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In this paper, we report on the construction of a new and independent pipeline for analyzing the
public data from the first observing run of advanced LIGO for mergers of compact binary systems.
The pipeline incorporates different techniques and makes independent implementation choices in
all its stages including the search design, the method to construct template banks, the automatic
routines to detect bad data segments (“glitches”) and to insulate good data from them, the procedure
to account for the non-stationary nature of the detector noise, the signal-quality vetoes at the single-
detector level and the methods to combine results from multiple detectors. Our pipeline enabled us
to identify a new binary black-hole merger GW151216 in the public LIGO data. This paper serves
as a bird’s eye view of the pipeline’s important stages. Full details and derivations underlying the
various stages will appear in accompanying papers.

I. INTRODUCTION

The LIGO and Virgo observatories reported the de-
tection of several gravitational wave (GW) events from
compact binary coalescence in their First and Second Ob-
serving Runs (O1 and O2 respectively) [1]. These detec-
tions required technically sophisticated analysis pipelines
to reduce the strain data. This is because typical events
are buried under the detector noise, and cannot be sim-
ply “seen” in raw data at current sensitivities. Hence,
any search for signals in the data needs to properly and
precisely model the detector noise.

The simplest model is that the detector noise is station-
ary and Gaussian in nature. Under these assumptions,
the best method to detect signals is matched-filtering,
which involves creating a bank of possible signals, con-
structing optimal filters (or templates) for the signals
given the noise model, and running the templates over
the data. The resulting scores are distributed according
to known (chi-squared) distributions in the presence or
absence of real signals [2].

Unfortunately, both the assumptions underlying
matched-filtering fail at some level: the noise statis-
tics vary even on the timescales of the (putative) sig-
nals, and there are intermittent non-astrophysical arti-
facts which are clearly not produced by Gaussian random
noise (“glitches”) [3], examples of such disturbances can
be found in Ref. [4]. These systematics pollute the dis-
tribution of the matched-filtering scores. Moreover, the
templates describing different astrophysical signals have
finite overlaps, and thus often trigger on the same un-
derlying noise transients. Detectable real events lie in
the tails of the score distribution, and hence it is crucial
to properly correct for systematics in order to maximize
the sensitivity to GW events, and to quote reliable false-
alarm rates (FARs).
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The official catalog of GW events published by
the LIGO and Virgo collaborations comprises candi-
dates from two independent pipelines: PyCBC [5] and
GstLAL [6]. Additional analysis of the data was pre-
sented in Ref. [7]. Each of these pipelines has developed
solutions for the data complexities described above. In
this paper, we describe a new and independent analy-
sis pipeline that we have developed for analyzing the
publicly available data from the first observing run of
advanced LIGO [8]. Our solutions and implementation
choices were guided by the desire to attain, as much as
possible, the ideal of the distributions in the Gaussian
case, which are easily understood and interpreted.

First, we developed a method to construct template
banks that enumerates not over physical waveforms, but
over linear combinations of a complete set of basis func-
tions for their phases. Correlations between templates
have a uniform and isotropic metric in this space.

Second, when dealing with systematics, we use proce-
dures with analytically tractable behavior in the case of
Gaussian random noise, which enables us to set thresh-
olds based on well-defined probabilities. We developed
a simple method to empirically correct for the non-
stationary nature of the detector noise (power spectral
density (PSD) drift). Under this procedure, segments
of data with no apparent glitches produce trigger scores
with perfect chi-squared distributions. At the first pass,
we attempt to veto out residual “glitches” using a col-
lection of simple tests (either at the signal-processing
level or after triggering), while still using the matched-
filtering scores as the ranking statistics to leave the Gaus-
sian “floor” untouched. We also developed methods to
condition masked data in a way that guarantees that the
following matched filtering step would have zero response
to the masked data segments.

Finally, we estimate the background of coincident trig-
gers between the two detectors using time slides (akin
to PyCBC). Our pipeline includes methods to use the in-
formation from background triggers to combine physical
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triggers from different detectors in a statistically optimal
manner for distinguishing astrophysical events from noise
transients.

Our paper is organized as follows: Section II provides
an overview of the stages in the pipeline. Section III ex-
pands upon each of the stages while omitting derivations
and precise details, which we present in accompanying
papers [9–11]. In Section IV we present the results of our
search for binary black hole mergers in O1.

II. PIPELINE STAGES

We construct our pipeline in several stages, which are
organized as follows:

1. Construction of a template bank: We divide
the mergers into banks with logarithmic spacing in
the chirp mass, and analyze each bank separately.
Section III A provides further details on the under-
lying method, and the properties of the resulting
banks.

2. Analysis of single detector data: We first an-
alyze the data streams from the Hanford (H1) and
Livingston (L1) detectors separately, as follows:

(a) We preprocess data from each detector in
chunks of ' 4096 s. Section III B details our
initial signal processing.

(b) We iteratively whiten the data stream, per-
form several tests to detect and remove bad
data segments (“glitches”), and condition the
remaining data to preserve astrophysical sig-
nals. Sections III C and III D describe this
procedure.

(c) We correct for the non-stationary nature of
the noise (PSD drift), which if untreated, sys-
tematically pollutes the connection between
the matched-filtering scores and probability.
Section III F provides more details.

(d) We generate matched-filtering overlaps for the
waveforms in our banks with the whitened
data stream, apply the PSD drift correction,
and record triggers whose matched-filtering
scores are above a chosen threshold (Sec-
tion III E).

3. Coincidence analysis between detectors: We
analyze triggers that are coincident in H1 and L1.
In Section III G, we describe how we collect coinci-
dent triggers with combined incoherent score above
a threshold, at both physical (candidates) and un-
physical (background) time delays.

4. Refining on a fine grid: We refine the param-
eters of the candidates and the background on a
finer grid around the triggers in order to account
for template bank inefficiency, and allow room for
more stringent signal quality vetoes.

5. Trigger quality vetoes: We apply vetoes on the
triggers based on the signal quality, as well as the
data quality. The vetoes have to be applied ei-
ther at the single-detector level, to avoid biasing
the calculation of the coincident background using
time slides. Section III I lists the vetoes we applied
to the triggers.

6. Estimating the significance of candidates:
We use the set of background triggers to estimate
the FAR for the candidates at physical lags between
H1 and L1. We do this in two stages:

(a) We first compute a ranking score that is purely
a function of the incoherent scores of the trig-
gers, under the assumption that the noise pro-
cesses that produce the background are inde-
pendent between detectors (Section III J).

(b) Section III K describes our coherent score,
which adds all the information encapsulated in
the phase, amplitude, relative sensitivity and
arrival time differences between the detectors
to create our final candidate ranking statistic.

(c) Section III L describes how we construct an es-
timate for the probability of a coincident event
being of astrophysical origin given an astro-
physical event rate.

III. CONCISE DESCRIPTION OF THE
PIPELINE STAGES

A. Template bank

We perform our search by matching the strain data
to a discrete set of waveform templates that sufficiently
closely resemble any gravitational wave signal within our
target parameter space. We target our search at coalesc-
ing binary black holes (BBH), defined here as compact
binary objects with individual masses between 3M� and
100M� and with aligned spins. We allow spin magni-
tudes up to |χ1,2| < 0.85. We restrict the mass ratios to
be q−1 < 18.

As described in Ref. [9], we construct five BBH tem-
plate banks (BBH 0-4) that together span this target
parameter space, and conduct a separate search within
each of them. The banks are defined by regions in
the plane of component masses, as shown in Fig. 1.
We place the bounds between adjacent banks at M =
{5, 10, 20, 40}M�, whereM = (m1m2)3/5/(m1 +m2)1/5

is the chirp mass and m1,2 are the individual masses. We
find several motivations for dividing the search. The low-
mass banks have many more templates than the heav-
ier banks, and thus they inherently have a larger look-
elsewhere penalty. Dividing the search prevents this
from strongly affecting the sensitivity of the high-mass
searches: in this way, on astrophysical grounds we might
expect roughly comparable numbers of signals in each
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Template banks used in the search

FIG. 1. Division of the BBH parameter space into five tem-
plate banks (BBH 0-4) by component masses. A separate
search is conducted on each. The points represent the input
waveforms used to construct the banks (not the templates
themselves), and the colors encode the division of each bank
into subbanks according to the shapes of the waveform am-
plitude. Approximate detector-frame masses are indicated
for BBH detections reported to date (in O1 and O2) and for
GW151216.

bank, regardless of the largely different number of tem-
plates they have. Moreover, this splitting enables us to
discriminate between the different types of background
events that each search is subject to. The different dura-
tion of the signals in each bank will require us to use dif-
ferent thresholds when masking bad data segments (see
Section III C). The prevalence of non-Gaussian glitches
will be different in each bank and thus the score we as-
sign to events with the same signal-to-noise ratio (SNR)
is different in each bank (see Section III J). Table I sum-
marizes the template bank parameter ranges and sizes.

The template bank needs to be effectual, that is, to
guarantee a sufficiently high match between a GW wave-
form and at least one template in the bank. We define
the inner product between waveforms hi, hj

(hi | hj) := 4

∫ ∞
0

df
h̃i(f)h̃∗j (f)

Sn(f)
, (1)

where Sn(f) is the one-sided noise PSD of the detector
and a tilde indicates a Fourier transform into the fre-
quency domain. It is used to define the match

mij = max
τ

∣∣(hi | hjei2πfτ )
∣∣; (2)

throughout this section we assume that all waveforms are
normalized to (h | h) = 1. We assess the effectualness
E of each bank by computing the best match with 104

random waveforms in its target parameter space. We ap-
ply the down-sampling and sinc-interpolation described

Bank M (M�) E0 E Ntemplates

BBH 0 < 5 0.90 0.97 6465
BBH 1 (5, 10) 0.92 0.96 7919
BBH 2 (10, 20) 0.94 0.96 5855
BBH 3 (20, 40) 0.95 0.96 594
BBH 4 > 40 0.97 0.97 57

Total 20 890

TABLE I. Summary of template bank parameters. M is the
chirp mass range that the bank is designed to cover. E0 and
E are the effectualnesses without and with refinement (Sec-
tion III H) respectively, as quantified by the best match within
the bank achieved by the top 99.9% of random astrophysical
templates. Ntemplates is the total number of templates in each
bank.

in Section III E and the waveform optimization described
in Section III H to the test waveforms, to properly simu-
late the search procedure. We report the effectualness of
the banks in Table I. When designing banks, we set the
reference PSD to be the aLIGO MID LOW PSD [12], which
is representative of O1.

In order to correct the PSD drift at manageable com-
putational cost, our search pipeline requires that the fre-
quency domain templates, of the form

h̃(f) = A(f) eiψ(f), (3)

share a common amplitude profile A(f) (see Sec-
tion III F) and differ only in the phase ψ(f). In order
to avoid excessive loss of effectualness due to this ap-
proximation, we split each bank into several subbanks,
each of which is assigned a different A(f) profile. We use
the method of “stochastic placement” to determine as
many subbanks as needed to guarantee that every wave-
form within the target parameter range has an amplitude
match, ∫

df
A(f)A(f)

Sn(f)
> 0.95, (4)

with at least one subbank. The resultant divisions into
subbanks are color-coded in Fig. 1.

The remaining task is to place templates in each sub-
bank to efficiently capture the possible phase shapes
ψ(f). We achieve that with a geometric approach, where
we use the mismatch between templates to define a mis-
match distance, which quantifies the similarity between
any two waveforms. We abandon the physical parame-
ters as a description of the templates in favor of a new
basis of coordinates c, in which the mismatch distance
induces an Euclidean metric. We then set up a regular
grid in this space. Our templates take the form

h(f ; c) = A(f) exp
[
i
(
ψ(f) +

∑
α

cα ψα(f)
)]
, (5)

where ψ(f) is the average phase, and {ψα(f)} are phase
basis functions which are orthonormalized such that the
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mismatch distance satisfies

d2c,c+δc := 1−m(h(c), h(c+ δc))

=
1

2

∑
α

δc2α +O(δc3).
(6)

An input set of physical waveforms representing the tar-
get signals are used, first to define the subbanks and then
to determine the appropriate phase basis functions. The
input waveforms may be generated with any frequency-
domain model; we use the IMRPhenomD approximant [13].
The phase basis functions are found from a singular value
decomposition of the input waveforms which identifies
the minimal set of linear independent components that
need to be kept. A small number of basis functions are
enough to approximate all possible phases to sufficient ac-
curacy. All banks require five linearly independent bases
or fewer, with about half of them having only three or
fewer. While the coefficient for the lowest order bases
may vary over a range of several hundred units, the co-
efficients for the highest order bases vary within narrow
ranges, sometimes by less than one unit.

B. Loading and preprocessing the data

The strain data is provided by LIGO in sets of files
of length 4096 seconds for each detector (H1 and L1 in
O1). The natural choice is to split the analysis along
the same lines, i.e., file by file. We would like to pre-
serve our sensitivity to events near the edges of files, and
hence we pull in data from adjacent files if available. The
length of data we pull in is set by the following consider-
ations: (a) there should be no artifacts in the whitened
strain at the edge of a file due to missing data at the
right edge, (b) events that straddle files should be con-
tained inside the padded and whitened data stream, and
(c) relatively short segments of data (< 1024 s) near file
edges, with a large adjoining segment (> 64 s) of missing
data, are analyzed as part of the adjoining file instead of
on their own. Even after padding, the boundary of the
(expanded) data stream will still have artifacts from the
whitening filter. To treat this, we further append 64 s of
zeros to the padded strain data on either side, that we
will later inpaint using the method of Section III D.

Additionally, we observe that long segments (& 64 s)
of bad data, as marked by LIGO’s quality flags, can have
a few unmarked extra seconds of bad data adjoining the
marked segments (this can happen due to latency in the
flagging system, for example). The procedure outlined in
Section III C is designed to catch such segments, as well
as other kinds of misbehaved data. However, we only
reach this stage after some initial signal processing and
sufficiently bad data segments might pollute good data
segments through each step of the analysis. Therefore,
we trim an additional 2 s of data when these segments
occur at the right edges of files.

The next step after loading the data is to estimate
its PSD. We use Welch’s method [14], in which several

overlapping chunks of data are windowed and their pe-
riodograms are averaged (we use the implementation in
scipy.signal with a Hann window). We make our PSD
estimation robust to bad data by (a) disregarding chunks
that overlap with segments that were marked by LIGO’s
quality flags, and (b) averaging using the median instead
of the mean (see Appendix B of Ref. [15]).

An important choice to make is the length of the in-
dividual chunks whose periodograms enter the averages
(‘chunksize’ in what follows). In pure Gaussian random
noise, the choice of chunksize is governed by the following
(conflicting) considerations: (a) controlling the statistical
uncertainty in the averages, which depends on the num-
ber of independent samples within a file, and (b) miti-
gating the loss in matched-filter sensitivity around under-
resolved spectral lines. As we discuss in Section III F, the
advanced LIGO data is typically not described by purely
Gaussian random noise (even in the absence of “bad”
segments with excess power) due to systematic drifts in
the PSD within a file. We find that using 64 s chunks
to measure the PSD yields an acceptable compromise
between the above effects. This choice also affects the
minimum length of the files that we choose to analyze:
the first consideration above (the measurement noise in
the PSD) implies that we take a 4% loss in sensitivity for
files that are shorter than 16 times the chunksize. If a
file is shorter than this limit (not including the segments
marked by LIGO’s quality flags), we try to analyze it us-
ing a chunksize of 16 s instead, while enforcing the same
minimum number of chunks.

We restrict ourselves to analyzing frequencies f <
512 Hz by down-sampling the data to 1024 Hz. This is
safe to do since all compact binary merger signals accu-
mulate more than ' 99% of their matched filtering SNR
below 512 Hz at the O1 detector sensitivity, and since we
already budget for & 1% losses in the template bank.
This choice reduces the sizes of the template banks and
saves us computational time during triggering, at the ex-
pense of a negligible loss in sensitivity. We also apply
a high-pass filter to the data (implemented as a fourth-
order Butterworth filter with fmin = 15 Hz, applied from
the left and the right to preserve phases). This removes
low-frequency artifacts in the data (that could later trig-
ger our flagging procedure in Section III C), and is safe
to do since we only use frequencies f > 20 Hz in building
the template bank.

Finally, we construct the whitening filter from the esti-
mated PSD, and use it to whiten the data. The whitening
filter typically has most of its power at small lags, but ex-
hibits a long tail at large lags due to spectral lines in the
data. Our procedure for inpainting bad data segments
(described in Section III D) requires that the whitening
filter has finite support, hence we zero the filter at large
lags (while ensuring that we retain & 99.9% of its weight,
typically the filter is left with an impulse response length
of ' 16 s). Zeroing the whitening filter in the time do-
main corresponds to convolution with a sinc function in
the frequency domain, which fills in the lines; thus, the
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filter does not reject spectral lines completely. Hence, we
take care that our flagging procedure does not trigger on
spectral lines in the data.

C. Identifying bad data segments

Advanced LIGO data contains intermittent loud dis-
turbances that are not marked by the provided data qual-
ity flags. We need to flag and remove these segments to
prevent them from polluting our search, while taking care
to preserve astrophysical signals of interest. This is the
fourth analysis of the data, and hence we assume that
any new signals we find will have an integrated matched
filter SNR ρ < 30 in a single detector. This assumption
allows us to bound the influence of a true signal on our
procedure.

We devise several complementary tests to flag bad data
segments. We design our tests to satisfy the following
conditions:

1. The test statistics have analytically known distri-
butions for Gaussian random noise.

2. The thresholds are set to values of the test statistics
achieved by waveforms with single-detector ρ = 30
in noiseless data. Signals at this SNR have a prob-
ability of ' 0.5 of triggering a single test in the
presence of Gaussian random noise. We found em-
pirically that signals satisfying ρ ≤ 20 are almost
always retained.

3. If the above thresholds are too low, they are ad-
justed so that a single test is triggered at most
once per five files due to Gaussian random noise
alone. This is important for template banks with
long waveforms.

4. The tests are safeguarded from being triggered
by PSD drifts over long timescales (t & 10 s),
which can manifest as excess power over shorter
timescales.

These conditions ensure that we are sensitive to gravita-
tional waves while not over-flagging the data. It is impor-
tant that the tests be done at the single-detector level in
order to avoid biasing the calculation of the background
using time slides.

Our tests trigger on the following anomalies: (a) out-
liers in the whitened data-stream, (b) sine-Gaussian tran-
sients in particular bands, (c) excess power localized to
particular bands and timescales, and (d) excess power
(summed over frequencies) on particular timescales. We
picked timescales and frequency bands for the tests based
on inspecting the spectrograms of the bad segments; Ta-
ble II details the choices.

The data has spectral lines at which the PSD is sev-
eral orders of magnitude higher than in the continuum.
The power in these lines often significantly varies in a
non-Gaussian manner within a single file. The lines do

TABLE II. Summary of tests for identifying bad data seg-
ments. For each test, we show the frequency band and
timescale of the disturbance that it is sensitive to, and the
length of the data we excise around the disturbance.

Test type Frequency
band (Hz)

Excess
duration (s)

Hole duration
(s)

Whitened outlier [20, 512] 10−3 0.6
[20, 512] 0.2 0.2
[20, 512] 1 1
[55, 65] 1 1
[70, 80] 1 1
[40, 60] 1 1

Excess power [40, 60] 0.5 0.5
[20, 50] 1 1

[100, 180] 1 1
[25, 70] 0.1 0.1
[20, 180] 0.05 0.05
[60, 180] 0.025 0.025
[25, 70] 0.2 1
[55, 65] — 0.1
[20, 60] — 0.1

[100, 140] — 0.1
Sine-Gaussiana [50, 150] — 0.1

[70, 110] — 0.1
[50, 90] — 0.1

[125, 175] — 0.1
[75, 125] — 0.1

a Sine-Gaussian transients saturate the uncertainty principle, and
hence their duration is fixed given their bandwidth.

not contribute to the matched-filtering overlap, since the
PSD is effectively infinite at their frequencies. Hence it
is preferable that varying lines do not trigger our tests.

We detect sine-Gaussian artifacts in a given band by
matched-filtering with a complex waveform that satu-
rates the time-frequency uncertainty principle and con-
tains most of its power in the band. We apply notch
filters to the sine-Gaussian template to remove any over-
lap with spectral lines. We flag any outliers in the
matched-filtering results above a threshold defined to sat-
isfy the aforementioned conditions (see second paragraph
of Sec. III C), which is a procedure safe to any relevant
events)

We detect excess power using a spectrogram (com-
puted using the spectrogram function in scipy.signal
with its default Tukey window). We sum the power in
the frequency ranges of interest, disregarding frequency
bins that overlap with varying lines. For Gaussian ran-
dom noise, this sum has a chi-squared distribution. This
is not achieved in practice unless correcting for the effects
of PSD changes. We make the excess power statistic ro-
bust to the drifting of the PSD by comparing the instan-
taneous excess power with with a local moving-average
power baseline.

The simplest test is to look for outliers in the whitened
strain, since individual samples should be independent
and normally distributed with unit variance. We flag
segments of whitened data, with a safety margin in time,
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around outliers above a chosen threshold.
Whenever one or more of these tests fire, we excise the

offending segments (which we refer to as “holes”) and
inpaint the raw data within as described in Section III D.
In practice, we observe that the outlier test often does not
catch all of the “bad” data, in which case the inpainted
and whitened data contain further outliers. Hence, we
iterate over the “identify bad segments, inpaint, whiten”
cycle multiple (< 7) times, increasing the safety margin
in time by successively larger multiples of 0.1 s, until the
process converges.

We treat any part of the data that was marked with
any of the LIGO quality flags as if it contained large
disturbances. After all the data quality tests done in this
section, we are left with roughly 46 days of coincident
on-time between the detectors, with slight changes from
bank to bank, as all the test thresholds are waveform
dependent.

D. Inpainting bad data segments

The matched-filtering score for a template h with data
d with a noise covariance matrix C is:

Z = h† C−1 d = 4
∑
f

h∗(f) d(f)

Sn(f)
, (7)

where f denotes the frequencies, and in the last equality
we assumed that the noise is diagonal in Fourier space.
The tests described in Section III C flag bad data seg-
ments that we would like to mask. The operator C−1

(the “blueing filter”) is not diagonal in the time domain;
when viewed as a linear filter operating on the data, its
impulse response length (typically ' 32 s) is set by the
PSD spectral lines and the chunktime used to estimate
the PSD. Thus the scores evaluated using Eq. (7) can be
significantly affected even tens of seconds away from a
masked segment.

To deal with this problem, if we consider a fraction
of the data of length Nd in which we have masked Nh
samples, we filter the data with a filter F and define a
new score by:

Z̃ = h† C−1 F d. (8)

The filter F is given by

F = 1−W M−1WT C−1, (9)

where the matrix W has one column of length Nd for ev-
ery sample that is masked with all the entries zero except
for a one at the position of the masked sample and M
is the Nh × Nh matrix M = WT C−1W . The compu-
tationally expensive part of this filtering procedure is to
invert the matrix M .

The filter F is such that the score Z̃ is independent of
the value of the template waveform h inside masked seg-
ments. That is to say, F can be obtained by demanding

that C−1Fd is identically zero inside the masked regions.
F is a projection operator (F 2 = F ) that commutes with
C−1, i.e., C−1F = FT C−1, and depends only on the
mask and the covariance matrix C. In particular, it is
independent of the waveform h, and thus can be com-
puted once and for all before performing matched filter-
ing. Note also that for computing F , it is not important
that C−1 be the exact noise covariance; it just needs to
be consistently used to define the scores in the section of
data.

We can also derive F as the solution of several related
linear algebra problems. We can model the presence of
the mask as if the data had an additional source of noise
inside the masked region, and take the limit of zero addi-
tional noise outside the holes and infinite additional noise
inside. The filtered data d̃ = F d equals the original data
outside the masked segments, and the best linear predic-
tion for the data inside the hole based only on the data
outside (Wiener filter). It can also be thought of as the

d̃ that minimizes

χ2 =
1

2
d̃† C−1 d̃ (10)

subject to the constraint that d̃ equals the original data
outside the mask, but can take any value inside. The
computation of F is explained in detail in Ref. [10].

Figure 2 shows an example of a small section of the
data containing a “glitch” artifact. We show the differ-
ence between ‘gating’ the bad data by applying a window
function to it, and creating a hole and inpainting it with
the algorithm we described. We can see that gating sub-
stantially changes the standard deviation of the samples
in the hole and the few seconds surrounding it, which
can potentially create spurious triggers, and can damage
any real signals that happen to be in the data at the
same time. In our method, the “blued” data is set to be
identically zero inside the hole.

E. Matched filtering

Given the whitened, hole-filled data, we compute the
overlaps with all templates in the template bank, and
register the times and templates when the SNR2 is above
a triggering threshold. The choice of the threshold was
driven by the requirement to produce a manageable num-
ber of triggers per file, and was generally in the range
20 < SNR2

thresh < 25 for the various banks and subbanks.
In order for the statistics of the overlaps to have a

standard complex normal distribution, we need to apply
two corrections: one is for the PSD drift, and one for
the existence of holes (masked data segments). As we
show in Ref. [10], the PSD correction depends only on the
amplitude of the waveform, and hence we pre-compute
it for each representative A(f). The hole correction is
waveform dependent: we evaluate it under the stationary
phase approximation, which assumes that there are many
waveform cycles inside the hole, and accounts for the
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FIG. 2. Effect of masking and inpainting glitches. Top panel:
A segment of whitened strain data (in units of the noise stan-
dard deviation) that has an identified glitch. The orange line
is the standard deviation σ over a running window of 100 sam-
ples, and is typically close to unity as expected for whitened
data. Second panel: Gating the glitch with an inverse Tukey
window (green) and then whitening generates artifacts in the
whitened data, even outside the window. For example, σ
remains above 1.1 for approximately 2 s to each side of the
glitch. Third panel: The inpainted whitened data has unit
variance outside the hole (shaded). Bottom panel: After in-
painting, the “blued” strain is identically zero inside the hole,
so overlaps with templates do not depend on what is inside
the hole.

change in the variance due to the missing cycles in the
hole. This approximation works only for long waveforms,
and hence we use overlaps in the vicinity of holes only
for waveforms that are longer than 10 s. We also ignore
overlaps where more than half of the variance (and hence
SNR2) is inside holes as these are anyway a negligible
part of the volume (and are also non-declarable even if
they contain a genuine candidate).

In order to compute the overlaps and hole variance
corrections efficiently, we first notice that the waveform
is shorter than a typical data segment, so we can use the
overlap–save method in order to reduce the FFT sizes.
Because the maximum frequency of the whitened data
is taken to be 512 Hz, all information about matching
the template to the data is in the complex overlaps we
compute. Looking at single overlaps and comparing to
the triggering threshold is not sufficient since the SNR
could be reduced by as much as 10% due to sub-sample
shifts in the GW arrival time (we down-sampled the data
to 1024 Hz). We recover this sensitivity by first setting
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FIG. 3. It is necessary to track the drifting PSD on time scales
of seconds. In blue we show the power spectrum of the square
of the absolute value of the overlaps with a template in the
BBH 0 bank for a repesentative set of files. It reaches the level
of Gaussian fluctuations only close to ∼ 0.1 Hz, and has a red-
noise power spectrum fit by a power-law (red dashed curve).
The orange curve shows the PSD drift correction we apply to
the data, which correctly traces the actual fluctuations in the
standard deviation of the overlaps up to the Gaussian floor.

a lower SNR bar, and sinc-interpolating the overlaps (by
a factor of 4) within each contiguous segment above this
lower bar, before checking for overlaps above the (higher)
triggering threshold.

F. Applying corrections due to the varying Power
Spectral Density of the Noise

The power spectral density of the LIGO detectors can
slightly vary with time. These changes may be hard to
track and would inevitably result in PSD mis-estimation.
As Ref. [10] shows, if we mis-estimate the PSD by a fac-
tor (1 + ε(f)), the information loss in matched filtering
scales as O(ε2), but the overlap’s standard deviation dif-
fers by O(ε). This means that O(100) segments of data
are required in order to measure the PSD well enough
to aim for discarding less than 1% sensitivity. In order
to resolve the lines well enough to aim for the same loss,
tens of seconds of data are required. Therefore, an order
of a thousand seconds are needed for estimating the PSD.
We choose to measure the PSD using the Welch method,
in which the signal is cut into overlapping segments, and
the PSD power at frequency f is the (scaled) median
of all the power estimates at this frequency from all the
segments. It turns out, though, that the PSD varies on
time-scales as short as ∼ 10 s, as seen in Figure 3.

While at first sight it may seem impossible to both
capture the width of the lines and track the fast variation
in the PSD, we accomplish it by correcting the first order
effect of PSD mis-estimation on time-scales that are as
short as the PSD changes, to precision of ∼ 1%.

This correction is basically a local estimate of the stan-
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FIG. 4. Estimated changes to the variance of the overlap
measurements, measured over periods of ≈ 16 s defined to
guarantee a 2% precision. Measurement errors are shown by
shuffling the overlaps in time and calculating the local aver-
ages. Vertical lines are one standard deviation away from the
mean for each distribution. It is evident that the variance
changes we are tracking are not random measurement fluc-
tuations and can lead to severe changes in the significance
assessment of a particular event.

dard deviation of the overlaps, and is derived (along with
some other nice properties it has) in Ref. [10]. In Fig-
ure 4, we present a histogram of the distribution of the
local variance estimates. Notice the large deviations from
unity in both directions. We note that the tail reaches
values as high as 1.5; at such high values, there are visi-
ble disturbances in the spectrogram, sometimes referred
to as glitches. However, at values in the range [0.85, 1.2],
the data mostly behaves in a regular fashion, and there
is no apparent sign something bad is going on in the
spectrogram of the data. These changes can cause sub-
stantial loss of sensitivity in binary coalescence analyses
that neglect this effect1.

To illustrate why correcting for these variance esti-
mates is crucial for determining the exact significance of
a candidate event, we point out that the most economic
way of creating a (spurious) ρ = 8 event is to wait for a
lucky time where the PSD mis-estimation is large (say,
1.2), and then create a (genuine) ρ = 7.3 fluctuation.
In Figure 5, we see the tail of the trigger distribution is
substantially inflated if the PSD drift is not corrected.

1 After this manuscript was made public, we were informed that
fluctuations in the SNR integral (due to short-timescale varia-
tions in the PSD) at comparable levels were previously noted,
but the mitigation steps were not incorporated into the search
pipelines used in the catalog paper (Thomas Dent, private com-
munication).
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FIG. 5. Effect of the PSD drift correction on the trigger dis-
tribution. Trigger distributions of binary black hole merger
waveforms in bank BBH 0 (M ∈ [2.6, 5]M�) and a subbank
from BBH 3 (M ∈ [20, 40]M�), in the Hanford detector, be-
fore applying any vetoes.

G. Coincidence Analysis of the two detectors

After all single detector triggers above a critical ρ2 are
collected, we need to find pairs of triggers that share the
same template, and have a time-lag difference that is less
than 10 ms. In order to generate background coincident
triggers, we also need to collect trigger pairs with all other
considered time slides (we choose integer jumps of 0.1 s in
the range [−1000 s, 1000 s]). We collect the background
events and the physical events by the following process:
First, we define that a real trigger has ρ2 > 0.9 ρ2max − 5
where ρmax is the maximum trigger in the segment of
0.01 s. The reason for this choice is that triggers that are
too close to a major erratic event are not declarable and
that if there is a glitch that slipped through our net, we
do not want a large amount of accompanying triggers to
coincide with random fluctuations in the other detector.
This massively reduces the load of the subsequent stages.

We then take each remaining trigger, and insert it into
a dictionary according to the template key. This would
allow us to immediately find all the times at which this
template triggered. Using queries to the dictionary, we
find all the pairs of triggers that belong to either the back-
ground or the foreground group, and pass the threshold
ρcollect. This threshold depends on the bank via comput-
ing the Gaussian noise threshold for obtaining one sig-
nificant event per O1, and then multiplied by the bank
effectualness, to guarantee that every trigger that can
acquire the one-per-O1 significance after optimization is
included.

We now view the H1 component of all pairs of trig-
gers and group them to groups of 0.1s. We use the less
stringent version of the veto to vet the trigger with the
highest SNR in each group, and upon failure discard the
entire group (the logic here is that similar triggers are all
passing or failing the veto together). We do the same for
the L1 component of all remaining trigger pairs.
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We then optimize every trigger by computing the over-
laps with the data of every template in the sub-grid c
values (see Sec. III H). We further sinc interpolate with a
long support to obtain further time resolution for the
overlaps. We then choose the sub-grid template that
maximizes the quadrature sum of the single detector
SNRs. This trigger pair is now vetoed with the stringent
veto. If a trigger pair passes all these, it is registered.

H. Refining triggers on a finer template grid

The template-bank is organized as a regular grid,
which facilitates refinement in places of interest. This
enables us to squeeze more sensitivity and imitate the
strategy of a continuous template bank, which is more
objective than an arbitrarily chosen grid. The effectu-
alness achieved by the top 99.9% of injections with the
template banks used for the search varies between 0.9 and
0.96. Refining the grid by a factor of two in each dimen-
sion would bring it to > 0.96 in all cases, but would also
substantially increase the number of waveforms in the
bank (which in turn increases the computational com-
plexity and memory requirements of our search). We
therefore take the approach of refining every candidate
and background trigger pair. Since we know the maxi-
mum amount of SNR increase that is possible for a real
event, we refine all candidates that have a score that is
high enough to have a chance of reaching a FAR of 1/O1
after refinement. We greatly speed up the candidate re-
finement by calculating the likelihood using the relative
binning method [16] (using the original grid-point trigger
as the reference waveform). Table I reports the improve-
ment in effectualness achieved by this procedure for our
banks.

I. Vetoing triggers

The matched-filtering score is the optimal statistic for
detecting signals buried in Gaussian random noise. As
emphasized in the previous sections, the LIGO strain
data is not well-described by purely Gaussian random
noise, and hence, the matched-filtering score may be
triggered (i.e., pushed above the Gaussian-noise signif-
icance threshold) by either transient or prolonged dis-
turbances in the detector. Our pipeline attempts to
reject these candidates by identifying bad segments at
the preprocessing level (Section III C), or downweighting
the scores by their large (empirically measured) variance
(Section III F). However, this is not enough to bring us
down to the Gaussian detection limit, especially for the
heavier black hole banks. Thus, we need additional ve-
toes at the final stage to reject glitches. We use vetoes
that are based on either the quality of the neighboring
data, as well as that of the signal.

Our most selective vetoes are based on signal quality,
and check that the matched-filtering SNR builds up the

right way with frequency. We perform the following tests:

1. We subtract the best-fit waveforms from the data
and repeat the excess power tests of Section III C,
but with lower thresholds computed using wave-
forms with ρ = 3 (and bounded to fire once per 10
files due to Gaussian noise). Moreover, when we see
excess power in a particular band and at a partic-
ular time, we only reject candidates with power at
the same time in their best-fit waveforms (in order
to avoid vetoing candidates due to unrelated excess
power).

2. We split the best-fit waveform into disjoint chunks,
and check for consistency between their individ-
ual matched-filtering scores. This test is similar
in philosophy to the chi-squared veto described in
Ref. [17], but improves upon it by accounting for
the mis-estimation of the PSD (which is an in-
evitable consequence of PSD drift) and by project-
ing out the effects of small mismatch with the tem-
plate bank grid.

3. We empirically find triggers that systematically
miss the low-frequency parts of the waveforms, or
have large scores at intermediate frequencies. The
check described above is agnostic to the way the
matched-filtering scores in various chunks disagree,
and hence is not the most selective test for these
triggers. We reject these triggers by using “split-
tests” that optimally contrast scores within two
sets of chunks.

The final two tests are the most selective vetoes, and
hence their thresholds must be set with care. Our method
for constructing template banks enables us to set these
thresholds in a rigorous and statistically well-defined
manner to ensure a given worst-case false-positive proba-
bility, which, accounting for the inefficiency in the bank,
is achieved with adversarial template mismatches. Hence
we set the worst-case false-positive probability of 10−2

for each of these tests. The details of the tests, and the
methods to set thresholds, are described in Ref. [11]. We
note that all hardware injections that triggered passed
the single-detector signal-based veto.

The data-quality vetoes are relatively simple in na-
ture, and motivated by segments with excess power (as
observed in spectrograms) that slip through the combi-
nation of the flagging procedure (of Sec. III C) and PSD
drift correction (of Sec. III F). The tests are as follows:

1. Sometimes, our flagging procedure only partially
marks the bad segments, in which case short tem-
plates (such as those of the heavier black hole
banks) can trigger on the adjoining unflagged data.
This is mitigated by our choice, described in Sec-
tion III E, to discard candidates with short wave-
forms in the vicinity of holes in our data (in prac-
tice, we reject waveforms < 10 s long within 1 s of
a hole).
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FIG. 6. The impact of signal and data quality vetoes on the
distribution of Hanford detector triggers in the BBH 3 bank.
GW151216 is deep in the Gaussian part of the distribution
with ρ2H = 39.4, and is not shown in this plot.

2. There are rare bad segments on timescales of '
5−10 s, which is too long for our flagging procedure
but too short for the PSD drift correction. We flag
segments of duration 25 s with a statistically sig-
nificant number of loud triggers (ρ2 & 30) that are
local maxima within subintervals of 0.1 s. We set a
generous threshold that should be reached at most
once per run (approximately accounting for corre-
lations between templates) within Gaussian noise,
and is robust to astrophysical events (due to the
maximization over time).

3. Finally, we account for rare cases with significant
PSD drifts on finer timescales than the ones used
while triggering (described in Section III F and
Ref. [10]). When this PSD drift is statistically sig-
nificant, we veto coincidence candidates (both at
zero-lag and in timeslides) whose combined inco-
herent scores, after accounting for the finer PSD
drift correction, are brought down below our col-
lection threshold.

Figure 6 shows the cumulative effect of our vetoes on
the score distribution of the triggers in the BBH 3 bank,
which contains short waveforms of heavy binary black
hole mergers. Also shown are the hardware injections
present in the data stream and GW150914 which belongs
to this bank’s chirp mass range. We note that the veto
retained every hardware injection in this chirp mass do-
main that passed the flagging procedure of Section III C.
It is interesting to note that GW150914 does not stand
out from the single detector trigger distribution before
the application of the veto, and is clearly detected even
without resorting to coincidence after it.
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FIG. 7. Relation between our new rank-based score ρ̃ and
the SNR ρ, for the Hanford detector. The initial linear de-
pendence reflects the Gaussian part of the trigger distribution,
the curve saturates due to the non-Gaussian glitch tail. This
effect is more prominent in the higher-mass banks, which are
more sensitive to glitches.

J. Incoherent Ranking

When constructing a statistic to rank events an impor-
tant part is P (ρ2H, ρ

2
L | H0), the probability of obtaining a

trigger with squared SNRs (ρ2H, ρ
2
L) in each detector un-

der the null hypothesis H0. Under the assumption that
the noise in both detectors is independent,

P (ρ2H, ρ
2
L | H0) = P (ρ2H | H0)P (ρ2L | H0) . (11)

If the noise in each detector was Gaussian,

logP (ρ | H0) = −ρ2/2 + const (12)

and

logP (ρH, ρL | H0) = −(ρ2H + ρ2L)/2 + const. (13)

Under this assumption it is optimal to use ρ2H + ρ2L to
rank candidate events. Unfortunately this is an invalid
assumption for two reasons: firstly, even for Gaussian
noise, at high SNR the maximization over templates,
phase and arrival time leads to

logP (ρ | H0) = −ρ2/2 + c log(ρ) + const, (14)

where the constant c depends on the bank dimension.
However, in practice this is a minor correction, the more
substantial problem is the non-Gaussian tail of the noise,
the so-called glitches. In the high-SNR limit P (ρ | H0)
is much larger than the Gaussian prediction.

The non-Gaussian tail in the ρ distribution has an im-
portant consequence when combining the scores of multi-
ple detectors. If we were simply to use ρ2H+ρ2L as a score,
we would be ranking coincidences in which the trigger in
one of the detectors is coming from this non-Gaussian
tail, as we would be misjudging its probability by many
orders of magnitude.
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FIG. 8. Left panels: Two dimensional histogram of the SNR2 = ρ2 of the background for the BBH 2 (top) and BBH 3 (bottom)
banks obtained by shifting the data in time so as to recreate 2× 104 O1 observing runs. The non-Gaussian glitch tail is clearly
visible at high SNR. Right panels: similar histogram but using the rank-based score ρ̃2. The lines of constant probability are
straight (solid contours). We show the line corresponding to one event per O1 for this statistic for each bank. Our sub-threshold
candidates in these banks are shown together with GW151012 and GW151216. GW150914 is too far to the upper right to be
included in this histograms.

To correct this problem we empirically determine
log[P (ρi | H0)] for each detector. We do so by taking
our triggers and ranking them according to decreasing ρi
for each detector i. We then model

P (ρ2i | H0) ∝ Rank(ρ2i ), (15)

which is a good approximation for distributions with ex-

ponential or polynomial tails. We denote

ρ̃2i = −2 logP (ρ2i | H0). (16)

Assuming independence, we can use

ρ̃2 = −2 logP (ρ2H, ρ
2
L | H0) = ρ̃2H + ρ̃2L (17)

as a robust approximation of the optimal score. In princi-
ple, a parametric model for the probability density might
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outperform the rank estimate, but practical reasons as
too few surviving glitches made such estimates prone to
fine tuning. Moreover, at the high SNR parts of the
distribution, single-detector glitches find background in
many timeslides, which makes it problematic to estimate
the uncertainty in any such procedure. For this reason,
and to maintain simplicity, we chose to use the rank func-
tion as a proxy for the single detector trigger probability
distribution function.

Figure 7 shows the relation between ρ and our new
Rank-based score ρ̃ for both LIGO detectors and trig-
gers in bank BBH 2. This mapping is dependent on the
bank as the prevalence of non-Gaussian glitch triggers is
very different as one changes the length of the templates,
i.e., the target chirp mass of the bank. ρ̃ and ρ agree
at low values (only differ by a conventional additive con-
stant), but as ρ increases, ρ̃ saturates due to the tail in
the distribution of triggers.

In Fig. 8 we show the two-dimensional histogram of the
background obtained by adding 20 000 unphysical time
shifts between detectors to the O1 LIGO data (so as to
recreate an equivalent of 20 000 O1 observing runs) for
banks BBH 2 and BBH 3. In the left panels we show the
distribution of background triggers using ρ as the score.
The tail of non-Gaussian glitches is clearly visible leading
to an overproduction of triggers where the SNR in one de-
tector is much larger than in the other. On the right pan-
els we show the distribution of the same triggers but now
using our rank score to bin them. The lines of constant
probability are now straight. Our sub-threshold candi-
dates in these banks are shown together with GW151012,
which is a clear outlier, and with GW151216.

For reference, in Figure 8 we show the line correspond-
ing to a false alarm rate of one event per O1 observing
run based on this statistic. For example, for BBH 2 this
corresponds to ρ̃2H ∼ ρ̃2L ∼ 37 if divided evenly among
both detectors. Figure 7 shows that for this threshold
SNR values the relation between ρ and ρ̃ is still linear.
This demonstrates that although very visible in the his-
tograms, at the detection limit the background is still
dominated by the Gaussian part of the noise. The pres-
ence of the non-Gaussian glitches does not significantly
overproduce the background at the detection threshold.
It is also important to note that when we demand that
the parameters of the events in both detectors are consis-
tent, according to our so-called coherent score described
in the next section, many of these outlier events are heav-
ily down-weighted.

K. Coherent Score

In this section we further improve the statistic used to
rank candidates by exploiting the information encapsu-
lated in the relative phases, amplitudes and arrival times
to the different detectors. We begin with the standard

expression:

max
T

P (ρ2H, ρ
2
L,∆t,∆φ, t | H1(T ))

P (ρ2H, ρ
2
L,∆t,∆φ, t | H0)

, (18)

where T is a template in the continuous template bank.
Because the maximization procedure on T is done inco-
herently, and prior to the application of all these terms,
we will drop it from the notation. Note that in princi-
ple we should have maximized the full expression, but
for practical reasons we decided to do the maximization
prior to the coherent analysis. In favor of this approx-
imation stands the fact that to linear order, the phase
and time shifts are built to be orthogonal to the tem-
plate identity [9], so the template’s fine optimization is
expected to preserve the φ and δt of a candidate to high
accuracy. We further develop this expression using Bayes
rule (and using some basic independence arguments):

P (ρ2H, ρ
2
L,∆t,∆φ, t | H1) = P

(
ρ2H, ρ

2
L,∆φ,∆t

∣∣nH/nL, H1

)
× P

(
t
∣∣H1, n

2
H(t) + n2L(t)

)
P (ρ2H, ρ

2
L,∆t,∆φ, t | H0) = P

(
ρ2H, ρ

2
L

∣∣H0

)
P
(
∆φ,∆t

∣∣H0

)
,

(19)

where ni is the momentary response of detector i com-
puted from the measured PSD, PSD drift correction and
the ovelap of the waveform with holes using the data
of detector i. ∆φ is the difference between detectors in
overlap phase of matched filtering the best-fit T with the
data. ∆t is the difference in arrival time of the maxi-
mum score between the detectors. P (ρ2H, ρ

2
L | H0) was

computed using the ranking approximation detailed in
Section III J.
P (∆φ,∆t | H0) is taken to be the uniform distri-

bution by symmetry. Here we note that in principle,
P (ρi | t,H0) can be non-uniform, if there are bad times
where glitches conglomerate. Also, glitches could have
a waveform model that prefers a particular phase for a
particular template. We currently choose not to intro-
duce these complications (other than the bad times veto
applied in Sec. III I).
P
(
ρ2H, ρ

2
L,∆φ,∆t

∣∣nH/nL, H1

)
is measured by drawing

samples that are uniformly distributed in volume out to
a distance where the expected value of the SNR is four,
calculating the detector response, and adding noise with
the standard complex normal distribution. Out of these
samples, we have created a binned histogram of the ob-
served meaningful values ∆t,∆φ, ρ2H, ρ

2
L; the probability

of an observed configuration given the signal hypothesis
is proportional to the histogram’s occupancy. The same
number of samples is used for all values of nH/nL so that
the pipeline’s preference for detecting events with equal
response between the detectors could be evaluated. This
is very similar to the coherent score used in [18].

The term

P
(
t
∣∣H1, n

2
H(t) + n2L(t)

)
∝ (n2H + n2L)3/2 (20)

reflects the changes in sensitivity in the detector as a
function of time. Including it allows to analyze different
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FIG. 9. Significance assessment of GW151012. In blue, the
cumulative histogram of the coherent scores of background
events in bank BBH 2 is presented. The flattening at low val-
ues is an artifact of the threshold used while collecting back-
ground triggers. GW151012 is clearly detected with high sig-
nificance. We show that its FAR is smaller than 1 in 2× 104

O1 observing runs. Extrapolation of the background distri-
bution yields a FAR of roughly one in 5× 105 O1. We note
that at this low rate, many more time slides are required for
exact assessment of the FAR

segments of data with very different sensitivities, includ-
ing multiple runs together (say O1 and O2) while main-
taining a consistent detection bar, down-weighting the
significance of spurious events from less sensitive detec-
tor times. One important note is that once we include
this term, the FAR does not have units of inverse time,
but units of inverse volume time.

L. Determination of FAR

We combine the two detectors in different time-slides
with unphysical shifts between −1000 s and 1000 s in
jumps of 0.1 s to obtain an empirical measurement of the
inverse false alarm rate of up to 2× 104 observing runs.
To these unphysical shifts we apply all stages detailed
above, exactly as we do the zero-lag data. Because the
optimization and veto stages are computationally expen-
sive, we cannot operate them on all trigger pairs for all
time-slide shifts. We ensure that any trigger that has po-
tential of entering the background distribution with an
inverse FAR that is better than one per observing run is
vetoed, optimized and ranked coherently.

M. Determination of the probability of a source
being of astrophysical origin

While the FAR is largely agnostic of the astrophysi-
cal rates (beyond the use of the model in constructing
the detection statistic) and is objectively and accurately
measurable through time-slides, it is hard to convert to
an assessment of the astrophysical origin of a particular

event. Such an assessment depends both on the exact
(potentially multidimensional) noise probability density
at the event’s location (contrast with the one dimen-
sional cumulative probability density the FAR depends
on) and the exact probability density given the astro-
physical model, including the unknown rate (also as a
function of physical parameters). Essentially, if all ex-
act details in the model were known, the probability of
an event being of astrophysical origin would be exactly
computable, but in the presence of rate uncertainties, es-
pecially when considering the rate as a function of physi-
cal parameters, the determination of pastro may be dom-
inated by rate uncertainties and astrophysical prejudice.
Nevertheless, the objectivity of pastro to ranking func-
tions and its immunity to the existence of the few last
glitches that are left after our heavy vetoing are com-
pelling, and we therefore proceed in computing it.

To do that, we strictly assume all templates inside a
bank are equally probable (even though parameter de-
pendent rate differences probably exist). We further as-
sume that the background probability density is uniform
in time and phase, an assumption we find is extremely
good when the SNR value is in the region where the Gaus-
sian noise is dominant.

We then compute the rate at which we observe such
an event in coincidence between the two detectors:

R(event | H0) = RbgP (∆t,∆φ, ρ2H, ρ
2
L | H0)

= Rbg
P (ρ2H | H0)P (ρ2L | H0)

2πT
,

(21)

where T is the allowed physical time shift between the
detector, and P (ρ2H | H0), P (ρ2L | H0) were fit using

P
(
ρ2i
∣∣H0

)
=
(
αi + βiρ

2
i

)
e−ρ

2
i /2. (22)

αi and βi are fit to the background computed from time-
slides in the region close to the (ρ2H, ρ

2
L) combination of

the event. We find this approximation robust in all cases
where the event is close to the detection threshold and
when the difference between ρ2H and ρ2L is not big.

We then compute the rate ratio

W =
R(event | H1)

R>100
=
P (∆t,∆φ, ρ2H, ρ

2
L | H1)

P (ρ2H + ρ2L > 100 | H1)
(23)

using the table constructed in Section III K. Here,
R>100 = R

(
ρ2H + ρ2L > 100

∣∣H1, nH, nL
)

is the astro-
physical rate of detecting gravitational wave mergers in
the event’s bank, with the detector sensitivity at the time
of the event. Because R>100 can be easily estimated and
updated using a list of known astrophysical events, it is
assumed to be known. We then provide the estimate for
the event’s astrophysical origin to be:

pastro(event) =
P (event | H1)

P (event | H0) + P (event | H1)

=
R>100

W
R(event|H0)

1 +R>100
W

R(event|H0)

.

(24)
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For ease of future interpretation of the results, we report
in Section IV both W/R(event | H0) and the computed
pastro using our best knowledge of R>100 at the time of
writing.

IV. RESULTS OF THE BBH SEARCH

Here we report all the signals and sub-threshold can-
didates found in the search. We report the FAR in units
of “O1” to reflect the fact that there was a volumetric
correction factor in the coherent score. If we assume the
sensitivity of the first observing run to be roughly con-
stant, then the “O1” unit can be converted to roughly
46 days, the effective coincident time we used in the
analysis (that has some variation across banks due to
differences in the data flagging thresholds). There was
no background trigger with a better coherent score than
GW150914, GW151012 and GW151226 in their respec-
tive banks, so we obtain only an upper limit on the FAR
of 1/(20 000 O1) for all of these events, with an effective
pastro = 1 for all of them. We report their recovered
squared SNR for each detector. We further found an ad-
ditional event, GW151216, with a FAR of 1/(52 O1), re-
ported in greater detail in a companion paper [19]. These
and two additional sub-threshold candidates with FAR of
approximately 1/O1 are reported in Table III.

V. CONCLUSIONS AND DISCUSSION

In this paper we presented an overview of a new and in-
dependent pipeline to analyze the publicly available data
from the first observing run of Advanced LIGO. We used
this pipeline to identify a new gravitational merger event
in the O1 data. In companion papers we will provide
additional details of our techniques and implementation
choices and further characterize our search by providing
simple estimates of the space-time volume searched as a
function of parameters. We believe this pipeline is signifi-
cantly more sensitive than those used by the LIGO/Virgo
collaboration, or Ref [7] due to our improved mitigation
of systematics in the data. However, all the pipelines are
complicated enough that it would require a concerted col-
laborative effort to quantify the differences for individual
events with different parameters and signal-to-noise ra-
tios.

There are several areas for future development and im-
provements in this pipeline, including precise determi-
nation of the merger rate/sensitive volume, analysis of
single detector triggers, and triggers with subthreshold
candidates in the other detector. For future runs, it also
remains to incorporate more than two detectors into the
ranking of coincident triggers in our pipeline.

ACKNOWLEDGMENT

We thank the participants of the JSI-GWPAW 2018
Workshop at the University of Maryland, and the As-
pen GWPop conference (2019) for constructive discus-
sions and comments.

This research has made use of data, software and/or
web tools obtained from the Gravitational Wave Open
Science Center (https://www.gw-openscience.org), a ser-
vice of LIGO Laboratory, the LIGO Scientific Collabo-
ration and the Virgo Collaboration. LIGO is funded by
the U.S. National Science Foundation. Virgo is funded
by the French Centre National de Recherche Scientifique
(CNRS), the Italian Istituto Nazionale della Fisica Nu-
cleare (INFN) and the Dutch Nikhef, with contributions
by Polish and Hungarian institutes.

TV acknowledges support by the Friends of the Insti-
tute for Advanced Study. BZ acknowledges the support
of The Peter Svennilson Membership fund. LD acknowl-
edges the support by the Raymond and Beverly Sackler
Foundation Fund. MZ is supported by NSF grants AST-
1409709, PHY-1521097 and PHY-1820775 the Canadian
Institute for Advanced Research (CIFAR) program on
Gravity and the Extreme Universe and the Simons Foun-
dation Modern Inflationary Cosmology initiative.



15

TABLE III. Events and subthreshold candidates in all of the binary black hole banks.

Name Bank M(M�)a GPS timeb ρ2H ρ2L FAR−1(O1)c W
R(event|H0)

(days) R>100(days−1) pastro

GW151226 BBH 1 9.74 1135136350.585 120.0 52.1 > 20 000 –d – 1d

GW151012 BBH 2 18 1128678900.428 55.66 46.75 > 20 000 7× 105 e 0.01 0.9998e

GW150914 BBH 3 28 1126259462.411 396.1 184.3 > 20 000 –d – 1d

GW151216f BBH 3 29 1134293073.164 39.4 34.8 52 74± 2 0.033 0.71

151231 BBH 3 30 1135557647.145 37.5 25.2 0.98 5.4± 0.4 0.033 0.15
151011 BBH 4 58 1128626886.595 24.5 39.9 1.1 16± 1 0.01 0.14

a Posterior samples from parameter estimation runs for all the O1 and O2 events can be found at
https://github.com/jroulet/O2_samples

b Times are given as the linear-free times, that is, the times corresponding to when the waveforms generated by the bank were
orthogonal to the time shift component given the fiducial PSD.

c The false alarm rates (FAR) given are computed within each bank. The inverse false alarm rate is given in terms of “O1” to reflect the
volumetric weighting of events using the momentary detector sensitivity. Under the approximation of constant sensitivity of the
detectors during the observing runs, the unit “O1” corresponds to roughly 46 days.

d We found no credible way of computing the probability density of the background distribution at these high SNRs.
e Estimating pastro for GW151012 required some extrapolation of the background trigger distribution.
f A new event we are reporting in a companion paper [19].

https://github.com/jroulet/O2_samples
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