturbative anal-

5 For an ideal pixel, this function should be unity within the area
spanned by the pixel, and zero elsewhere.

ysis in φsub and expand Ôλi(x, t) from Eq. (12) as

Ôλi(x, t) ≈
∫
dyWλi(x− y, t)

[
Sλi

(
y − ~∇φ0(y)

)
(14)

− ~∇uSλi (u)
∣∣
u=y−~∇φ0(y)

· ~∇φsub(y) + Lλi(y, t)
]
,

where ~∇u denotes the source-plane gradient, and where
~∇φsub(y) is the deflection vector field created by the sub-
structure. We note that the source-plane gradient arising
in Eq. (14) can be translated to the image plane via the
relation

~∇uSλi (u)
∣∣
u=y−~∇φ0(y)

=

(
∂y

∂u

)
· ~∇Sλi

(
y − ~∇φ0(y)

)
,

(15)
where we recognize that the prefactor is nothing more
than the magnification tensor M0 ≡ ∂y/∂u generated

by the macro lens component. Denoting by Ô
(0)
λ (x, t) the

image of the source lensed purely by the macro potential
(as well as potential foregrounds), the residuals between
the image of a source lensed by the total lens potential
φlens, and that of the same source lensed only by the
macro component φ0 is

δÔλi,sub(x, t) ≡ Ôλi(x, t)− Ô(0)
λi

(x, t) (16)

≈ −
∫
dyWλi(x− y, t)

×
[
~∇uSλi (u)

∣∣
u=y−~∇φ0(y)

· ~∇φsub(y)
]
.

We thus obtain the well-known result [80, 111, 117] that
the lensed image residuals of an extended source are pro-
portional to the gradient of that source evaluated in the
image plane. Residuals are largest when this latter gra-
dient is either aligned or anti-aligned with the deflection
field created by substructures. The above expression
automatically captures the well-known fact that large,
smoothly varying sources lead to lensed images that are
largely insensitive to short-scale variations in the sub-
structure potential.

C. Validity of the linear approximation

We illustrate in Fig. 2 how the image residuals pre-
dicted by Eq. (16) (middle left panel) compare with the
actual residuals (middle right panel) gotten by simply

taking the difference Ôλi(x, t)−Ô(0)
λi

(x, t) between an ac-
tual mock image generated with a nonvanishing κsub and
a model image generated using only a macro lens model
κ0. The details of the lens, source, foreground, noise,
and PSF models used to generate these images can be
found in Appendix B below. Here, the substructures is
modeled as truncated NFW subhalos with a convergence
power spectrum given by the red solid line of Fig. 1. De-
spite the noise, we see that the predicted residuals match
very closely the actual image residuals, implying that the
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FIG. 2. Illustration of the lensing residuals in the presence of subtructure. The upper left panel shows the substructure
deflection field (red arrows) from a population of truncated NFW subhalos with a convergence power spectrum given by the
red solid line of Fig. 1. The upper right panel shows a mock image of a background galaxy (modeled as a n = 1/2 Sérsic profile)
that is strongly lensed by a foreground galaxy (modeled as an isothermal ellipsoid plus external shear). The light from the lens
galaxy (modeled as a n = 4 Sérsic), sky background, and Poisson noise are added to the image. The middle left panel shows the
predicted image residuals as given by Eq. (16) for the specific substructure realization used to generate the lensed image. The
middle right panel shows the actual image residuals gotten by subtracting from the mock image a model image generated with
the same lens galaxy, source parameters, environment, and observational conditions, but without the substructure. Finally,
the lower left panel shows the difference between the residuals predicted by Eq. (16) and the actual image residuals which is
entirely consistent with the Poisson noise realization used to generate the mock image (lower right panel).
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most of the substructure information is captured by the
first-order expansion performed in Eq. (16). This is also
illustrated in the lower left panel of Fig. 2 where we dis-
play the difference between the predicted and actual im-
age residuals, which is entirely consistent with the Pois-
son noise realization (lower right panel) used to generate
the mock image.

Mathematically, once can assess the validity of the
first-order approximation used to derive Eq. (16) by look-
ing at the next order contribution to the lensing residuals,
which takes the form

1

2
∇φsub(y) · HSλi · ∇φsub(y), (17)

where HSλi is the Hessian matrix containing the second
derivatives of the source surface brightness profile. Let us
estimate the magnitude of this second-order term com-
pared to the leading-order contribution ∇uSλi · ∇φsub.
For a source of typical size rsrc, the ratio of the deter-
minant of the Hessian matrix to that of the norm of the
gradient of the source is ∼ 1/rsrc, which implies that the
second-order corrections to Eq. (16) are negligible if

|HSλi ||∇φsub|
|∇uSλi |

∼ |∇φsub|
rsrc

� 1, (18)

that is, the typical magnitude of the substructure deflec-
tion must be much smaller than the size of the source.
Since the typical magnitude of the substructure deflec-
tion field is [109, 110]

|∇φsub| ∼
(
κ̄sub〈m2〉
Σcrit〈m〉

)1/2

∼ 10−3 arcsec, (19)

the first-order approximation should be valid for a broad
range of galaxy-scale lenses with extended sources where
the source sizes are typically in the range 0.1 − 1 arcsec
(see e.g. Ref. [115]). However, the first-order calcula-
tion obviously breaks down for compact sources such as
quasars for which a different treatment is necessary (see
Sec. VIII A).

D. Degeneracy with the source brightness profile

When confronted with the image residuals given in
Eq. (16), the immediate question that comes to mind
is: Can these residuals be reabsorbed by an appropriate
modification to the source brightness profile? To answer
this question, let us imagine that we add a small contri-
bution δSλi(u) to the source surface brightness profile,
that is,

Sλi(u)→ Sλi(u) + δSλi(u). (20)

We want δSλi(u) to absorb the image residuals intro-
duced by the presence of substructures within the lens.
To do so, the small source correction once projected to
the image plane must have the form

δSλi(y−∇φ0(y)) = ∇uSλi
∣∣
u=y−~∇φ0(y)

·∇φsub(y), (21)

where we only kept terms that are first order in pertur-
bation variables {∇φsub, δSλi}. To actually compute the
source correction, we must project this expression back
to the source plane. First, in the weak lensing regime,
the lens equation u = y −∇φ0(y) has a unique solution
y(u) and projecting Eq. (21) back to the source plane
is a well-defined procedure. It is then always possible to
add a source correction of the form

δSλi(u) = ∇uSλi(u) · ∇φsub(y(u)). (22)

to “gauge” away the image residuals caused by substruc-
tures6. We note that the same logic applies in the case
where ∇φsub is a constant vector.

However, in the strong lensing regime where the lens
equation u = y − ∇φ0(y) has multiple solutions and
∇φsub is a random nonconstant vector, the mapping be-
tween lens and source planes is no longer one-to-one. It
is then no longer possible to define a unique δSλi(u) that
can entirely absorb the image residuals given in Eq. (16).
For instance, let us imagine the case where the lens equa-
tion has two distinct solutions y1(u) and y2(u). We can

still define a source brightness correction δS
(1)
λi

(u) using

the first solution y1(u). Adding this correction to the
overall source model will indeed nullify the image resid-
uals in the neighborhood of the first image, but will also
introduce extra residuals near the second image. This ar-
gument is easily generalized to a larger number of images.
The main message here is that the redundancy introduced
by having multiple images of the lensed source ensures
that substructure effects can never be entirely absorbed
by adding complexity to the source.

Thus, in the strong lensing regime, the image residuals
caused by the stochastic substructure in the lens (or along
the line of sight) are in general not degenerate with the
source surface brightness profile. Of course, for a realistic
noisy image with imperfect knowledge of the PSF, it will
be always possible to absorb some of the residuals by a
modification of the source brightness profile (due to the
specifics of the noise realization and the PSF side lobes),
but the argument presented above shows that it is never
possible to completely eliminate the substructure-caused
residuals by changing the source.

E. Degeneracy with foregrounds

One might also worry that the image residuals caused
by the substructure could be degenerate with foreground
light, either from the lens galaxy itself, or other faint
objects along the line of sight. Unfortunately, this pos-
sibility appears difficult to eliminate since there is no

6 We note that if the structure of the source is well-known—as is
the case for the cosmic microwave background—it is not neces-
sarily possible to just “gauge” away the effect of the substructure,
even in the weak lensing regime. See Ref. [118] for details.
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a priori reason for why foregrounds could not mimic
substructure-caused residuals. However, Eq. (16) has a
very specific functional form linking the structure of the
source and of the macro lens to that of the residuals.
Since the broad structure of the lens provides informa-
tion about the general configuration of the source and
of the macro lens, it should in principle be possible to
distinguish image residuals caused by substructures from
mis-modeled foregrounds. In any case, it is unlikely in
our opinion that foregrounds could exactly reproduce the
mathematical structure given in Eq. (16), so they are
unlikely to be completely degenerate with the impact of
substructures.

We thus conclude that it is in principle possible to ex-
tract information about mass substructure within grav-
itational lenses by examining image residuals such as
those illustrated in Fig. 2. We now turn our attention
to how exactly one could extract that information from
lensed images of extended sources.

IV. LIKELIHOOD ANALYSIS FOR THE
SUBSTRUCTURE POWER SPECTRUM:

EXTENDED SOURCE

In this section, we analyze how gravitationally lensed
images of an extended source can be used to extract con-
straints on the properties of the substructure inside lens
galaxies. As noted in Ref. [96], the fact that the leading-
order image residuals for a lensed extended source are
linearly proportional to the gradient of the substructure
potential provides a straightforward way to write down
a likelihood for the two-point correlation function of the
substructure’s projected mass density. We derive a gen-
eral expression for this likelihood below.

In the following, we denote the array of parameters
describing the source as qsrc, those describing the macro
lens galaxy as qgal, those describing its environment by
qenv, those describing the foreground light by qfore, and
those describing the properties of the instrument used to
make the observations by qinst. For notational conve-
nience, we gather these different sets of parameters into
a single array q = {qsrc,qgal,qenv,qfore,qinst}. We also
take the statistical properties of the mass substructures
to be described by an array of parameters qsub, which
may include parameters describing the amplitude and
shape of the substructure convergence power spectrum.
In general, the data for a given lens system will consist
of a time series of pixel counts taken with different filters
centered at wavelength λi, that is,

Oobs =
{
Oobs,λi(xj , tk)

}
, (23)

where tk denotes the epoch of the kth observations, and
xj the position of the jth pixel.

We first obtain the image residuals by subtracting from

the data a model for the lensed image O
(0)
λ (xj , tk; q) for

a given choice of source, macro lens, environment, fore-

ground light, and instrumental configuration. The ob-
served residuals at the jth pixel are then given by

δOobs,λ(xj , tk; q) ≡ Oobs,λ(xj , tk)−O(0)
λ (xj , tk; q). (24)

For an appropriate choice of source structure and macro
lens, the observed residuals should be caused by the effect
of mass substructures and instrumental noise

δOobs,λ(xj , tk; q) = δOsub,λ(xj , tk; q,qsub) +Nλ(xj , tk),
(25)

where Nλ(xj , tk) is the instrumental noise in the jth pixel
and where we have explicitly written that the substruc-
ture residuals depend on the choice of source, macro lens
and its environment, as well as on parameters qsub de-
scribing the substructure population.

A. Basis function expansion

To extract information from lensed images about the
small-scale structure of the matter density field, it is use-
ful to expand the substructure deflection field in terms of
a set of orthonormal basis functions {∇ϕl}. In general,
this basis should be chosen as to both maximally sim-
plify the analysis and facilitate comparison between mea-
surements and theoretical predictions. There are many
possible choices of basis function, including including a
Fourier basis, a polar harmonic expansion, or a shapelet
basis [119]. To retain generality, we refrain at this point
from specifying an actual orthonormal basis and write
the deflection field as

∇φsub(x) =

Nmodes∑
l=1

Al∇ϕl(x) (26)

where Al is the (usually complex) amplitude of the lth
mode of the substructure deflection field. The basis func-
tions satisfy the following orthonormality condition

1

Aimg

∫
Aimg

d2x∇ϕl(x) · ∇ϕ∗l′(x) = δll′ , (27)

where Aimg is the area of the sky spanned by the
data. This orthogonality condition can be used to in-
vert Eq. (26) for the mode amplitudes

Al =
1

Aimg

∫
Aimg

d2x∇ϕ∗l (x) · ∇φsub(x)

= − 2

Aimg

∫
Aimg

d2xϕ∗l (x)κsub(x), (28)

where we have used integration by parts7 and the Poisson
equation ∇2φsub = 2κsub to write the last line. The

7 We define our mode functions ϕl such that they vanish on the
boundary of the integration domain, ensuring that the surface
term does not contribute to Eq. (28).
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residuals can then be written as

δOsub,λ(xj , tk) =

Nmodes∑
l=1

AlWλ
l (xj , tk), (29)

where Wλ
l (x, tk) is the gradient of the source projected

into the lth mode and convolved with the PSF. For an
extended source, it takes the form

Wλ
l (x, tk) = −ApixTexp

S(λ)
inv

∫
dyWλ(x− y, tk) (30)

×∇ϕl(y) · ∇uSλ
∣∣
u=y−~∇φ0(y)

,

where we have used Eq. (13) and assumed a uniform pixel
response function (the above kernel can easily be gener-
alized for a more complex pixel response). While the
∇ϕl(x) modes are orthogonal by construction, we note
that the kernels Wλ

l (x, tk) do not generally form an or-
thogonal basis of the lensing residuals due to the presence
of the gradient of the source.

B. Likelihood

It is useful at this point to introduce a matrix and vec-
tor notation that will streamline the likelihood deriva-
tion. We shall assume here a single observation at a
given wavelength λi, and will therefore drop the time
and wavelength indices for now. We will restore them in
the next subsection. Let us gather the observed lensing
residuals into a vector δOobs of length Npix. Similarly,
we denote the image residuals caused by substructure as
δOsub. We also gather the mode basis Wl(xj) into an
Npix ×Nmodes matrix WE, such that (WE)jl =Wl(xj).
We note that WE is a nothing more than a change-of-
basis matrix from the mode space to the pixel space.
We finally gather the mode amplitudes Al into a vec-
tor a ≡ {Al} of length Nmodes. With these definitions,
the image residuals caused by substructure can be simply
written as

δOsub = WE a. (31)

Since our data consist of photon counts on pixels, we
expect the noise in each pixel to have a Poisson contri-
bution in addition to other instrumental sources such as
readout noise. Since our aim is to detect the subtle ef-
fects of mass substructures, we are primarily interested
in high signal-to-noise images in which the photon counts
per pixel will be large, implying that we can approximate
the Poisson shot noise by a Gaussian contribution. We
thus assume that the noise has statistical properties en-
tirely given by 〈

N(xi)N(xj)
〉
N

= CN,ij , (32)

where 〈. . .〉N denotes ensemble averaging over noise re-
alizations. The likelihood for the parameters q and qsub

marginalized over the unknown amplitudes Al is then

L(q,qsub) ∝
∫
da da†Psub(a|qsub) (33)

× e−
1
2 (δOobs−WE a)†C−1

N (δOobs−WE a)√
|CN |

.

In general, the conditional probability distribution for
the Al coefficients given a choice of substructure param-
eters qsub, Psub(a|qsub), is difficult to determine since
it depends on rather complex galaxy formation physics.
However, as we argued in Sec. II B the statistics of the
substructure convergence field could be approximated as
Gaussian, implying that the statistics of the Al coeffi-
cients can be approximately captured by their two-point
functions. In this approximation, we have

Psub(a|qsub) ' e−
1
2a†C−1

suba√
(2π)Nmodes |Csub|

, (34)

where we have written the variance of the Al coefficients
as

(Csub)ll′ ≡ 〈AlA∗l′〉, (35)

and where |Csub| = |det Csub|. In the presence of small
nonGaussianities, we note that Eq. (34) could be gener-
alized by performing an Edgeworth expansion similar to
that performed in Ref. [110]. Given the basis functions
∇ϕl(x), the Csub takes the form

(Csub)ll′ =
4

A2
img

∫
d2k

(2π)2
Psub(k)ϕ̃l(k)ϕ̃∗l′(k), (36)

where ϕ̃l(k) is the Fourier transform of ϕl(x). It is then
useful to define the following matrix

G ≡W†
EC−1

N WE, (37)

which has the convenient property of being Hermitian,
G† = G. We note that the matrix Gll′ is essentially
the noise covariance matrix projected into the l and l′

modes. We also introduce g, the noise-weighted data
vector projected into the mode space

g ≡W†
EC−1

N δOobs, (38)

as well as the standard χ2 in the absence of substructure

χ2 ≡ δOT
obsC

−1
N δOobs. (39)

With the simplifying choice given in Eq. (34) the like-
lihood is Gaussian in the a variables, and we can thus
analytically marginalize over these coefficients. Equation
(33) then becomes

L(q,qsub) ∝ e−
1
2 [χ2−g†D−1g]√
|CN ||Csub||D|

, (40)
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where

D = G + C−1
sub. (41)

The matrix D and the vector g depend on both the
source and smooth lens parameters q, while the data en-
ter through χ2 and g. The substructure parameters qsub

only enter through the covariance matrix Csub.
Equation (40) is the likelihood written in the “mode”

basis. It could be cast into the perhaps more familiar
pixel basis by using the Woodbury matrix identity to
write

χ2 − g†D−1g = δOT
obsV

−1δOobs, (42)

and

|CN ||Csub||D| = |V|, (43)

where

V ≡ CN + WECsubW†
E. (44)

With this definition, the likelihood admits the simple
form

L(q,qsub) ∝ e−
1
2 δO

T
obsV

−1δOobs√
|V|

. (45)

While the matrix V has a simple interpretation as the
“noise + signal” covariance matrix and the form of the
likelihood given in Eq. (45) is rather intuitive, we note
that it is often computationally advantageous to use the
mode basis likelihood (Eq. (40)) since it usually involves
lower dimensional matrices and vectors. Indeed, due
to noise, the number of measurable modes with non-
vanishing signal-to-noise ratio is usually much smaller
that the number of image pixels and it is more effi-
cient to first perform the projection into the mode ba-
sis (Eqs. (37) and (38)) before computing the likelihood.
Furthermore, depending on the exact choice of mode ba-
sis, the matrix G and vector g can have important sym-
metries that significantly simplify their computation (see
e.g. Sec. V B below).

C. Generalization to an ensemble of observations

Let us now turn our attention to the case where we
have a sequence of observations of the same gravita-
tional lens taken at different time stamps tk and/or with
different filters centered at wavelength λ. Generalizing
Eq. (33) to the case of a time series of independent obser-
vations, the likelihood marginalized over the coefficients
Al for an extended source takes the form

L(q,qsub) ∝
∫
da da†Psub(a|qsub) (46)

× e−
1
2

∑
k,λ ∆λ(tk)†C−1

N,λ(tk)∆λ(tk)√
|C̃N |

,

where

∆λ(tk) ≡ δOobs,λ(tk)−WE,λ(tk) a, (47)

and where the exact form of the C̃N matrix will be given
below. Note that the argument of the exponent is now
summed over epochs and wavelengths, which is valid if
the noise of observations taken at different epoch is un-
correlated. It is understood that each image could have
its own source parameters (if the source has a different
morphology at different wavelength, for instance), fore-
ground parameters, pixelization, and PSF. On the other
hand, the macro lens, its environment, and the substruc-
ture contribution to the lensing deflection are taken to be
the same across all images. Taking Psub(a|qsub) as given
in Eq. (34), we can marginalize over the Al coefficients
to obtain

L(q,qsub) ∝ e−
1
2 [χ̃2−g̃†D̃−1g̃]√
|C̃N ||Csub||D̃|

, (48)

where

χ̃2 =
∑
λ

Nλobs∑
k=1

χ2
λ(tk), g̃ =

∑
λ

Nλobs∑
k=1

gλ(tk), (49)

D̃ =
∑
λ

Nλobs∑
k=1

Gλ(tk) + C−1
sub, (50)

|C̃N | =
∏
λ

Nλobs∏
k=1

|CNλ(tk)|, (51)

and where Nλ
obs is the number of exposures with a filter

centered at wavelength λ. We note that these expres-
sions are very similar to the single-observation case, ex-
cept that the relevant quantities are now summed over
all available observations.

V. NUMERICAL IMPLEMENTATION IN A
DISCRETE FOURIER BASIS

In this section, we specialize the general framework
presented in the previous section to a discrete Fourier
basis. We first present the specifics of the Fourier case
before discussing the details of our numerical implemen-
tation.

A. Discrete Fourier basis

We define our discrete orthonormal Fourier basis func-
tions such that

ϕl(x) =

{
eikl·x

kl
if x ∈ Aimg,

0 otherwise,
(52)
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where kl = |kl|, and Aimg is the sky area spanned by
the data. For a Npix × Npix image with side-length
R (Aimg = R2), the orthonormality condition given in
Eq. (27) implies that the wavenumber kl must take dis-
crete values

kl =

(
2π lx
R

,
2π ly
R

)
, (53)

with

lx, ly =

{
−Npix−1

2 , . . . ,
Npix−1

2 (Npix odd)

−Npix

2 − 1, . . . ,
Npix

2 − 1 (Npix even),
(54)

but where the zero mode with lx = ly = 0 is not included.
Here, it is understood that the mode index l is a short-
hand notation for the doublet {lx, ly} characterizing the
x and y coordinates of the Fourier mode. In this basis,
the Wλ

l (x, tk) kernel takes the form

Wλ
l (x, tk) = − iApixTexp

S(λ)
inv

∫
dyWλ(x− y, tk) eikl·y (55)

× k̂l · ∇uSλ
∣∣
u=y−~∇φ0(y)

,

which has the symmetry property Wλ∗
l = Wλ

−l, a con-
sequence of the image residuals being real. This implies
that the total number of independent Fourier modes is
for an Npix ×Npix image is

Nmodes,ind =

{
N2

pix−1

2 Npix odd
Npix(Npix−1)

2 − 1 Npix even.
(56)

In practice, the size of the source and the finite width
of the PSF put an upper bound on the largest k-mode
that can be measured from a given lensed image, and it is
therefore sometime unnecessary to consider the full range
of Fourier modes given in Eq. (54). We illustrate exam-
ples of the Wλ

l kernel in Fig. 3 for four different choices
of Fourier modes. The source and lens model used to
generate these are the same as in Fig. 2. Not surpris-
ingly, we see that the various kernels pick out different
features of the image residuals, with the lower wavenum-
bers picking structures stretching across the image, and
the higher wavenumbers selecting small-scale brightness
fluctuations along the lensed arc.

The Fourier transform of the mode functions given in
Eq. (52) is

ϕ̃l(k) =
Aimg

kl
j0(

1

2
(kxR−2πlx))j0(

1

2
(kyR−2πly)), (57)

where j0(x) is the spherical Bessel function of order zero,
and where we have written k = (kx, ky). Since we are
focusing our attention here on the monopole of the sub-
structure convergence power spectrum (Eq. (3)), it is use-
ful to define the following window function

Φll′(k) =
klkl′

(2π)2Aimg

∫ 2π

0

dθk ϕ̃l(k)ϕ̃∗l′(k), (58)

which has the convenient normalization∫ ∞
0

dk kΦll(k) = 1. (59)

This window function encodes the fact that we have ac-
cess to only a small region of the sky, and thus can
measure a limited number of Fourier modes. Now, com-
pared to large-scale structure surveys, the window func-
tion plays a subdued role here since the gradient of the
source appearing in Wλ

l kernel (Eq. (55)) already limits
the sensitivity of the data to Fourier modes with wave-
length on the order of the lens’ Einstein radius or smaller,
independently of the size of Aimg. Furthermore, for the
modes given in Eq. (53), Φll(k) is strongly peaked at
k = kl while Φll′(k) is oscillatory for l 6= l′, hence leading
to strong cancellation8 of the off-diagonal elements. We
can thus approximate the window function as

Φll′(k) ≈ δ(k − kl)
kl

δll′ , (60)

which yields a Csub covariance matrix of the form

(Csub)ll′ =
4

Aimgklkl′

∫
dk k P

(0)
sub(k)Φll′(k)

≈ 4P
(0)
sub(kl)

Aimgk2
l

δll′ . (61)

We note that for a constant P
(0)
sub(k) (as in the case of a

population of point masses), Eq. (61) becomes exact for
the diagonal elements of Csub. In general, as long as the
value of the convergence power spectrum does not vary
rapidly over the width of the window function, we find
Eq. (61) to be an excellent approximation. For the re-
mainder of this paper, we adopt for simplicity the approx-
imation given in Eq. (61) for the substructure covariance
matrix, but note that it is straightforward to generalize
our calculation to also include off-diagonal elements of
Csub.

B. Numerical implementation

To implement and test the likelihood presented in
Secs. IV B and IV C in the Fourier basis, we have de-
veloped the software package PkLens9. Written in pure
Python 3, PkLens uses just-in-time compilation and au-
tomatic parallelization from the numba [120] package to
accelerate key parts of the computation.

The reality condition Wλ
−l = Wλ∗

l implies that the G
matrix defined in Eq. (37) can be written in the following
block structure

G =

(
X Y
Y∗ X∗

)
, (62)

8 For instance, we find that
∫∞
0 dk kΦl,l+1 ∼ 10−3.

9 PkLens will be made publicly available upon publication of this
manuscript.
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FIG. 3. Real and imaginary parts of the Wλ
l kernel for four different Fourier modes. The kernels are ordered from long wave-

length modes (top left corner) to short wavelength modes (lower right corner) with {kl1 , kl2 , kl3 , kl4} = {1.57, 2.22, 11.0, 19.1}
arscec−1. The source and lens model used here are the same as in Fig. 2.

where X = X† is an Hermitian block and Y = YT is
a symmetric block, both of size Nmodes,ind × Nmodes,ind.
We thus need to compute only half the elements of X
and half that of Y (for a total of Nmodes,ind entries) to
fully characterize the matrix G. This structure of the
G matrix allows us to use blockwise inversion in order
to compute the matrix D−1 appearing in the likelihood
given in Eq. (40), hence significantly speeding up the
linear algebra. Similarly, only half of the gl vector entries
need to be computed since g−l = g∗l .

VI. FISHER ANALYSIS

To develop some intuition about the sensitivity of dif-
ferent lens configurations and observational scenarios to
the substructure convergence power spectrum, it is in-
structive to first carry out a simple Fisher analysis of
the likelihood given in Eq. (48). We adopt a binned
substructure convergence power spectrum as our fitting
model, and the relevant parameters here are thus the
logarithm of the amplitude of Psub(k) within each bin,
qsub = {lnPsub,i}i=1,...,Nbins

. For the analysis shown in
this section, we divide the range of scales probed by
a given lensed image into 4 wavenumber bins that are
evenly spaced in log10(k). In the following, for each filter
centered at wavelength λ, we assume that we have Nλ

obs
observations of the same lens.

A. Fisher matrix and sensitivity function

The Fisher matrix for the binned log amplitude of the
power spectrum takes the form

Fij ≡ −
〈 ∂2 lnL
∂ lnPsub,i∂ lnPsub,j

〉
=
Psub,iPsub,j

2
Tr

[
Γ
∂Csub

∂Psub,i
Γ
∂Csub

∂Psub,j

]
, (63)

where

Γ ≡ (G−1 + Csub)−1 = G−GD−1G. (64)

To understand how the Fisher matrix scales with the
observational parameters, it is instructive to consider a
simple example where we neglect the off-diagonal entries
of the G matrix. In this case, the diagonal entries of the
Fisher matrix admit the form

Fii =
1

2

∑
l∈i

(SlPsub,i)
2

(1 + SlPsub,i)
2 , (65)

where the sum runs over all Fourier modes whose mag-
nitude falls within the range of the ith bin. We have
assumed here that the noise for each observation is Pois-
sonian with CNλ,ij = δijσ1Oλ(xi) (where Oλ(xi) is given
in Eq. (13) and σ1 = 1 for pure Poisson noise). In
Eq. (65), we have introduced the sensitivity Sl of a given
gravitational lens observation to the lth mode of the sub-
structure convergence field. It is defined as the product
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of a mode-independent prefactor Qλobs that depends on
the depth and quality of the observation and of a mode-
dependent function Λλl that only depends on the spatial
structure of the macrolens, source, and PSF,

Sl =
∑
λ

Qλobs × Λλl , (66)

where

Qλobs ≡ Nλ
obs

TexpFλ
σ1S(λ)

inv

, (67)

and

Λλl ≡
4

k2
lNpix

∑
m

|(Wλ ∗ ∇ϕl · ∇uŜλ)(xm)|2
Wλ ∗ Ŝλ(xm)

, (68)

where the sum runs over all the pixels in the image,
and the “∗” symbol stands for the convolution operation.
Note that we have written the source surface brightness
as Sλ(u) = FλŜλ(u), where Fλ is the total source flux

within the bandpass of the filter and
∫
d2u Ŝλ(u) = 1.

For simplicity, we have omitted the foreground contribu-
tion when writing Eq. (68).

Since Λλl describes the intrinsic sensitivity of a given
lens configuration to the lth mode of the substructure
density field, it is a useful figure of merit to rapidly assess
whether a given lens can provide competitive constraints
on the substructure convergence power spectrum. The
dimensionless prefactor Qλobs simply captures how the
sensitivity Sl scales with exposure time, number of obser-
vations, source flux, noise level, and detector sensitivity.
Not surprisingly, the sensitivity is improved for a longer
total exposure, a brighter source, a lower noise level, and

by lowering the value of S(λ)
inv (which could be done by

using a larger telescope and/or a more sensitive camera).
For very large value of the sensitivity, Psub,iSl �

1, Eq. (65) implies that the measurement uncertainty

δ lnPsub,i =
√

(F−1
ii ) on the amplitude of the binned

power spectrum becomes sample variance dominated
with

δ lnPsub,i '
√

2√
Ni
, (Psub,iSl � 1) (69)

where Ni is the number of modes within the ith bin. This
is a familiar result that arises for instance in the study
of cosmological large-scale structure. On the other hand,
for low sensitivity Psub,iSl � 1, we can Taylor expand
Eq. (65) to obtain

δ lnPsub,i '
√

2

Psub,i

√∑
l∈i S2

l

, (Psub,iSl � 1) (70)

from which we obtain δPsub,i ∝ 1/(NobsTexp).
To gain some intuition about the structure of the sen-

sitivity function as a function of wavenumber kl, let us

consider a Gaussian source of width σs lensed by a sin-
gular isothermal sphere lens model into an Einstein ring
with radius bein. Also, let us consider a series of observa-
tions with a single filter and a Gaussian PSF of size σPSF

(we shall drop the wavelength index λ in the following).
For this simple system, Eq. (68) admits as leading be-
havior in the limit that σPSF, σs < bein

Λl ∝ bein
σ2

PSF + σ2
s + k2

l σ
4
PSF

k2
l (σ2

PSF + σ2
s )5/2Aimg

e−
1
2k

2
l σ

2
eff , (71)

where

σeff =
√

2
σPSFσs√
σ2

PSF + σ2
s

. (72)

We compare this analytical estimate of Λl to exact nu-
merical computations for three different choices of PSF
size in Fig. 4. There, the solid lines shows the numerical
results, while the dashed lines display the approximate
expression given in Eq. (71). The dotted vertical line
shows the wavenumber ks corresponding to the size of
the Gaussian source.

On scales larger than σeff (kl . π/σeff), the sensitivity
decays as Λl ∝ k−2

l . This scaling is simply the result of
the Poisson equation linking the deflection field probed
by the lensing observations to the substructure conver-
gence whose power spectrum we are trying to measure,
that is, |α̃sub(k)|2 ∼ 4|κ̃sub(k)|2/k2. Since the substruc-
ture deflection field couples to the gradient of the source’s
surface brightness profile convolved with the PSF (see
Eq. (16)), the sensitivity becomes strongly suppressed
for Fourier modes probing scales smaller than either the
size of the source or the PSF, whichever is smallest. This
can be seen in Fig. 4 where the examples with σPSF > σs

(purple and green lines) have rapidly decaying sensitiv-
ity for kl & ks, whereas the example with σPSF < σs (red
lines) roughly retains the k−2

l scaling until wavenumbers
corresponding to the PSF size. While this sensitivity
cutoff is exponential for our example with a Gaussian
source and PSF, we generally expect it to be milder for
more realistic choices of source and PSF models.

In addition to the sensitivity cutoff for kl & π/σeff ,
Eq. (71) admits the general scaling Λl ∝ bein/σ

3
PSF for

PSF size larger than the source. The leading factor of
bein/σPSF essentially counts the number of independent
sections of the Einstein ring that are available for the
analysis. This is quite intuitive: at fixed PSF and im-
age size, a larger Einstein ring contains more information
about the substructure density field than a smaller one.
The further 1/σ2

PSF factor stems from the reduced signal
to noise per pixel as the PSF size increases. Indeed, for
larger PSFs, the light from a given part of the source gets
spread to a larger area of the focal plane, resulting in a
smaller photon count in each pixel and thus to a reduced
sensitivity. Of course, this scaling breaks down once the
PSF size becomes smaller than the typical size of the
source, as can be seen in Eq. (71). As a general rule of
thumb, high-resolution images will always provide better
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FIG. 4. Sensitivity function Λl for a Gaussian source of size
σs = 0.2 arcsec lensed by a singular isothermal sphere lens
model with Einstein radius bein = 1.2 arcsec. The solid lines
show the results of exact numerical computations for three dif-
ferent sizes of Gaussian PSF, while the dashed lines illustrate
the approximate expression given in Eq. (71). The vertical
dotted line shows the approximate wavenumber correspond-
ing to the size of the source ks = π/σs. Note that higher values
of Λl means that the mock lens has greater sensitivity to the
substructure convergence power spectrum for wavenumber kl.

constraining power on the substructure power spectrum
than low-resolution images, and lenses with larger Ein-
stein radii (or more complete Einstein rings) will gener-
ally have display greater sensitivity to the effect of sub-
structure.

B. Simple Fisher forecast

We now use the Fisher matrix from Eq. (63) to quan-
titatively estimate the error on the binned substruc-
ture convergence power spectrum for two different ob-
servational scenarios. As usual, these Fisher forecasts
should interpreted with caution, especially since we ne-
glect here possible covariances between the effect of sub-
structures and changes to the macrolens and source pa-
rameters. These possible degeneracies will be explored
in the next section once we performed complete Markov
Chain Monte Carlo analyses of lensed images. The results
shown here should thus be taken as illustrative of the best-
case sensitivity to the substructure power spectrum that
could be achieved within the observational scenarios we
consider below. In the following, we consider images on
a 50× 50 pixel grid, and adopt the truncated NFW sub-
structure power spectrum shown in Fig. 1 as our fiducial
model for the Fisher forecast.

Figure 5 shows the Fisher forecast for a high-resolution
observations with a PSF full width at half maximum
(FWHM) of 0.07 arcsec, similar to what is achievable
with the Hubble Space Telescope (HST) for optical wave-
lengths. We display Fisher estimates of the error bars
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FIG. 5. Fisher forecast for the substructure convergence
power spectrum in four logarithmic wavenumber bins. The
top panel shows the different projection of the inverse Fisher
matrix for an HST-like observations with a PSF FWHM of
0.07 arcsec for two values of the quality factor Qobs (defined in
Eq. (67)). The darkly and lightly shaded areas show the 68%
and 95% confidence regions, respectively. The inset shows the
lens configuration used. The lower panel shows the resulting
Fisher error bars on Psub(k) for the three lowest wavenumber
bins. The blue solid line shows the fiducial power spectrum
model used in the forecast, which corresponds to the trun-
cated NFW model shown in Fig. 1. The error bars show
the 1-σ regions, while the green rectangles display the sam-
ple variance contribution within each bin. For clarity, the
wavenumber bin center for each observational scenario shown
have been offset by 6%, with the green rectangle showing the
true wavenumber bin used in the analysis.

for two choices of the observation quality factor Qobs.
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FIG. 6. Same as the upper panel of Fig. 5 but for seeing-
limited ground-based observations with FWHM = 0.5 arcsec
(modeled here as a Moffat profile). Here, we only display the
results for the wavenumber range 0.4kpc−1 ≤ k ≤ 5.5kpc−1

since there is very little sensitivity to higher wavenumbers
given the poor image resolution. Note the larger range power
spectrum value shown on the axes as compared to Fig. 5 due
to the much lower sensitivity here. The inset shows the lens
configuration used.

As a concrete example, Qobs = 105 could be achieved
by combining 10 observations of a source with total flux
Fλ = 10−18 erg/cm2/s/Å (approximately corresponding
to an unlensed AB magnitude of 24), each observed
through the FW555 filter for Texp = 2000 seconds with
the UVIS detector on Wide-Field Camera 3 (WFC3)
aboard HST.

For Qobs = 106, the substructure convergence power
spectrum error bars approach the sample-variance limit
within the lowest wavenumber bin, as shown in the lower
panel of Fig. 5. For the second and third wavenum-
ber bins, the error bars grow modestly according to
Eq. (65) for both image depths shown. There is then
a significant decrease in sensitivity within the highest
wavenumber bin due to the limits imposed by the source
size and PSF (corresponding here to ks ' 8 kpc−1 and
kFWHM ' 11 kpc−1, respectively), in accordance with our
discussion above. For the wavenumber range 2.3 kpc−1 ≤
k ≤ 13.2 kpc−1, the deeper observations (Qobs = 106)
lead to a significant gain in sensitivity as compared to
the shallower one (Qobs = 105) due to these modes be-
ing in the noise-dominated regime described by Eq. (70).
Within the highest wavenumber bin, only coarse upper
limits appears possible in either case, which is why we do
not illustrate them in the lower panel of Fig. 5.
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FIG. 7. Similar to the upper panel of Fig. 5 but comparing the
Fisher forecasts for two different lens configurations (shown in
the inset). Here, the structure of the source, the macrolens,
its environment and the foregrounds are all kept the same,
and only the source position is changed. The nearly complete
Einstein ring displays greater sensitivity to the substructure
power spectrum than the partial arcs.

Figure 6 displays Fisher forecast for seeing-limited
ground-based observations with PSF FWHM = 0.5 arc-
sec for the same two values of Qobs. The error bars
are significantly larger in this case, with the two highest
wavenumber bins only yielding very coarse limits. While
a measurement of the power spectrum amplitude for the
lowest wavenumber bin appears possible, we caution that
the degeneracies between the effects of substructure and
the structure of the lens, source, and foregrounds are
likely to be quite severe for the low resolution ground-
based data. This will likely degrade the constraining
power of the low-resolution data compared to the sim-
ple Fisher forecast illustrated in Fig. 6, unless a high-
resolution image is also available to help break the vari-
ous degeneracies.

It is important to realize that, at equal value of the
observational quality factor, distinct lens configurations
will display different sensitivity to the substructure power
spectrum. An example of this is illustrated in Fig. 7
where we show the figure forecast for two different lens
configurations: a set of partial arcs and a nearly complete
Einstein ring (the latter being the configuration used in
the forecast above). For these images, the structure of
the source, macrolens, its environment and foregrounds
are all kept fixed and only the position of the source is
modified. Due to its greater coverage of the image plane
that allows it to probe more substructure modes, the
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Einstein ring displays greater sensitivity to the substruc-
ture power spectrum is all wavenumber bins shown. As
discussed in Sec. VI A, at a given image resolution and
depth, lensed images covering a larger area of the im-
age plane will generally display greater sensitivity to the
power spectrum.

VII. ANALYSIS OF SIMULATED IMAGES

Having developed some intuition about the various fac-
tors affecting the sensitivity of a gravitational lens ob-
servation to the substructure convergence power spec-
trum, we now turn our attention to more realistic anal-
yses of mock images. We explore in this section how the
posterior distribution of the binned substructure power
spectrum amplitudes is affected by degeneracies with the
macro lens, source, foreground, and noise parameters for
a few representative observational scenarios. Details on
how we generate our mock observations of gravitational
lenses are given in Appendix B. Null tests to confirm the
accuracy of our numerical implementation, and a study
of possible degeneracies between the substructure power
spectrum amplitudes and the noise parameters are pre-
sented in Appendix C. We present here the results of
our Markov Chain Monte Carlo (MCMC) analyses ex-
ploring the complete degeneracies between lens, source,
foreground, and noise parameters on the one hand, and
substructure power spectrum on the other.

A. Substructure power spectrum inference

As in the case of our Fisher analysis, we adopt the
logarithm of the binned substructure convergence power
spectrum amplitudes as our fitting model. We divide
the range of scales probed by a given lensed image into
3 wavenumber bins that are evenly spaced in log10(k)
within the range10 0.4 kpc−1 ≤ k ≤ 5.5 kpc−1. We note
that the choice of binning presented in this work is arbi-
trary and driven only by convenience and simplicity. We
leave a thorough study of the optimal binning strategy
to future work, but note that it is very likely to depend
on the specifics of each dataset. We adopt a broad scale-
free (log-uniform) prior on the amplitude within each bin,
log10(Psub,i/arcsec2) ∈ [−10,−1].

We use the affine invariant sampler emcee [121] to
sample the likelihood given in Eq. (40), allowing the
macrolens, source, foreground, and noise parameters to
vary freely within broad flat priors (see Appendix B for
details on the different components entering the mock

10 Since we are considering lenses at redshift zlens = 0.25 with a
Planck 2015 Cosmology [106], this interval corresponds to angu-
lar scales in the range 1.6 arcsec−1 ≤ k ≤ 22.2 arcsec−1.
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FIG. 8. Posterior summary for the binned substructure
convergence power spectrum amplitudes for the case of a
nearly complete Einstein ring observed with quality factor
Qobs = 106 and an HST-like PSF with a FWHM of 0.07
arcsecond. The top panel shows the marginalized confidence
intervals when the macro lens, source, foreground, and noise
parameters are either held fixed (dashed black) or allowed to
vary freely in the MCMC chains (magenta). The dark (light)
contours show the 68% (95%) confidence intervals. The solid
blue lines show the average values of the substructure power
spectrum used to generate the mock image within each bin.
The inset shows the mock image configuration used in the
analysis. The lower panel shows the corresponding error bars
in the substructure power spectrum space. The blue solid line
shows the substructure power spectrum (corresponding to the
truncated NFW model shown in Fig. 1) used to generate the
mock image. The two-sided error bars show the 68% highest
posterior density intervals, and the green rectangles show the
sample contribution to the error bars within each bin.
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lensed images). To determine how much the macro-
model, source, noise, and foregrounds can somewhat re-
absorb the effects of the substructure, we also run MCMC
chains that keep the parameters of these latter compo-
nents fixed to their true values. For each mock image and
case considered, we use twice as many emcee walkers as
the number of free parameters in the computation. As
illustrative examples, we perform the substructure power
spectrum inference for the two lens configurations used
for the Fisher forecast shown in Fig. 7: the nearly com-
plete Einstein ring, and the two partial lensed arcs, each
observed with a quality factor of Qobs = 106 and an HST-
like PSF with FWHM = 0.07 arcsec.

The resulting posterior distribution summary for the
case of the nearly complete Einstein ring is shown in
Fig. 8. The top panel shows the marginalized confidence
intervals of the substructure power spectrum for the three
wavenumber bins. The black lines and contours denote
the confidence intervals when the macrolens, source, fore-
ground, and noise parameters are held fixed at their true
values, while the magenta contours and lines show the in-
tervals when all parameters all allowed to freely vary. The
solid blue lines denote the average values of the substruc-
ture convergence power spectrum within each wavenum-
ber bin of the model used to generate the mock images.
The lower panel shows the resulting 68% highest pos-
terior density (HPD) intervals for each bin, on top of
the truncated NFW power spectrum used to general the
mock data. The green rectangles illustrate the contribu-
tion from sample variance within each bin.

We first note that even in the case of a fixed macro
lens, source, and foregrounds (black contours), there are
fluctuations of the highest posterior values with respect
to the true input values, with the scatter being larger at
low wavenumbers. This is expected given that we are
looking at a single realization of the substructure conver-
gence field. The relatively small number of substructure
modes within the lower wavenumber bins gives rises to a
significant lens-to-lens variation on the inferred value of
the power spectrum at larger scales. However, our test
shows that averaging over a sufficient number of sub-
structure realizations leads to an unbiased estimate of
the substructure power spectrum amplitude within each
bin. Of course, while this is easy to do for mock data, per-
forming this average over substructure realizations with
real data will require carefully combining the measure-
ments from different lens systems, taking into account
how their respective substructure population depends on
the lens galaxy’s properties.

We see in Fig. 8 that even after the macro lens, source,
and foregrounds are allowed to reabsorb some of the sur-
face brightness features caused by the substructure, the
mock data still retain significant sensitivity to the under-
lying convergence power spectrum. To some extent, the
results shown here are still somewhat optimistic since the
model used to fit the data is the same as the model used
to generate the mock data. Nevertheless, it is encourag-
ing that the inferred confidence regions on the substruc-
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FIG. 9. Similar to Fig. 8 but for a different lens configuration
made of two partial lensed arcs (see inset in top panel). In the
lower panel, the black diamond error bars show the highest
posterior density (HPD) intervals for Qobs = 106 while keep-
ing the macro lens, source, foreground, and noise parameters
fixed. The magenta square error bars show the HPD intervals
for Qobs = 106 allowing all macro lens, source, foreground,
and noise parameters to vary within the MCMC chains. The
one-sided error bars show the 95% HDP upper limits.

ture convergence power spectrum do not change dramati-
cally in size once the possible degeneracies with the macro
lens, source, and foregrounds are fully taken into account.
The highest posterior values of the binned power spec-
trum amplitudes do shift with respect to the true input
values, implying that the macro lens, source, and fore-
grounds are absorbing some of the substructure effects.
This reabsorption is more important on the larger scales
(low wavenumber) where it is easier for these components
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to compensate for small surface brightness fluctuations
caused by the substructure. In any case, the resulting
biases are on the binned power spectrum amplitude are
modest, and the true input values are recovered within
the 95% confidence intervals. Overall, we observe little
covariances among the different binned power spectrum
amplitudes, in agreement with our Fisher estimates pre-
sented in Sec. VI B.

Figure 9 shows the corresponding posterior summary
for the case of the partial lensed arcs. Much of the same
discussion as above applies here except that in this case,
the macro lens, source, and foregrounds can reabsorb a
significant fraction of the substructure effect within the
lowest wavenumber bin. This is caused by the less redun-
dant nature of this lens configuration (which essentially
shows two distinct images of the extended source) as com-
pared to the Einstein ring, which makes it more difficult
to break the degeneracy between the macro lens, source,
and foregrounds on the one hand, and the effects of the
substructure on the other.

VIII. GENERALIZATION TO COMPACT
TIME-DEPENDENT SOURCES

We now turn our attention to time-dependent compact
(unresolved) sources, such as quasars, and consider how
they can be used to probe the substructure within lens
galaxies. As outlined in Sec. III C, the first-order pertur-
bative approach used to compute the lensing residuals
for extended sources fails in the case of compact sources
since the surface brightness gradient of such object can
become very large, hence leading to large second-order
corrections to the lensing residuals. A different approach
is thus required to treat these compact sources, which we
summarize here.

A. Lensing of time-dependent compact sources

We assume that the compact source admits the follow-
ing structure in the source plane

Sλ(u, ts) = sλ(ts)δ(u− uc), (73)

where sλ(ts) is the luminosity of the compact source at
source-plane time ts and wavelength λ/(1+zsrc), and uc is
the position of the compact source. If the compact source
is not exactly point-like, the delta function in Eq. (73)
could be replaced with the actual source profile, with only
minor modifications to the remainder of the calculation.
We can substitute the above into Eq. (12) to obtain the
model for the lensed compact source

Ôλ(x, t) =

∫
dyWλ(x− y, t)sλ (t− τ(y))

× δ (y −∇φlens(y)− uc) . (74)

We recognize the argument of the Dirac delta function as
the lens equation for the compact source, which allows
us to immediately write

δ
(
y − ~∇φlens(y)− uc

)
=

Nimg∑
j=1

µjδ(y − yj), (75)

where yj and µj = |det M(yj)| are the location and the
magnification of the jth image, respectively. Using the
delta functions to perform the y integration in Eq. (74),
our model for the lensed image of the time-dependent
compact source takes the form

Ôλ(x, t) =

Nimg∑
j=1

µj sλ (t− τ(yj)) Wλ(x− yj , t). (76)

The substructure potential φsub enters Eq. (76) through
the magnification µj , the image position yj , and the ar-
rival time τ(yj). In order to write down an explicit ex-
pression for Eq. (76), one would need to solve the full lens

equation y− ~∇φlens(y)− uc = 0 to determine the image
positions for every possible choice of source position uc.
This is a daunting task since the solution depends non
linearly on the substructure potential φsub, whose statis-
tics we are trying to probe in the first place.

Our strategy to handle this difficulty is to treat
the quantities {µj ,yj ,∆tj1 ≡ τ(y1)− τ(yj)} as free nui-
sance parameters whose values are entirely driven by the
data and an appropriate choice of priors. As we discuss
below, the impact of the substructure on the image posi-
tions and arrival time delays can be exactly captured by
a series of constraint equations. It is important to note,
however, that the impact of the substructure on the mag-
nification of point images is often obscured by the pres-
ence of stellar microlensing and dust absorption. While
magnification information of point images has been used
in the literature to constrain the presence of substructure
within lens galaxies, we adopt here a conservative point-
of-view and treat the µjs as free parameters independent
of φsub.

The remaining ingredient entering Eq. (76) is the time
dependence of the source sλ(ts). Here, we choose to
characterize the source variability as a Gaussian process.
Within this framework, the source function sλ (t− τ(yj))
is explicitly written in terms of a fluctuation vector
δsλ =

{
{sλ,j(tk)− ŝλ}j=1...Nimg

}
k=1...Nλobs

describing the

brightness of the source at each observation time tk and
for each lensed image. Here, ŝλ is the time-averaged com-
pact source luminosity. Essentially, δsλ contains the fluc-
tuation light curve for each observed lensed image of the
compact source. This vector is drawn from a Gaussian
distribution given by

Psrc(δsλ) =
1√

(2π)Ns |Csrc|
e−

1
2 δs

T
λ C−1

src δsλ , (77)

where Ns is the total number of elements in the vector
δsλ, which is Ns = Nimg × Nλ

obs because we reconstruct
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the source flux from every image at every epoch. The
exact structure of the covariance matrix Csrc depends on
the type of Gaussian process used to describe the vari-
ability of the compact source. A few possible choices
have been considered in the literature [122–126] including
the damped random walk, the powered exponential, and
the Matérn covariance function. Our substructure anal-
ysis derived in the following sections is general enough
to accommodate any choice of covariance function. We
note that in general the covariance matrix Csrc itself de-
pends on the values of the time delays between images.
Taking into account the conversion to counts within pix-
els (Eq. (13)), our model for the residuals of the lensed
images of a time-dependent compact source observed at
time tk is thus

δOλ(x, tk) =
ApixTexp

S(λ)
inv

Nimg∑
j=1

µj δsλ,j(tk)Wλ(x− yj , tk),

(78)

where δsλ,j(tk) ≡ sλ,j(tk)− ŝλ.

B. Constraint equations for compact sources

As discussed in the previous section, the time-
dependent source introduces nuisance parameters corre-
sponding to the usual “reduced observables” (image po-
sition, magnification, and relative time delay) that are
often used to characterize lensed images of quasars. The
key point here is that these nuisance parameters depend
on the substructure coefficients Al through the lens equa-
tion. This leads to additional constraints on the relative
amplitudes of the different substructure modes. To see
this, we start by writing the lens equation for the com-
pact source in the presence of mass substructures

uc = yj −∇φ0(yj)−
Nmodes∑
l=1

Al∇ϕl(yj), (79)

where yj is the position of the jth image. We can use the
j = 1 image to eliminate the source position in Eq. (79)
in order to obtain 2(Nimg − 1) constraint equations for
the Al coefficients{

Nmodes∑
l=1

Al [∇ϕl(yj)−∇ϕl(y1)] (80)

= yj − y1 +∇φ0(y1)−∇φ0(yj)

}
j=2,...,Nimg

.

An additional set of constraint equations can be obtained
by looking at the arrival time delay. Using Eq. (7), the

arrival time delay for the jth image is

τj = t0

[
1

2
|yj − uc|2 − φ0(yj)−

Nmodes∑
l=1

Al ϕl(yj)
]

(81)

= t0

[
1

2

(
|uc|2 − |yj |2

)
−Dφ0(yj)

−
Nmodes∑
l=1

AlDϕl(yj)
]
,

where we have defined the projection operator

D ≡ 1− y · ∇, (82)

and where we have used Eq. (79) to eliminate the term uc·
yj in going from the first to the second line. We note that
the operator D effectively ensures that only the gauge
invariant part of the projected potential contributes to
the arrival time delay11. As before, we can use the j = 1
image to eliminate the source position from Eq. (81) in
order to obtain Nimg − 1 additional constraints on the
amplitudes Al{

Nmodes∑
l=1

AlD [ϕl(yj)− ϕl(y1)] =
1

2

(
|y1|2 − |yj |2

)
(83)

+Dφ0(y1)−Dφ0(yj)−
∆t1j
t0

}
j=2,...,Nimg

.

For each choice of nuisance parameters{
y1, {yj ,∆t1j}j=2,...,Nimg

}
describing the images of

the compact source, Eqs. (80) and (83) form 3(Nimg− 1)
linear equations for Nmodes unknown amplitudes Al.
Schematically, this system takes the form

L a = b, (84)

where again a = {Al}, and where the structure of the ma-
trix L and vector b can be read off Eqs. (80) and (83). It
is important to emphasize that the constraints enforced
by Eq. (84) are exact and do not necessitate a perturba-
tive expansion in the small substructure potential φsub.
Essentially, the presence of a compact time-dependent
source restricts the values of the {Al} coefficients to lie
on a hyperplane in the parameter space. In general the
number of constraints is much smaller than the number
of measurable modes and the matrix L is therefore not
invertible. In the following, we enforce this constraint by
multiplying the likelihood by a Gaussian factor

Pc(a|b) ∝ e−
1
2 (L a−b)†Σ−1(L a−b)√

|Σ|
, (85)

and taking the limit Σ→ 0 at the end of the calculation.
Conveniently, this also allows us to relax the constraints
by taking Σ→∞.

11 Indeed, the term Dφ is invariant under the gauge transformation
φ→ φ+ c · x, where c is a constant vector.
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C. Likelihood

Having established the structure of these constraints,
we can now write down the joint likelihood for the pa-
rameters q, qsub, and the nuisance parameters pQ ≡{
{µj ,yj ,∆t1j}j=1,...,Nimg

}
describing the properties of

the lensed images of the compact source. As in Sec. IV B,
it is useful to use a matrix and vector notation to sim-
plify the derivation of the likelihood. We denote the
data vector as δOobs, which we take to contain the im-
age residuals for all pixels from the Nobs observations.
It thus has a total length of Nd ≡ Npix × Nobs. As
before, the image residuals caused by substructure are
denoted as δOsub = WE a, but where the WE ma-
trix now has dimensions of Nd × Nmodes. The contri-
bution from the lensed compact source is denoted as
δOC = WC δs, where δs is the compact source vector
defined in Sec. VIII A of length Ns = Nimg × Nobs, and
WC is a matrix of size Nd × Ns which maps s to the
observable space as given in Eq. (78).

With these definitions, our model for the observed im-
age residuals takes the form

δOobs = WE a + WC δs + N, (86)

where N is a noise vector of length Nd. As before, we
are mainly interested in high signal-to-noise observations
and we thus take the noise to have Gaussian statistical
properties specified by

〈NN〉N = CN , (87)

where CN is now the Nd×Nd total noise covariance ma-
trix for all observations. Since we expect the noise from
different observations to be uncorrelated, the CN ma-
trix will generally have a block diagonal structure. The
likelihood then takes the form

L ∝
∫
dada† dδsPc(a|b)Psub(a)Psrc(δs) (88)

× e−
1
2 (δOobs−WEa−WCδs)†C−1

N (δOobs−WEa−WCδs)√
|CN ||Csrc||Csub||Σ|

,

where we have explicitly written down the marginaliza-
tion over the substructure amplitudes specified by the
vector a, the source light curve fluctuations δs. The con-
straints from Eq. (84) are implemented using the Pc fac-
tor. Using the expressions for Psrc(δs) and Psub(a|qsub)
given in Eqs. (77) and (34), respectively, and defining the
vectors

v =

[
a
δs

]
, d =

[
δOobs

b

]
, (89)

and the block matrices

C−1
s =

[
C−1

sub 0
0 C−1

src

]
, (90)

A =

[
C−1
N 0
0 Σ−1

]
, B =

[
WE WC

L 0

]
, (91)

we can write the likelihood as

L ∝
∫
dvdv†× (92)

e
− 1

2

[
d† v†

] A −AB
−B†A C−1

s + B†AB

[
d
v

]
√
|CN ||Csub||Csrc||Σ|

.

Using standard partial Gaussian integration, the
marginalization over the v and v† vectors can be per-
formed to yield

L ∝ e−
1
2d†M−1d√
|M|

, (93)

where

M ≡
(
A−AB(C−1

s + B†AB)−1B†A
)−1

= A−1 + BCsB
†, (94)

where we have used the Woodbury matrix identity in
the last line. Since only Σ (and not its inverse) appears
within the covariance matrix M determining the likeli-
hood given in Eq. (93), it is well-defined to take the limit
Σ → 0 to enforce the constraints from the image po-
sitions and time delays of the compact time-dependent
source.

Equation (93) is the likelihood written in the “pixel”
basis. As explained in Sec. IV B, it is often computation-
ally advantageous to first perform the projection into the
basis formed by the modes of the substructure deflection
field since it reduces the dimensions of the matrices that
need to be inverted. In this “mode” basis, the likelihood
takes the form (after taking the limit Σ→ 0)

L ∝ e−
1
2 (χ̃2−w†U−1w+(b−ω)†Υ−1(b−ω))√
|CN ||Csub||Csrc||U||Υ|

, (95)

where

U =

[
D̃ K
K† F

]
, w =

[
g̃
h

]
, (96)

and where χ̃2, g̃, and D̃ are defined in Eqs. (49) and (50).
The other quantities appearing in Eq. (95) are

F = C−1
src + W†

C C−1
N WC, (97)

K = W†
E C−1

N WC, (98)

h = W†
C C−1

N δOobs, (99)

and

ω = LS−1g̃ and Υ = LS−1L†, (100)

where S is the Schur complement of the matrix F

S = D̃−K F K†. (101)
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The likelihood given in Eq. (95) has a similar structure
as that occurring for an extended source only (Eq. (48))
except for the term in the exponent proportional to Υ−1

which encodes the constraints from the compact source.
Both ω and Υ have sizes determined by the number of
linear compact source constraints, which for an Nimg lens
will be at most 3(Nimg − 1), a small number indeed.

D. Compact sources and power spectrum
sensitivity

We wrap up this section by considering how the linear
constraints imposed by the presence of a compact source
can improve the constraints on the substructure conver-
gence power spectrum. For this purpose, it is useful to
isolate the part of the covariance matrix M that depends
on Csub by writing it as

M = M0 + QCsubQ†, (102)

where

M0 =

[
CN+WCCsrcW

†
C 0

0 Σ

]
, Q =

[
WE

L

]
. (103)

Interestingly, we observe that the intrinsic variability of
the compact source encoded in Csrc essentially acts as an
additional source of noise for the pixels where its images
form. On the other hand, the constraints on the modes of
the substructure deflection field encoded in the projection
operator L only appears in the second term of Eq. (102).
Given the Gaussian structure of the likelihood given in
Eq. (93), the Fisher matrix for the binned logarithmic
amplitude of the substructure power spectrum takes the
form

Fij =
1

2
Tr

[
M−1 ∂M

∂ lnPsub,i
M−1 ∂M

∂ lnPsub,j

]
=

1

2
Tr

[
Q†M−1Q

∂Csub

∂ lnPsub,i
Q†M−1Q

∂Csub

∂ lnPsub,j

]
=
Psub,iPsub,j

2
Tr

[
Γ
∂Csub

∂Psub,i
Γ
∂Csub

∂Psub,j

]
, (104)

where

Γ =
[(

Q†M−1
0 Q

)−1
+ Csub

]−1

. (105)

We first note that Eq. (105) exactly reduces to Eq. (64)
in the limit where the source has no compact component
(Csrc → 0 and Σ→∞).

In the remainder of this section, we will focus our at-
tention on the case where a compact source is present,
but where we have only a single deep observations of the
lens, which corresponds to the limit Csrc → 0 and Σ→ 0.
In that case, the Γ matrix takes the form

Γ =
[
G̃−1 + Csub − G̃−1L†(LG̃−1L†)−1LG̃−1

]−1

.

(106)

The two first terms in the square brackets are the same as
in the purely extended source case, while the third term
encodes the constraints from the presence of the compact
source.

We compare in Fig. 10 the Fisher forecasts on the
binned substructure power spectrum amplitudes with
and without the additional constraints encoded in the L
operator, for the case of a single deep observation of a lens
(i.e. no time delay constraints). We assume a cusp-like
lens configuration where 4 images of the lensed quasars
are present in addition to a partial Einstein ring (as il-
lustrated in the insets of Fig. 10). These highly-idealized
forecasts keep the structure of the source, foregrounds,
the macrolens and its environment fixed to their true
values. As such, they should be cautiously interpreted
as a best-case scenario for the additional sensitivity that
lensed images of compact sources can bring to the sub-
structure power spectrum measurements, in the absence
of time delay measurements.

The left panel displays the Fisher forecast comparison
for a high-resolution image (FWHM = 0.07 arcsec) where
we observe that the added quasar constraints do not sig-
nificantly modify the constraints, except in the highest
wavenumber bin where the improvement is modest. The
right panel shows the Fisher forecast comparison for a
seeing-limited deep observation (FWHM = 0.5 arcsec) of
the same lens. In this case, it is assumed that we have an
independent measurement of the quasar image positions
(from, e.g., a shallow HST observation) since the low res-
olution nature of the image used for the power spectrum
analysis likely precludes such a measurement. The im-
provement to the binned power spectrum constraints are
slightly more significant in this case, with the largest gain
in the two highest wavenumber bins. This reflects the
fact that lensed images of compact sources are more sen-
sitive to smaller-scale perturbations than the extended
image studied in the rest of the paper.

In general, the presence of a compact source can im-
prove the bounds on the substructure convergence power
spectrum at large wavenumbers. The small relative
number of constraints arising from a typical four-image
quasar lens (6 from image positions, with 3 additional
constraints possible if time delays are known) compared
to the total number of distinct substructure modes that
can be probed (usually several hundreds) implies that
the gain in sensitivity is modest. Nevertheless, adding
the constraints from the quasar images could help break
potential degeneracies between the macro lens and the
effects of the substructure, so a further investigation is
required to determine their full impact. Also, for lenses
with no extended source component, precise time delays

Here, we have treated the magnifications of the ob-
served compact source images as free parameters. If mi-
crolensing or dust extinction (if relevant) could be prop-
erly understood and modeled, the substructure informa-
tion contained in the brightness of the quasar images
could also be harnessed by multiplying the likelihood
given in Eq. (93) by an extra (nonGaussian) function
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FIG. 10. Fisher forecast comparison for the binned substructure convergence power spectrum with and without the additional
constraints from having a quadruply-imaged lensed quasar within the image. Here, we use 4 wavenumber bins in the range
0.4 kpc−1 ≤ k ≤ 13.2 kpc−1, and only use the 6 constraints from the quasar image positions (no time delay constraints). We
adopt the truncated NFW substructure power spectrum shown in Fig. 1 as our fiducial model. The left panel shows the
comparison for a high-resolution image (FWHM = 0.07 arcsec) with an observational quality factor of Qobs = 5 × 104. The
right panel shows the Fisher forecast comparison for seeing-limited (FWHM = 0.5 arcsec) observations with a quality factor of
Qobs = 4× 105. The lensed image configuration used in each case are shown in the insets.

describing the impact of substructure on the µj parame-
ters. Given the highly nonlinear nature of the magnifica-
tion perturbations caused by substructure [109], deriving
such a function likely requires extensive forward simula-
tions [65, 67, 75].

IX. CONCLUSIONS

In this paper, we have derived a mode function-based
approach to extract statistical information about the pro-
jected substructure density field in proximity to strongly
lensed images of high redshift sources. Focusing on two-
point statistics, we have derived a likelihood for the
substructure convergence power spectrum, given pixe-
lated images of gravitationally-lensed extended sources.
We have implemented this likelihood within the software
package PkLens and have performed simple Fisher fore-
casts to assess the sensitivity of different observational
scenarios. Using simple lens, source, foreground mod-
els, we have explored the possible degeneracies these lat-
ter components and the collective effect of the substruc-
ture. We have finally generalized our power spectrum
likelihood to take into account the presence of compact
time-dependent lensed sources such as quasars within the
observed images.

Not too surprisingly, our results indicate that deep
high-resolution images provide the best sensitivity to the
substructure power spectrum, up to scales approximately
corresponding to the smallest observable feature of the
background source. At fixed image resolution and pix-
elization, lenses with larger Einstein radii or displaying
a larger fraction of a complete Einstein ring provide bet-
ter sensitivity to the collective effect of the substructure.
We generally find that substructure perturbations with
smaller wavenumbers are more likely to be reabsorbed by
changes in the macro lens and source models, compared
to those with larger wavenumbers. This can bias low the
inferred amplitude of the substructure power spectrum
on these scales. We leave to future work a detailed study
of this potential bias and of possible techniques to ad-
dress it. Finally, we find that for lenses containing both
extended images and multiply-imaged quasars (such as
RX J1131-1231 [127]), the extra constraints provided by
the quasar image positions provide a modest improve-
ment on the substructure power spectrum constraints,
with most of the gain in sensitivity being concentrated
at the smallest scales. While we have not considered the
additional constraints coming from the relative time de-
lays [128], it is likely that they could provide a slight im-
provement to the substructure sensitivity as compared to
those shown here, while at the same time helping break
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some degeneracies in the lens modeling.

Since one of the goals of this paper was to develop
intuition about the different factors influencing the sen-
sitivity to the substructure power spectrum, and not to
perform detailed lens modeling (see e.g. Ref. [129]), we
have focused here on simple parametric lens and source
models. The next step is to embed the numerical infras-
tructure developed here within a lens modeling frame-
work that allows for more flexible source and foreground
structures (see e.g. Refs. [130–132]), as well as dynamical
PSF reconstruction. Given that the deflections caused
by the substructure couple primarily to the gradient of
the source, it could be argued that the forecasts based on
simple sources presented here are conservative since more
complex sources are likely to display enhanced sensitivity
to substructure due to their greater spatial variability. It
is however possible that this improvement is somewhat
offset by the larger number of parameters needed to ac-
curately described the source. We study this tradeoff
between source complexity and substructure constraints
in an upcoming publication, in which we apply our for-
malism to actual observational data.

In this work, we have used a binned substructure power
spectrum as our fitting model, but the framework we de-
veloped here (see Eq. (36)) is completely general and can
easily accommodate parametric models of Psub(k) such
as a power laws [102], as well as anisotropic power spec-
tra. While we have used the substructure power spec-
trum for a population of truncated NFW subhalos [98]
within the main lens as our fiducial model throughout
this manuscript, we note that our derived likelihood is
sensitive to the overall collective effect of the substruc-
ture between the lensed source and the observer, includ-
ing line-of-sight structures either in front or behind the
main lens, and baryonic structures such as globular clus-
ters and giant molecular clouds. In order to eventually
extract constraints on dark matter physics from substruc-
ture power spectrum measurements, robust predictions
about the contribution from these latter objects to the
power spectrum would have to be computed. Similarly,
a more thorough study of the impact of nonGaussian-
ities on the inferred power spectrum would have to be
performed.

Eventually, deriving robust constraints on the Uni-
verse’s small-scale structure from lensing power spectrum
measurements will require combining the results from
multiple lens systems. This will require a detailed study
of how the inferred substructure power spectrum (includ-
ing the line-of-sight contribution) depends on the proper-
ties (redshift, mass, concentration, environment, etc.) of
the lens galaxy (see e.g. Ref. [133]). Alternatively, given
the large number of gravitational lenses that will become
known in the next decade [134], one could imagine build-
ing carefully selected samples that share similar proper-
ties and should thus have comparable substructure pop-
ulations. Combining lens systems will allow the reduc-
tion of sample variance uncertainties on the substructure
power spectrum at larger scales and, ultimately, provide

a key test of the cold dark matter paradigm.
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Appendix A: Creating a random realization with a
given power spectrum

To create a realization of the convergence field with
a given power spectrum, we first generate a map where
each pixel is drawn from a standard normal distribution,
that is,

〈κijκkl〉 = δikδjl, 〈κij〉 = 0, (A1)

where κij is the value of the convergence at the pixel with
indices ij, with the first index referring to the x-axis and
the second referring to the y-axis. We note that this is a
white noise map. The discrete Fourier transform of κkl
is given by

κ̃mn = Apix

Nx−1∑
k=0

Ny−1∑
l=0

κkle
−2πi kmNx e

−2πi l nNy , (A2)

where Apix is the area of one pixel, Nx is the number of
pixels along the x-axis, and Ny is the number of pixels
along the y-axis. The power spectrum of κ̃mn is given by

〈κ̃∗mnκ̃m′n′〉 = A2
pix

Nx−1∑
k=0

Ny−1∑
l=0

Nx−1∑
k′=0

Ny−1∑
l′=0

〈κklκk′l′〉

× e2πi kmNx e
2πi l nNy e−2πi k

′m′
Nx e

−2πi l
′ n′
Ny

= A2
pix

Nx−1∑
k=0

Ny−1∑
l=0

e2πi
k (m−m′)

Nx e
2πi

l (n−n′)
Ny

= A2
pixNxNyδmm′δnn′ , (A3)



25

where we used Eq. (A1) and the definition of the Kro-
necker delta in terms of Fourier series. Now, remember
that we want to create a map of a convergence field with

an input monopole power spectrum P
(0)
sub(k). The discrete

Fourier transform of such a convergence field is given by

〈|κ̃sub
mn|2〉 = ApixNxNyP

(0)
sub(kmn). (A4)

Thus, to convert from the white noise Fourier variables
to the desired substructure κ̃sub

mn Fourier mode, we write

κ̃sub
mn =

√
P

(0)
sub(kmn)

Apix
κ̃mn. (A5)

Note that Psub has units of area so the ratio

P
(0)
sub(kmn)/Apix is dimensionless. Finally, to compute the

actual convergence map, we perform the inverse discrete
Fourier transform

κsub
kl =

1

NxNyApix

Nx−1∑
m=0

Ny−1∑
n=0

κ̃sub
mne

2πimk
Nx e

2πi n lNy , (A6)

where we note that the factor NxNyApix is nothing more
than the area of the whole region where we are computing
the convergence field. The substructure deflection field
is generated in Fourier space as

α̃sub(k) =

(
2ikxκ̃sub(k)

k2
,

2ikyκ̃sub(k)

k2

)
. (A7)

An inverse discrete Fourier transform similar to Eq. (A6)
is then performed to create the configuration space de-
flection field used to create the lensed image.

Appendix B: Image Simulation

We explain here how we generate mock lensed images
that are perturbed by a random realization of a substruc-
ture deflection field. Our procedure to generate a random
realization of a substructure convergence and deflection
field from a given input power spectrum is reviewed in
Appendix A. To avoid periodicity effects due to the use
of numerical Fast Fourier Transform (FFT), we gener-
ate a substructure deflection field spanning an area sev-
eral times larger than the strong lensing region where we
have sensitivity to substructures. Our actual mock im-
ages are generated by combining a model image gotten
by applying Eq. (13) with a realistic noise realization.
We summarize below the different ingredients entering
our simulated images.

• Macro lens: We take the macro lens to consist
of an isothermal ellipsoidal mass distribution. This
model has 5 free parameters: the (x, y) lens po-
sition, the Einstein radius, the ellipticity, and the
direction of the latter in the plane of the sky.

• Lens environment: We model the lens environ-
ment as an external shear (2 parameters).

• Source: The source is taken to be an elliptical
Sérsic profile, which is described by 6 parameters:
the 2D source position, the source flux, its half-light
radius, the source ellipticity, and the angle of the
semi-major axis in the plane of the sky.

• Foregrounds: We take the light from the lens
galaxy to also be given by an elliptical n = 4 Sérsic
profile (6 parameters). We allow for a possible off-
set between the centroid of the lens light and that
of its mass model (see e.g. Ref. [142]). We also
add a uniform sky background (1 parameter) to
take into account zodiacal light, Earth shine, etc.
Unless otherwise mentioned, we take the sky back-
ground surface brightness to be Lsky = 4.5× 10−18

erg/cm2/Å/s/arcsec2.

• Point Spread Function (PSF): In most cases,
we convolve our images with actual Hubble Space
Telescope PSFs12 as measured by the UVIS detec-
tor of the Wide Field Camera 3 (WFC3) using the
F555W filter. However, to generate ground-based
seeing-limited observations, we adopt a simple Mof-
fat profile with power law index 2 whose FWHM is
a free parameter. PSF convolution is handled with
standard FFT techniques.

• Noise: We assume uncorrelated noise across the
pixel array, and adopt the following model for the
noise within each pixel

CNλ,ij = δij
(
σ2

0 + σ1Oλ(xi) + s(xi)
)
, (B1)

where the first term describes a constant noise con-
tribution (1 parameter) across each pixel (such as
readout noise), the second term (1 parameter) is
proportional to the observed count in each pixel
and mimic Poisson (shot) noise, while the last term
is introduced to take into account bad pixels or cos-
mic rays, and can be used to mask certain pixels by
giving them large uncertainties. For simplicity, we
set s(xi) = 0 here. When generating a mock im-
age, we draw a random zero-mean Gaussian noise
realization whose variance is given by Eq. (B1) and
add it to the image. Here, we conservatively take
σ0 = 1 count/pixel, which is significantly larger
than the read noise of the UVIS detector of WFC3,
and take σ1 = 1, which makes the second term of
Eq. (B1) be exactly Poissonian.

• Pixelization: Throughout this work, we consider
images of size 4′′ × 4′′, which is large enough to
capture the relevant features of most galaxy-scale
lenses. We restrict ourselves to images with 50 ×
50 pixels, which ensures that the likelihood from
Eq. (40) can be evaluated in a few seconds on a

12 See http://www.stsci.edu/hst/wfc3/analysis/PSF.

http://www.stsci.edu/hst/wfc3/analysis/PSF
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FIG. 11. Posterior distributions for the amplitude Psub,1

of the substructure convergence power spectrum within the
wavenumber range 0.4 kpc−1 ≤ k ≤ 5.5 kpc−1. The mock
lensed images used in this analysis (similar in configuration
to that shown in Fig. 2 with an HST-like PSF) do not con-
tain substructure perturbations, and the resulting posterior
distributions, which are consistent with a vanishing power
spectrum amplitude, provide an important null test of our in-
ference framework. The three different curves display differ-
ent of the quality factor Qobs, with the upper bound on the
substructure power spectrum amplitude getting more strin-
gent for the deeper images, as expected.

modest computer. This implies a linear pixel size
of 0.08′′, which is about twice the pixel size of the
UVIS detector of WFC3. When computing a model
image using Eq. (13), we use 64 light rays per pixel
to estimate the photon count within each pixel. We
have checked that this number is large enough to
ensure that the photon count within the pixels is
converged to better than 0.1%.

Throughout the simulated images used in this work, we
use the quantity Qobs defined in Eq. (67) to characterize
the quality of the mock observations. As an example, for
the UVIS detector of WFC3 with the F555W filter on
(for which S(λi)

inv = 1.8 × 10−19 erg/cm2/Å/count)13, we
obtain Qobs = 4.4×105 for a combination of 10 45-minute
exposures of an unlensed source of AB magnitude 23.

13 See the technical document http://www.stsci.edu/hst/wfc3/

documents/ISRs/WFC3-2017-14.pdf.
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FIG. 12. Posterior distribution for the noise parameters given
in Eq. (B1) and the amplitude of the substructure convergence
power spectrum. The black and gray regions represent the
68% and 95% confidence regions, respectively. The dashed
vertical lines shown in the one-dimensional posteriors shown
along the diagonal correspond to the 16%, 50%, and 84%
quartiles. The solid red lines and squares represent the true
values used to generate the mock data. Here, the fiducial
data is generated assuming the point-mass substructure power
spectrum shown in Fig. 1, with an image configuration similar
to that shown in Fig. 2 with a quality factor Qobs = 2.7× 105

and an HST-like PSF.

Appendix C: Null test and degeneracy with noise
parameters

To test the sensitivity of gravitationally lensed ex-
tended sources to the substructure convergence power
spectrum, we feed mock images generated using the pro-
cedure outlined in the Appendix B to the likelihood
given in Eq. (48) and generate Markov Chain Monte
Carlo (MCMC) samples from the posterior using affine-
invariant sampler emcee [121]. We adopt broad uniform
priors for all macro lens, source, and foreground param-
eters, except for the surface brightness parameters for
which log-uniform priors are taken. The constant noise
contribution σ0 also receives a log-uniform prior while we
adopt a uniform prior on σ1. This latter choice has very
little impact on our results since the posterior for σ1 is
generally very sharply peaked around unity (consistent
with Poisson noise).

As in the case of our Fisher analysis, we adopt the
logarithm of the binned substructure convergence power
spectrum amplitudes as our fitting model, and divide the
range of scales probed by a given lensed image into 1 to 4

http://www.stsci.edu/hst/wfc3/documents/ISRs/WFC3-2017-14.pdf
http://www.stsci.edu/hst/wfc3/documents/ISRs/WFC3-2017-14.pdf
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wavenumber bins that are evenly spaced in log10(k). We
adopt a broad log-uniform prior on the amplitude within
each bin, log10(Psub,i/arcsec2) ∈ [−11,−1].

We first test the validity of our framework by perform-
ing null tests in which we sample the likelihood given in
Eq. (48) for lensed images that have not been perturbed
by substructure. For simplicity, we take the substruc-
ture fitting model to consist of a single power spectrum
bin spanning the range 0.4 kpc−1 ≤ k ≤ 5.5 kpc−1. Us-
ing a lensed image configuration similar to that shown
in Fig. 2 and considering three different values of the
quality factor Qobs, we obtain the posterior distributions
shown in Fig. 11 for the convergence power spectrum am-
plitude Psub,1 within that single bin. These posterior dis-
tributions are all consistent with a vanishing amplitude of
the substructure perturbations, with the upper limits on
the power spectrum amplitude improving for images with
higher Qobs, as should be expected. This indicates that
our formalism does not appear to interpret random noise
features as spurious substructure within the lens galaxy.
While this result is not surprising given the idealized na-
ture of our mock images, it does provide an important
consistency check that our numerical implementation of
the likelihood given in Eq. (48) is sound.

We then turn our attention to the potential degeneracy
between image noise and the amplitude of the substruc-
ture power spectrum. For simplicity, we consider here
mock lenses that are perturbed by a random realization
of point-mass substructures with a power spectrum given
by the dashed black line of Fig. 1. While the point-mass
power spectrum is likely unrealistic, it has the advantage

and being described by a single parameter: its ampli-
tude. We show the joint posterior distribution for the
noise parameters and the amplitude of the substructure
power spectrum (denoted Psub,1 here) in Fig. 12. To per-
form the inference, we use all Fourier modes spanning
the range 0.4 kpc−1 ≤ k ≤ 5.5 kpc−1 (for a total of 180
independent Fourier modes14).

We observe no degeneracy between the substructure
power spectrum amplitude and the noise parameters, and
note that we successfully recover the true amplitude of
the input power spectrum (solid red line) to within less
than one standard deviation. The marginalized posterior
for the parameter log10(σ0) is quite broad and extends
to significantly larger (and lower) values than that used
to generate the mock image. This is a consequence of
the Poisson term (that proportional to σ1 in Eq. (B1))
dominating the noise budget in the mock image. Only
when the contribution from σ2

0 becomes comparable in
magnitude to σ1Oλ can the mock data start displaying
sensitivity to σ0, explaining the long flat tail of the pos-
terior at low values of this noise parameter.

These findings are broadly consistent with those of
Ref. [96] which found no degeneracy between uncorre-
lated image noise and the substructure power spectrum
amplitude. Again, this is a consequence of the highly
nonrandom structure of the image residuals caused by
substructure (Eq. (16)) which is not easily mimicked by
pure random noise. In a realistic image where adjacent
pixels may have correlated noise due, for example, to
drizzling, it is possible however for the noise structure to
be somewhat degenerate with the effect of the substruc-
ture.

[1] V. Springel, J. Wang, M. Vogelsberger, A. Ludlow,
A. Jenkins, et al., Mon. Not. R. Astron. Soc. 391, 1685
(2008), arXiv:0809.0898 [astro-ph].

[2] J. R. Bond and A. S. Szalay, Astrophys. J. 274, 443
(1983).

[3] P. Bode, J. P. Ostriker, and N. Turok, Astrophys. J.
556, 93 (2001), arXiv:astro-ph/0010389 [astro-ph].

[4] J. J. Dalcanton and C. J. Hogan, Astrophys. J. 561, 35
(2001), arXiv:astro-ph/0004381 [astro-ph].

[5] D. Boyanovsky, H. J. de Vega, and N. Sanchez, Phys.
Rev. D 78, 063546 (2008), 0807.0622.

[6] D. Boyanovsky and J. Wu, Phys. Rev. D 83, 043524
(2011), 1008.0992.

[7] E. D. Carlson, M. E. Machacek, and L. J. Hall, Astro-
phys. J. 398, 43 (1992).

[8] C. Boehm, A. Riazuelo, S. H. Hansen, and R. Scha-

14 Given the resolution of our mock images (0.08 arcsec pixel size),
we could technically extend this range to 0.4 kpc−1 ≤ k . 13.2
kpc−1. However, the small-scale modes with k > 5.5 kpc−1 are
noise dominated for our choice of exposure, and adding them
does not change the posterior shown in Fig. 12.

effer, Phys. Rev. D 66, 083505 (2002), arXiv:astro-
ph/0112522 [astro-ph].

[9] L. Ackerman, M. R. Buckley, S. M. Carroll, and
M. Kamionkowski, Phys. Rev. D 79, 023519 (2009),
arXiv:0810.5126 [hep-ph].

[10] J. L. Feng, M. Kaplinghat, H. Tu, and H.-B. Yu, JCAP
0907, 004 (2009), arXiv:0905.3039 [hep-ph].

[11] D. E. Kaplan, G. Z. Krnjaic, K. R. Rehermann, and
C. M. Wells, Journal of Cosmology and Astroparticle
Physics 1005, 021 (2010), arXiv:0909.0753 [hep-ph].

[12] L. G. van den Aarssen, T. Bringmann, and
C. Pfrommer, Phys. Rev. Lett. 109, 231301 (2012),
arXiv:1205.5809 [astro-ph.CO].

[13] F.-Y. Cyr-Racine and K. Sigurdson, Phys. Rev. D 87,
103515 (2013), 1209.5752.

[14] F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli, and
K. Sigurdson, Phys. Rev. D 89, 063517 (2014),
1310.3278.

[15] M. R. Buckley, J. Zavala, F.-Y. Cyr-Racine, K. Sigurd-
son, and M. Vogelsberger, Phys. Rev. D 90, 043524
(2014), arXiv:1405.2075.

[16] C. Bœhm, J. A. Schewtschenko, R. J. Wilkinson, C. M.
Baugh, and S. Pascoli, Mon. Not. R. Astron. Soc. 445,
L31 (2014), arXiv:1404.7012.

http://dx.doi.org/10.1111/j.1365-2966.2008.14066.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14066.x
http://arxiv.org/abs/0809.0898
http://dx.doi.org/10.1086/161460
http://dx.doi.org/10.1086/161460
http://dx.doi.org/10.1086/321541
http://dx.doi.org/10.1086/321541
http://arxiv.org/abs/astro-ph/0010389
http://dx.doi.org/10.1086/323207
http://dx.doi.org/10.1086/323207
http://arxiv.org/abs/astro-ph/0004381
http://arxiv.org/abs/0807.0622
http://arxiv.org/abs/0807.0622
http://arxiv.org/abs/0807.0622
http://arxiv.org/abs/1008.0992
http://arxiv.org/abs/1008.0992
http://arxiv.org/abs/1008.0992
http://dx.doi.org/10.1086/171833
http://dx.doi.org/10.1086/171833
http://dx.doi.org/10.1103/PhysRevD.66.083505
http://arxiv.org/abs/astro-ph/0112522
http://arxiv.org/abs/astro-ph/0112522
http://dx.doi.org/10.1103/PhysRevD.79.023519
http://arxiv.org/abs/0810.5126
http://dx.doi.org/ 10.1088/1475-7516/2009/07/004
http://dx.doi.org/ 10.1088/1475-7516/2009/07/004
http://arxiv.org/abs/0905.3039
http://dx.doi.org/10.1088/1475-7516/2010/05/021
http://dx.doi.org/10.1088/1475-7516/2010/05/021
http://arxiv.org/abs/0909.0753
http://dx.doi.org/10.1103/PhysRevLett.109.231301
http://arxiv.org/abs/1205.5809
http://arxiv.org/abs/1209.5752
http://arxiv.org/abs/1209.5752
http://arxiv.org/abs/1209.5752
http://arxiv.org/abs/1310.3278
http://arxiv.org/abs/1310.3278
http://dx.doi.org/10.1103/PhysRevD.90.043524
http://dx.doi.org/10.1103/PhysRevD.90.043524
http://arxiv.org/abs/1405.2075
http://dx.doi.org/10.1093/mnrasl/slu115
http://dx.doi.org/10.1093/mnrasl/slu115
http://arxiv.org/abs/1404.7012


28

[17] J. A. Schewtschenko, R. J. Wilkinson, C. M. Baugh,
C. Boehm, and S. Pascoli, Mon. Not. R. Astron. Soc.
449, 3587 (2015), arXiv:1412.4905 [astro-ph.CO].

[18] X. Chu and B. Dasgupta, Phys. Rev. Lett. 113, 161301
(2014), arXiv:1404.6127 [hep-ph].

[19] M. A. Buen-Abad, G. Marques-Tavares, and
M. Schmaltz, Phys. Rev. D92, 023531 (2015),
arXiv:1505.03542 [hep-ph].

[20] F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bring-
mann, M. Vogelsberger, and C. Pfrommer, Phys. Rev.
D 93, 123527 (2016), arXiv:1512.05344.

[21] Z. Chacko, Y. Cui, S. Hong, T. Okui, and Y. Tsai,
JHEP 12, 108 (2016), arXiv:1609.03569 [astro-ph.CO].

[22] P. Ko and Y. Tang, Phys. Lett. B762, 462 (2016),
arXiv:1608.01083 [hep-ph].

[23] M. Vogelsberger, J. Zavala, and A. Loeb, Mon. Not. R.
Astron. Soc. 423, 3740 (2012), arXiv:1201.5892 [astro-
ph.CO].

[24] M. Rocha, A. H. Peter, J. S. Bullock, M. Kaplinghat,
S. Garrison-Kimmel, et al., Mon. Not. R. Astron. Soc.
430, 81 (2013), arXiv:1208.3025 [astro-ph.CO].

[25] A. H. G. Peter, M. Rocha, J. S. Bullock, and
M. Kaplinghat, Mon. Not. R. Astron. Soc. 430, 105
(2013), arXiv:1208.3026 [astro-ph.CO].

[26] J. Zavala, M. Vogelsberger, and M. G. Walker, Mon.
Not. R. Astron. Soc. 431, L20 (2013), arXiv:1211.6426
[astro-ph.CO].

[27] M. Kaplinghat, R. E. Keeley, T. Linden, and H.-B. Yu,
Phys. Rev. Lett. 113, 021302 (2014), arXiv:1311.6524
[astro-ph.CO].

[28] M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. Lett.
116, 041302 (2016), arXiv:1508.03339 [astro-ph.CO].

[29] M. Vogelsberger, J. Zavala, F.-Y. Cyr-Racine, C. Pfrom-
mer, T. Bringmann, and K. Sigurdson, Mon. Not. Roy.
Astron. Soc. 460, 1399 (2016), arXiv:1512.05349 [astro-
ph.CO].

[30] J. J. Fan, A. Katz, L. Randall, and M. Reece, Phys.
Rev. Lett. 110, 211302 (2013), arXiv:1303.3271 [hep-
ph].

[31] J. Fan, A. Katz, L. Randall, and M. Reece, Phys. Dark
Univ. 2, 139 (2013), arXiv:1303.1521 [astro-ph.CO].

[32] M. R. Buckley and A. DiFranzo, Phys. Rev. Lett. 120,
051102 (2018), arXiv:1707.03829 [hep-ph].

[33] P. Agrawal, F.-Y. Cyr-Racine, L. Randall, and
J. Scholtz, JCAP 1708, 021 (2017), arXiv:1702.05482
[astro-ph.CO].

[34] P. Agrawal and L. Randall, JCAP 1712, 019 (2017),
arXiv:1706.04195 [hep-ph].

[35] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett.
85, 1158 (2000), arXiv:astro-ph/0003365 [astro-ph].

[36] L. Hui, J. P. Ostriker, S. Tremaine, and E. Wit-
ten, Phys. Rev. D95, 043541 (2017), arXiv:1610.08297
[astro-ph.CO].

[37] X. Du, C. Behrens, and J. C. Niemeyer, Mon. Not. Roy.
Astron. Soc. 465, 941 (2017), arXiv:1608.02575 [astro-
ph.CO].

[38] P. Mocz, M. Vogelsberger, V. H. Robles, J. Zavala,
M. Boylan-Kolchin, A. Fialkov, and L. Hernquist,
Mon. Not. Roy. Astron. Soc. 471, 4559 (2017),
arXiv:1705.05845 [astro-ph.CO].
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