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Abstract
We present robust constraints on the stochastic gravitational waves (GWs) at Mpc scales from the CMB data. CMB

constraints on GWs are usually characterized as the tensor-to-scalar ratio, assuming specifically a power-law form of the
primordial spectrum, and are obtained from the angular spectra of CMB. Here, we relax the assumption of the power-law form,
and consider to what extent one can constrain a monochromatic GW at shorter wavelengths. Previously, such a constraint has
been derived at the wavelengths larger than the resolution scale of the CMB measurements, typically above 100 Mpc (below
10−16 Hz in frequency). However, GWs whose wavelength is much shorter than 100 Mpc can imprint a small but non-negligible
signal on CMB anisotropies at observed angular scales, ` < 1000. Here, using the CMB temperature, polarization, and lensing
data set, we obtain the best constraints to date at 10−16 − 10−14 Hz of the GWs produced before the time of decoupling,
which are tighter than those derived from the astrometric measurements and upper bounds on extra radiations. In the future,
the constraints on GWs at Mpc scales will be further improved by several orders of magnitude with the precision B-mode
measurement on large scales, ` < 100.

I. INTRODUCTION

The stochastic GW background has been constrained
by multiple observations. The CMB temperature and
polarization observations have provided the tightest con-
straints on the GW background at very low frequen-
cies, f . 10−16 Hz [1–3]. The upper bound on the
amplitude of the primordial GW power spectrum has
been translated to that on the stochastic GW back-
ground at scales larger than the angular resolution of
CMB experiments, k . 0.1 Mpc−1, which is equivalent
to f . 10−16 Hz in frequency. Combining CMB and LSS
data, the GW background is also constrained at higher
frequencies, f = 10−16 − 10−11 Hz, via the upper bound
on the extra radiation at the time of CMB decoupling [4–
6]. Other astrophysical observations have put constraints
on the GW background at roughly the same frequency
range. Refs. [7] and [8] use the motion (astrometry) of
quasars and radio sources, respectively, to constrain the
GW energy density. Ref. [9] derives the constraint on
GWs from the secular aberration of the extragalatic ra-
dio sources caused by the rotation of the Solar System
barycenter around the Galactic center. The stochastic
GW background at higher frequencies, f & 10−11 Hz, is
also constrained by many other direct and indirect obser-
vations such as the Pulsar Timing Array [10], Big Bang
nucleosynthesis (BBN) [11], and the Laser Interferome-
ter Gravitational-Wave Observatory (LIGO) [12]. The
absence of the primordial Black Hole also leads to the
upper bound on the GW background at a broad range of
frequencies [13].

In this paper, we revisit the CMB constraints on
the energy density of the stochastic GW background at

k . 10 Mpc−1 based on the upper bound on the ampli-
tude of the primordial tensor power spectrum. The GW
constraints by the primordial tensor power spectrum have
been discussed only at the CMB scales, k . 0.1 Mpc−1

(see e.g. [12]). This is because a finite angular resolution
of CMB maps limits the observable range of the CMB
angular multipole to ` . 1000, and the observable scale
is restricted to k ' `/χ∗ . 0.1 Mpc−1 where χ∗ ∼ 104

is the comoving distance to the CMB last scattering sur-
face. The CMB spectrum is most sensitive to the pri-
mordial GWs at k . 0.01 Mpc−1 [14]. However, the
CMB data can be used to constrain the stochastic GW
background at small scales compared to the CMB scale,
k & 10 Mpc−1. The CMB anisotropies and lensing at
large-angular scales come from the GWs perturbations
at low redshifts. Although such contributions are very
small, we find that the upper limits on the large-scale
CMB fluctuations provide tighter constraints on the GW
energy density at k = 0.1 − 10 Mpc−1 than those from
other existing constraints at the same scales.

To constrain the energy density of the stochastic GW
background using CMB angular spectra, we need to as-
sume a cosmological model for the scalar perturbations,
though the degeneracy between the cosmological param-
eters and GW energy density would be small due to the
difference of the angular scale dependence. In this re-
spect, the GW constraints obtained by the CMB angular
spectra depend on the model of the scalar perturbations.
A less model-independent way to constrain the GW en-
ergy density by CMB observations is to use the curl mode
of the CMB deflection angle which has been discussed
in several papers [15–18]. In the standard cosmology,
the curl mode is consistent with zero within the current
measurement error of Planck. In this paper, we use the
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FIG. 1. The angular spectra of the CMB temperature, B-mode and lensing curl-mode with varying the central frequency,
kc (solid lines). The amplitude of the power spectra is given by AGW = rAs where the tensor-to-scalar ratio is chosen as
the current best upper bound, r = 0.06 [2], and the scalar amplitude at k = 0.05 Mpc−1 is consistent with the latest Planck
cosmology, As = 2.1 × 10−9. The gray dashed lines in the temperature and B mode spectra show the contributions from the
scalar perturbations, while that in the curl-mode spectrum shows the reconstruction noise of the Planck observation. The black
dashed lines show the inflationary GW contributions with r = 0.1.

curl mode to constrain the GW energy density as a more
robust way than using the CMB angular spectra.

This paper is organized as follows. In Sec. II, we be-
gin by discussing the CMB power spectra generated by
small-scale GWs, and see their typical behaviors at large
angular scales. Then, Sec. III describes the data and our
method to derive the constraints on small-scale GWs.
Sec. IV presents our main results, i.e., the upper bound
on the energy density of stochastic GWs, together with
future forecast. Finally, Sec. V summarizes our work.

II. ANGULAR SPECTRUM

CMB experiments observe the CMB temperature, Θ,
and Stokes Q/U maps at each pixel on the unit sphere.
The Stokes Q/U maps are decomposed into the E/B
modes by the parity symmetry [19, 20]. We then ob-
tain the angular spectra of the temperature and B
modes by squaring the harmonic coefficients of the CMB
anisotropies.

The CMB primary anisotropies are distorted by grav-
itational lensing from the large-scale structure [21, 22].
The lensing distortion is described by a remapping of the
CMB fluctuations at the CMB last scattering by a deflec-
tion angle, d. The lensing effect leads to mode couplings
between different CMB multipoles [23]. This mode cou-
plings can be used to reconstruct a map of the curl mode
of the deflection angle, $ = (?∇) · d, from an observed
CMB map (e.g., [24, 25]), where ? is the rotation opera-
tor for a two dimensional vector [25]. We then measure
the curl-mode spectrum.

Given the initial dimensionless power spectrum of
GWs, ∆t(k), the CMB and curl-mode spectra are the-
oretically computed, with a help of the CMB Boltzmann

code, as

CXX` = 4π

∫
d ln k ∆t(k)

×
∫

dχ j`(kχ)SX(k, χ)

∫
dχ′ j`(kχ

′)SX(k, χ′) (1)

with X = Θ, B or $. In this paper, the source functions,
SX(k, χ), and angular spectra CXX` are computed, mod-
ifying CAMB [26]. To obtain a generic constraint on
stochastic GWs in a rather model-independent manner,
we consider a monochromatic GW given at the wavenum-
ber, kc. The dimensionless power spectrum of GW is then
given by

∆t(k) =

{
AGW/(2ε) (|k/kc − 1| ≤ ε)
0 (otherwise)

. (2)

Here, AGW is the amplitude of GW, and ε character-
izes the width of the GW spectrum in wavenumber.
We divide the wavenumber between 10−4Mpc−1 ≤ k ≤
10Mpc−1 into logarithmically equal 20 bins. We checked
that our result remains unchanged even if we change the
bin number to a larger value.

Fig. 1 shows the angular spectra of the CMB tem-
perature (left), B-mode (middle), and curl-mode (right)
for various wavenumber kc. The amplitude of the power
spectra is given by AGW = r As, where the tensor-to-
scalar ratio r is set to be the current best upper bound,
r = 0.06 [2], with the scalar amplitude at k = 0.05
Mpc−1 determined by the latest Planck cosmology, As =
2.1 × 10−9 [3]. The large-scale Fourier modes (kc � 1
Mpc−1) contribute to the power spectrum at large scales.
Similarly, the small-scale Fourier modes (kc � 1 Mpc−1)
mostly generate the small-scale fluctuations. The large-
scale fluctuations from such small-scale Fourier modes are
typically small but its contribution is not exactly zero.
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FIG. 2. The angular spectra of the CMB temperature, B mode and lensing curl-mode from a top-hat primordial GW power
spectrum with 0.01Mpc−1 ≤ k ≤ 0.018Mpc−1 using the Limber approximation, ` = kχ. The amplitude of the power spectra is
the same as that in Fig. 1. The vertical dashed lines show ` = 0.01χ∗ Mpc−1 and ` = 0.018χ∗ Mpc−1. For comparison, we also
show the results without the Limber approximation (blue).

FIG. 3. Same as Fig. 1 but for kc > 1 Mpc−1.

To elucidate the low-` behaviors shown in Fig. 1, one
may compare the exact calculation with the Limber ap-
proximation. In the Limber approximation, the source
function SX and power spectrum ∆t in the integrand of
Eq. (1) are assumed to be a smooth function of k. Then,
the integral convolving spherical Bessel function over k
exhibits a heavy cancellation, which results in a rather
simplified form of the angular spectrum (see e.g. [21, 27]);

CXX` ' 2π2

`3

∫
dχ χ∆t

(
k =

`

χ

) [
SX
(
k =

`

χ
, χ
)]2

(3)

which tells us that the amplitude of CXX` is determined
by the contribution of GWs at the wavenumber k = `/χ
projected along the line-of-sight (i.e., χ-integral). Strictly
speaking, the above equation is inadequate in our case
because the integrand contains the top-hat primordial
power spectrum. Further, the tensor transfer function
has oscillatory behaviors, which, combining with spheri-

cal Bessel function, leads to a rather non-trivial cancella-
tion. Nevertheless, Eq. (3) can be used for a qualitative
understanding of the angular spectrum.

In Fig. 2, we specifically set the top-hat GW spec-
trum to the one centered at kc = 0.014 Mpc−1 with the
width ∆k = 0.008 Mpc−1, and plot the angular spectra
with and without the Limber approximation. Then, in
all cases, the results with Limber approximation exhibit
a sharply peaked structure around `∗ ≡ kcχ∗, indicated
by the two vertical dashed lines, where χ∗ is the comov-
ing distance to the last scattering surface of CMB. At
higher multipoles of ` > `∗, the amplitudes rapidly falls
off, consistent with exact calculations. These behaviors
basically come from the nature of photon radiative trans-
fer encapsulated in the function SX. On the other hand,
looking at the lower multipoles of `∗ < `, while the Lim-
ber approximation predicts a rather suppressed B-mode
spectrum which fails to reproduce the exact calculation,
the predictions of the temperature and curl-mode spec-
tra show a rather long-tail, which qualitatively explains
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the bahaviors in the exact calculations. Recall that in
the Limber approximation, the top-hat GWs peaked at
kc can contribute to C` only at the multipole ` = kc χ,
Fig. 2 implies that the low-` behaviors of the exact cal-
culation in temperature and curl-mode spectrum mainly
comes from the low-z GW contributions (i.e., χ . χ∗),
whereas a non-negligible amount of the high-z GWs plays
a role to determine the low-` amplitude of the B-mode
spectrum.

Having confirmed the typical behaviors of the angular
spectra, we further consider the small-scale GWs, and
plot in Fig. 3 the angular spectra for kc > 1 Mpc−1.
The results are compared with the contributions from
the scalar perturbations or the reconstruction noise. As
we have seen in Figs. 1 and 2, no appreciable low-` tail
is developed for the B-mode spectrum, since the polar-
ization is only generated at the reionization and recom-
bination. Fig. 3 suggests that the B-mode constraint on
the small-scale GWs is basically limited by the angular
resolution of CMB observations. On the other hand, the
temperature and curl-mode power spectra exhibit a low-`
tail that is more prominent and is rather enhanced com-
pared to the results in Fig. 1. This implies that a large
angle CMB data can still gives a meaningful constraint
on small-scale GWs.

III. DATA AND METHOD

Here, we explain the data and the analysis method
to constrain the stochastic GWs, particularly paying an
attention at small scales. In our analysis, we use the
CMB temperature spectrum, CΘΘ

` , measured by Planck
[3], the B-mode spectrum, CBB` , by BICEP/Keck Array
[2], and curl-mode spectrum, C$$L , by Planck [28]. Note
that the constraints from the temperature-E cross and
E-mode auto spectra measured by Planck turn out to be
statistically insignificant compared to that obtained by
the temperature spectrum. In this paper, therefore, we
only present the results from the temperature, B-mode
and curl-mode spectra. We checked that our constraints
remain unchanged even if we add other B-mode spectra
measured by POLARBEAR [29] and SPTpol [30].

Provided the data, the constraint on the amplitude of
stochastic GW, AGW, assuming the monochromatic wave
with wavenumber kc, is obtained by minimizing the likeli-
hood function L. We adopt here the Gaussian likelihood
function:

−2 lnL(AGW) =

n∑
b=1

[ĈXYb − CXY,fid
b (AGW)]2

(σXYb )2
, (4)

where the subscript b indicates the index of the multi-
pole bins, and n is the number of the multipole bins.
The label XY implies ΘΘ, BB or $$. The power

spectrum ĈXYb is the measured binned spectrum, and

CXY,fid
b (AGW) is the theoretical prediction having a spe-

cific GW amplitude AGW. Finally, σXYb is the measure-
ment error of the angular spectrum provided by the CMB

experiments described above. The multipole ranges used
in the likelihood analysis are 2 ≤ ` ≤ 2508 for temper-
ature, 37 ≤ ` ≤ 332 for B-mode, and 2 ≤ ` ≤ 2020
for curl-mode spectra, respectively, at which the data is
validated.

The observed temperature spectrum has contributions
from both the scalar and tensor perturbations. In the
B-mode spectrum, the gravitational lensing effect gener-
ates the B mode even if there is only the scalar pertur-
bations [31]. Thus, we simultaneously need to model or
constrain the non-GW contributions to constrain GWs in
the angular spectra. In our analysis, we simply subtract
the contributions of the scalar perturbations from the
measured spectrum, assuming the Planck best-fit ΛCDM
model, since the degeneracy between the GW amplitude
and cosmological parameters would be small and does
not increase the upper bound by more than an order of
magnitude.

The upper bound on AGW obtained from the above
analysis is then translated to the GW fractional energy
density defined as

ΩGW(k) ≡ 1

ρc

dρGW

d ln k

∣∣∣∣
η=η0

=
∆t(k)

12H2
0

(
∂T (k, η0)

∂η

)2

=
(AGW/2ε)

12H2
0

(
∂T (k, η0)

∂η

)2

, (5)

at |k/kc − 1| ≤ ε and zero otherwise, where ρc is the
critical density of the Universe, and H0 is the Hubble
parameter today. The time derivative of the GW transfer
function is computed by CAMB assuming no neutrino
anisotropic stress [26].

IV. RESULTS

Fig. 4 shows the 95% C.L. upper bounds on the GW
amplitudes at each scale using the current best measure-
ments of the CMB angular spectra. At k = 0.01 Mpc−1,
the best constraints come from the B-mode spectrum
measured by BICEP2/Keck Array. At smaller scales,
k & 0.1 Mpc−1, however, the temperature spectrum ob-
tained by Planck provides the constraints on the GW am-
plitudes comparable to that from the B-mode spectrum.
At large scales, the constraint by the B-mode spectrum
becomes very weak because the B-mode spectrum is not
measured at ` . 30.

Fig. 4 also plots the expected constraints on the GW
spectrum amplitude by future CMB observations. In this
forecast, we assume an idealistic future CMB experiment,
i.e., a full sky observation, 1µK-arcmin white noise with
1 arcmin Gaussian beam. We also assume no foregrounds
and 90% of the lensing B mode is removed. Thus, the
results provide the expected constraints in the most opti-
mistic case. In the future, the constraints from the tem-
perature spectrum are not significantly improved since
the current temperature measurement is already domi-
nated by the scalar perturbations at ` < 2000. On the
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FIG. 4. The current 95% upper bounds on the amplitude of
the stochastic GW background at k < 10 Mpc−1 by the CMB
observations. For reference, we show the energy density of the
scale-invariant primordial GW with r = 0.06 as a function of k
(black solid). The dashed lines are the expected upper bounds
by a future CMB observation. The vertical dot-dashed line
roughly corresponds to the maximum observable wavenumber
determined by the resolution of CMB experiments.

other hand, the B mode and curl mode are still domi-
nated by the instrumental and reconstruction noise, re-
spectively. The constraints are improved if the noise
contribution is reduced in the future. The tightest con-
straints will be obtained from the measurement of the
B-mode spectrum.

V. SUMMARY AND DISCUSSION

In this paper, using the currently available CMB data,
we presented robust constraints on stochastic GWs at
Mpc scales, which are far below the resolution limit of
CMB measurements. The key point is that even the
short-wavelength GWs can still give an impact on the
power spectrum of CMB anisotropies at large angular
scales, to which we cannot apply the Limber approxi-
mation due to the heavily oscillatory behaviors of GWs.
Using the available CMB data of temperature, B-mode
polarization, and lensing from Planck and BICEP/Keck
array, we find that currently both the temperature and
B-mode data put the constraint almost at the same level
at k & 0.1 Mpc−1, summarized as

ΩGW . 10−12

(
k

0.1 Mpc−1

)3

, (6)

which is compared with other constraints shown in
Fig. 5. Note that Eq. (6) is, strictly speaking, valid
at k . 10 Mpc−1, at which we stop constraining GW due
to the heavy oscillations of the spherical Bessel function
and source function in the integrand of Eq. (1). However,

FIG. 5. Summary of the current status of the upper bounds
on the energy density of the stochastic GW background. The
thick red and blue shaded regions correspond to the con-
straints obtained in this paper using the CMB angular spec-
tra and curl mode of the gravitational lensing, respectively.
We also show other constraints from the astrometry of ra-
dio sources (Astrometry) [8], extra radiation before CMB de-
coupling (CMB+LSS+BBN) [6, 32], Pulsar Timing (Pulsars)
[10], and GW interferometers (aLIGO O1)[12].

it is expected from the behaviors seen in Fig. 3 that the
scaling given at Eq. (6) still holds at k & 10 Mpc−1, thus
giving a meaningful constraint complementary to those
coming from astrometric observation and thermal history
of the Universe.

In the future, a tighter constraint will be obtained from
the B-mode polarization, and the expected constraint
will be improved by several orders of magnitude. Note
cautiously that the constraints coming from the temper-
ature and B-mode data are model dependent in the sense
that the constraints are obtained from the data subtract-
ing the primary (temperature) or secondary (B-mode)
signal created by the scalar perturbations, for which we
assume ΛCDM model. In this respect, the curl-mode
data gives a complementary information to the tempera-
ture and B-mode polarization, although the constraining
power is significantly degraded.

Finally, the constraints obtained here is useful in nar-
rowing the parameters of several models that can produce
the GWs at Mpc scales. The early universe scenarios pro-
ducing a blue-tilted stochastic GW are obviously inter-
esting targets to constrain (e.g., [33]). Apart from these,
the constraint on cosmic string models is also worth for
consideration. The stochastic GW spectrum produced
by the cosmic strings depends significantly on the model
parameters and assumptions as shown in Ref. [34–36],
and thus constraining the GWs over a very broad fre-
quency range is important to pin down the cosmic string
models. Another possible source of GWs at Mpc scales is
the ultra-light axion motivated by string theory. Ref. [37]
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discusses the possibility that ultra-light axion produces a
sizable amount of GWs through the non-linear scalar field
interaction induced by parametric resonance, and the
produced GWs can have a peak with broad distribution
at Mpc scales if the axion mass is around m ∼ 10−22 eV.
This mass scale lies at the scales for which the axion can
put an interesting imprint on the small-scale structure
[38–42]. Several works also discuss generation of GWs
at Mpc scales assuming that the primordial GW power
spectrum has a sharp peak [32, 43]. The constraint on
stochastic GWs obtained in this paper certainly helps to
exclude a part of parameter regions that can produce a
large GW amplitude, although a detailed analysis is still
necessary to get a constraint, using properly the shape
of the predicted GW spectrum.
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