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Resonance energies are frequently derived from precisely measured excitation energies and re-
action Q-values. The latter quantities are usually calculated from atomic instead of nuclear mass
differences. This procedure disregards the energy shift caused by the difference in the total elec-
tron binding energies before and after the interaction. Assuming that the interacting nuclei in a
stellar plasma are fully ionized, this energy shift can have a significant effect, considering that the
resonance energy enters exponentially into the expression for the narrow-resonance thermonuclear
reaction rates. As an example, the rate of the 36Ar(p,γ)37K reaction is discussed, which, at tem-
peratures below 1 GK, depends only on the contributions of a single resonance and direct capture.
In this case, disregarding the energy shift caused by the total electron binding energy difference
erroneously enhances the rate by ≈40% near temperatures of 70 MK.

I. INTRODUCTION

Knowledge of precise center-of-mass resonance energies
is essential for estimating thermonuclear reaction rates
[1]. Resonance energies can be deduced, for example,
from measured thick- or thin-target excitation functions.
This procedure requires accurate knowledge of the beam
energy, beam resolution, and target surface composition.
For this reason, most resonance energies, especially for
narrow resonances, are calculated from well-known exci-
tation energies, Ex, in the compound nucleus and the re-
action Q-value, according to Ecm = Ex − Q. Excitation
energies of unbound states are usually well-known, with
an uncertainty of a fraction of a kiloelectronvolt. Since
many Q-values can be computed precisely from evalu-
ated masses, the deduced resonance energies have small
uncertainties.

The purpose of this report is to draw attention to the
widespread practice of adopting atomic masses as op-
posed to nuclear masses for the calculation of the Q-
value in the above expression. The interacting nuclei
in a stellar plasma are fully ionized. For example, the
temperature range from 15 MK (Sun) to 300 MK (clas-
sical novae) corresponds to an average thermal energy
of 1.3 − 26 keV. The ionization energy of a 1s electron,
for example, in carbon, neon, or argon is 0.3 keV, 0.9
keV, or 3.2 keV, respectively [2]. Therefore, most nuclei
taking part in the thermonuclear burning possess few,
if any, bound electrons. Assuming that the interacting
nuclei in a stellar plasma are fully ionized, the proce-
dure of adopting atomic masses as opposed to nuclear
masses for the calculation of Q-values disregards the dif-
ference in total electron binding energies. It will be shown
that this effect can change thermonuclear reaction rates
by significant amounts. As an example, the rate of the
36Ar(p,γ)37K reaction will be discussed at temperatures
between 30 MK and 1 GK.

This report is not concerned with the impact of atomic
binding and excitation on the energy release in the lab-
oratory study of nuclear reactions (see, e.g., Ref. [3]).

It is neither concerned with the shift in resonance ener-
gies caused by electron screening in the stellar plasma,
which has to be taken separately into account (see, e.g.,
Refs. [1, 4]).

Section II presents preliminaries. Results are discussed
in Section III. A summary is given in Section IV.

II. Q-VALUES

Mass evaluations (e.g., Wang et al. [5]) present Q-
values, or separation energies, based on atomic mass dif-
ferences. Such Q-values are given by

Qat = Σmi
at − Σmf

at (1)

with Σmi
at and Σmf

at denoting the sum of atomic masses
before and after the interaction, respectively. The quan-
tity needed for computing center-of-mass resonance en-
ergies from measured excitation energies is the Q-value
based on nuclear masses

Qnu = Σmi
nu − Σmf

nu (2)

Atomic and nuclear masses are related by

mat(A,Z) = mnu(A,Z) + Zme −Be(Z) (3)

where A and Z denote the mass number and atomic num-
ber, respectively, me is the electron rest mass, and Be(Z)
is the total electron binding energy in the neutral atom
of atomic number Z. A positive sign is assigned to the
binding energy, Be. Consequently, the Q-values based on
nuclear and atomic masses are related by

Qnu = Qat + (ΣBi
e − ΣBf

e ) (4)

where ΣBi
e and ΣBf

e are the sum of total electron binding
energies before and after the interaction, respectively.

The total electron binding energy for an atom of given
atomic number, Z, can be approximated by [6]

Be(Z) = 14.4381Z2.39 + 1.55468× 10−6Z5.35 eV (5)
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which is based on the neutral-atom electron binding en-
ergies calculated by Huang et al. [2] using the relaxed-
orbital relativistic Hartree-Fock-Slater formalism. This
expression is plotted in Figure 1. It can be seen that
the binding energy in a neutral atom increases steeply
for increasing atomic number: it amounts to 3.5 keV for
neon, 7.9 keV for silicon, and 14.5 keV for argon. In
other words, disregarding the difference in total electron
binding energies will introduce a significant bias in the
calculation of the center-of-mass resonance energy from
the excitation energy and the Q-value.
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FIG. 1. Total electron binding energy versus atomic number,
Z. The graph is computed using the approximate expres-
sion from Lunney, Pearson and Thibault [6], given by Equa-
tion (5), which is based on the calculations of Huang et al.
[2].

Total electron binding energies cannot be easily mea-
sured directly and, therefore, it is difficult to estimate the
accuracy of Equation (5). Table IV of Ref. [2] compares
the calculated electron binding energies for given orbits
to experimental values. The good agreement shows that
Equation (5) most likely estimates total electron binding
energies with an uncertainty much smaller than the de-
rived electron binding energy differences. Consequently,
this correction should be taken into account, as illus-
trated in the following section.

III. EXAMPLE

As an example, the thermonuclear rate of the
36Ar(p,γ)37K reaction will be considered. Between tem-
peratures of 70 MK and 800 MK, the rate is dominated by
a single resonance near a laboratory energy of ≈320 keV
(see Fig. 5 of Ref. [7]). At lower temperatures, the direct
capture process dominates the total rate.

The resonance was first observed by Iliadis et al. [7].
The most recent value for the resonance strength is
ωγ = (7.0 ± 1.0) × 10−4 eV [8]. The excitation en-
ergy of the corresponding 37K compound level is Ex =
2170.18 ± 0.13 keV [9]. The tabulated Q-value of the
36Ar(p,γ)37K reaction, which is based on the difference
in atomic masses, amounts to Qat = 1857.63±0.09 keV
[5]. Based on this input, the center-of-mass resonance
energy that would be adopted by most practitioners is
Ecm

r,at = Ex−Qat = 312.55± 0.16 keV. However, accord-
ing to Equation 4, the correct center-of-mass resonance
energy based on the nuclear mass difference is

Ecm
r,nu = Ex − (Qat + ∆Be) = Ecm

r,at −∆Be

= 314.53± 0.16 keV
(6)

where ∆Be ≡ ΣBi
e − ΣBf

e = −1.98 keV is the total
electron binding energy difference before and after the
interaction. Therefore, disregarding the electron binding
energy incorrectly reduces the resonance energy by about
2 keV, which significantly exceeds the energy uncertainty.

Thermonuclear reaction rates can be very sensitive to
resonance energy shifts of this magnitude, because the
energy enters exponentially in the rate expression. The
reaction rate per particle pair, in units of cm3mol−1s−1,
for a single isolated resonance is given by [1]

〈σv〉 =

(
2π

m01kT

)3/2

~2e−Ecm
r /(kT )ωγ (7)

where m01 is the reduced mass of the 36Ar + p system,
k is the Boltzmann constant, and T is the temperature.
The ratio of the rate calculated with the resonance energy
based on the nuclear mass difference and the rate based
on the atomic mass difference is

R ≡
〈σv〉nu
〈σv〉at

=
e−(Ecm

r,at−∆Be)/(kT )

e−Ecm
r,at/(kT )

= e∆Be/(kT ) (8)

where the small changes in the reduced mass and the de
Broglie wavelength (which enters in the derivation of the
measured resonance strength) can be safely disregarded.

For the 315 keV resonance in 36Ar(p,γ)37K, one finds R
= exp (−0.0230/T9), where T9 is the temperature in units
of gigakelvin. This expression is plotted in Figure 2 as
the dashed line. It can be seen that the systematic bias
introduced when atomic instead of nuclear masses are
used can be significant. For example, at 70 MK1 the
difference amounts to ≈40%, and becomes larger with
decreasing temperature.

1 The plasma ionization depends on the temperature, density (be-
cause of pressure ionization), and composition of the gas. A
software instrument that computes the ionization fractions us-
ing the Saha equation is provided in Ref. [10]. For example, at
T = 70 MK one finds that 36Ar and 37K atoms are fully ionized
for all densities and compositions of interest to thermonuclear
burning.
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FIG. 2. (Color online) Ratio of 36Ar(p,γ)37K reaction rates
obtained with nuclear masses and atomic masses for calcu-
lating the center-of-mass resonance energy; the quantity R is
defined in Equation (8). (Solid line) Rate ratio that takes
all resonant and nonresonant contributions into account [11].
(Dashed line) Rate ratio for the Ec.m.

r = 315 keV resonance
alone, according to the expression R = exp (−0.0230/T9) (see
text).

Besides the 315 keV resonance, the direct capture pro-
cess also contributes to the total 36Ar(p,γ)37K rates be-
low 1 GK. The ratio of the total rates obtained with nu-
clear masses and atomic masses for calculating the center-
of-mass resonance energy is shown as the solid line in
Figure 2. As expected, it closely follows the dashed line
above a temperature of 70 MK, where the 315 keV reso-

nance dominates the total rate. For lower temperatures,
the rate ratio is close to unity because the direct capture
process dominates the total rate and the variation in the
resonance energy is inconsequential.

IV. SUMMARY

This work discussed the systematic bias introduced by
adopting tabulated Q-values based on atomic mass differ-
ence for the calculation of center-of-mass resonance en-
ergies. This procedure, which is widespread in the litera-
ture, provides erroneous results since it does not account
for the difference in total electron binding energies before
and after the interaction. As an example, the thermonu-
clear rates of the 36Ar(p,γ)37K reaction were discussed.
In this case, the total electron binding energy difference
causes a 2-keV shift in the energy of the lowest-lying res-
onance, resulting in an erroneous increase of the reaction
rate by ≈40% near 70 MK. The effect described in the
present work is negligible for reactions involving light nu-
clides (p, d, t, 3He, 4He). However, it becomes noticeable
for nuclides heavier than oxygen and increases in mag-
nitude with increasing atomic number. Additionally, the
effect will be more pronounced in α-capture reactions
compared to proton-induced reactions.
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