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The potential model for nuclear astrophysical reactions requires a considerably shallow nuclear
potential when a square-well potential is employed to fit experimental data. We discuss the origin
of this apparently different behavior from that obtained with a smooth Woods-Saxon potential, for
which a deep potential is often employed. We argue that due to the sharp change of the potential
at the boundary the radius parameter tends to be large in the square-well model, which results in
a large absorption radius. The wave function then needs to be suppressed in the absorption region,
which can eventually be achieved by using a shallow potential. We thus clarify the reason why the
square-well potential has been able to reproduce a large amount of fusion data.

I. INTRODUCTION

Heavy-ion fusion reactions, such as 12C+12C and
16O+16O reactions, play an important role in nuclear as-
trophysics [1–4]. These reactions take place at extremely
low energies, and a direct measurement of the reaction
cross sections to obtain the astrophysical fusion rates is
almost impossible. It is therefore indispensable to ex-
trapolate experimental data at higher energies down to
the region which is relevant to nuclear astrophysics. For
this purpose, the potential model with a Woods-Saxon
potential has often been used. Alternatively, one can also
use a square-well potential, as has been advocated very
successfully by Michaud and Fowler [5]. The fusion prob-
ability can be evaluated analytically with such a square-
well potential, and the calculation becomes considerably
simplified. See e.g., Refs. [6, 7] for recent applications
of the square-well model to the 12C+12C and 12C+13C
reactions.

Despite its simple nature, a square-well potential ac-
counts for a large amount of experimental data, some-
times even better than a fit with a Woods-Saxon po-
tential [1]. However, it has been recognized that the
resultant square-well potential, that is used for a total
(the nuclear + the Coulomb) potential, has to be re-
pulsive [8, 9]. For instance, for the 12C+12C reaction,
the best fit was obtained with the square-well potential,
V (r) = V0 θ(R − r) (r ≤ R), with V0 = +5.8 MeV and
R = 7.50 fm [8]. Even though the value of V0 is some-
what smaller than the Coulomb energy at r = R, that
is, Vc = 6.9 MeV, and thus the nuclear interaction is still
attractive, the potential depth for the nuclear potential,
V0 − Vc, is only 1.1 MeV, which is unusually small. The
same tendency has been found also for the 12C+16O and
the 16O+16O reactions [8].

The purpose of this paper is to clarify the origin of a
shallow depth of a square-well potential for nuclear as-
trophysical reactions. To this end, we shall study the
sensitivity of fusion cross sections to the parameters of
the square-well potential, such as the range of the imag-
inary part and the depth of the real part.

II. SQUARE-WELL POTENTIAL MODEL

In the square-well potential model, one considers the
following radial wave function for the relative motion be-
tween two nuclei [1]:

ul(r) = Tle
−iKr (r < R), (1)

= H
(−)
l (kr) − SlH

(+)
l (kr) (r ≥ R), (2)

with K =
√

2µ[E − (V0 − iW0)]/h̄
2 and k =

√

2µE/h̄2,

µ and E being the reduced mass and the incident en-
ergy in the center of mass frame, respectively. Here, Tl

and Sl are the transmission and reflection coefficients, re-

spectively, and l is the partial wave. H
(+)
l and H

(−)
l are

the outgoing and the incoming Coulomb wave functions,
respectively, which are given in terms of the regular and

the irregular Coulomb wave functions asH
(±)
l = Gl±iFl.

The form of the wave function for r < R is nothing but
the incoming wave boundary condition [10, 11], which
assumes a strong absorption in the region r < R. The
imaginary part of the square well potential, −iW0, al-
lows an absorption even for E < V0. From the matching
condition of the wave function at r = R, one obtains [12]

1− |Sl|
2 =

4 Pl

KR
(

1 + Pl

KR

)2
+
(

sl
KR

)2
, (3)

with

Pl =
kR

F 2
l +G2

l

, (4)

sl = kR
FlF

′

l +GlG
′

l

F 2
l +G2

l

, (5)

where the right hand side of Eqs. (4) and (5) are evalu-
ated at kR. Fusion cross sections are then computed as
[10],

σfus(E) =
π

k2

∑

l

(2l+ 1)(1− |Sl|
2). (6)

With those fusion cross sections, the astrophysical S-
factor is defined as,

S(E) = Eσfus(E) e2πη(E), (7)
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FIG. 1: (The upper panel) The astrophysical S-factor for
the 16O+16O reaction. The solid and the dashed lines are
obtained with a square-well and a Woods-Saxon potentials,
respectively. The experimental data are taken from Ref. [14].
(The lower panel) The radial dependence of the total poten-
tials used in the calculations shown in the upper panel.

where η(E) = ZPZT e
2/(h̄v) is the Sommerferd pa-

rameter. Here, ZP and ZT are the charge number of
the projectile and the target nuclei, respectively, and
v =

√

2E/µ is the velocity for the relative motion.
For fusion of two identical bosons, such as 12C+12C

and 16O+16O, one has to symmetrize the wave function
with respect to the interchange of the two nuclei. The
fusion cross sections are then evaluated as [13],

σfus(E) =
π

k2

∑

l

(1 + (−1)l)(2l + 1)(1− |Sl|
2). (8)

In this case, only even partial waves contribute to fusion
cross sections.
The upper panel of Fig. 1 shows the astrophysical

S-factor for the 16O+16O reaction. The solid line is ob-
tained with a square-well potential with V0 = 9.4 MeV,
R = 8.13 fm, and W0 = 2.1 MeV. The reduced mass is
taken to be µ = m(16O)/2, where m(16O) is the exper-
imental mass for the 16O nucleus. For comparison, the
figure also shows the result of the Woods-Saxon potential
with the depth, the range, and the diffuseness parameters
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FIG. 2: Same as Fig. 1, but for two different depths of the
Woods-Saxon potential as indicated in the figure.

for the real part of V0 = −54.5 MeV, R = 6.5 fm, and
a = 0.45 fm, respectively (the dashed line). The param-
eters for the imaginary part are taken to be W0 = 10.0
MeV, Rw = 5 fm, and aw = 0.1 fm. Those calcula-
tions are compared with the experimental data [14]. One
can see that both calculations reproduce the data equally
well.

The lower panel of the figure shows the radial depen-
dence of the two potentials employed. Evidently, the
square-well potential is much shallower than the Woods-
Saxon potential. One can also see that the range of the
nuclear potential is much larger in the square-well po-
tential as compared to the Woods-Saxon potential. We
have confirmed that these features remain the same even
if we replace e−iKr in Eq. (1) with H

(−)
l (Kr) by taking

into account the centrifugal and the Coulomb potentials
in the inner region.

Because of continuous and discrete ambiguities of op-
tical potentials [1, 15–17], the parameters of the Woods-
Saxon potential may not be determined uniquely. For
instance, Fig. 2 shows the result with V0 = −4.3 MeV,
R = 8.13 fm, a = 0.45 fm, W0 = 10 MeV, Rw = 7.55 fm,
and aw = 0.1 fm (the solid line). Similar to the square-
well potential shown in Fig.1, this potential is much shal-
lower than the Woods-Saxon potential adopted in Fig. 1
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FIG. 3: (The upper panel) Comparison of the astrophysical
S-factor for the 16O+16O system obtained with two different
depth parameters of the square-well potential. The solid line
is the same as that in Fig. 1 and is obtained with V0 =
9.4 MeV, while the dot-dashed line is obtained with V0 =
0 MeV. The range parameter of the square-well potential is
set to be R = 8.13 fm for both cases. The experimental
data are taken from Ref. [14]. (The lower panel) The radial
dependence of the square-well potentials used to compute the
S-factors shown in the upper panel. The radial wave functions
(in arbitrary units) at E =7 MeV for l = 0 are also shown by
the thin solid (for V0 = 9.4 MeV) and the thin dashed (for
V0 = 0 MeV) lines.

(the dashed line), but still yields a comparable fit to the
experimental data. That is, one can reproduce the data
equally well by using either a deep potential with a small
value of R or a shallow potential with a larger value of
R.

For a Woods-Saxon potential, a change in the radius
parameter can be compensated with a change in the
depth parameter so that the height of the Coulomb bar-
rier remains the same. In contrast, for the square-well
potential, the potential changes abruptly at r = R, and
the height of the Coulomb barrier is determined only by
R. That is, the height is independent of V0. The value
of R then cannot be too small, otherwise the Coulomb
barrier is too high, considerably suppressing the astro-
physical S-factor at E >

∼ 10 MeV.
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FIG. 4: Same as Fig. 3, but for the case where the range
parameter of the imaginary part of the square-well potential
is set independently to that for the real part. Those are taken
to be 8.13 fm and 6.5 fm for the real and the imaginary parts,
respectively. The solid line is obtained with V0 = 9.4 MeV,
while the dotted line is obtained with V0 = 7.0 MeV. The
experimental data are taken from Ref. [14].

In the square-well model of Michaud and Fowler, the
range parameters for the real and the imaginary parts are
set to be the same to each other [1, 5, 8]. A large value of
R then implies that the flux is absorbed from relatively
large distances. In order to see this effect, the upper
panel of Fig. 3 compares the results of the square-well
potential with V0 = 9.4 MeV (the solid line) to those with
with V0 = 0 MeV (the dashed line). For V0 = 9.4 MeV,
the wave function in the inner region is largely damped
if the incident energy is below V0 (see the lower panel of
Fig. 3). If the value of V0 is changed to V0 = 0 MeV,
the inner region of the potential becomes classically al-
lowed, and the wave function has an oscillatory nature in
this region. The ampitude of the wave function is then
larger than that for V0 = 9.4 MeV, leading to larger fu-
sion cross sections, thus, the S-factors. The combination
of a large value of R and the incoming wave boundary
condition (applying with the imaginary potential, −iW0,
even when E < V0) together leads to a shallow potential,
that is necessary to reproduce the data.
One would then expect that the depth of the square-

well potential becomes deeper if the absorption range is
shorter. This is indeed the case as is shown in Fig. 4,
which is obtained by setting the range parameters for the
real and the imaginary parts to be 8.13 and 6.5 fm, re-
spectively. Notice that, in this case, the absorption does
not start even if the relative motion penetrates through
the barrier and reaches at r = R. To draw Fig. 4, we
employ the boundary conditions of

ul(r) = Tle
−iKr (r < Rim), (9)

= Ale
−iK̃r +Ble

iK̃r (Rim ≤ r < R),(10)

with K̃ =
√

2µ(E − V0)/h̄
2. The boundary condition for

the outer region, r ≥ R, remains the same as in Eq. (2).
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The solid line in the figure is obtained with the same
value of V0 as in Fig. 3. Since the relative motion has
further to penetrate the barrier before the absorption is
effective, the astrophysical S-factor is largely underesti-
mated. This is cured to some extent by deepening the
potential depth, as is shown by the dotted line, which is
obtained with V0 = 7.0 MeV. The reproduction of the ex-
perimental data, however, is less satisfactory as compared
to the solid line in Fig. 3. If the depth of the potential
is further deepened, the astrophysical S-factors are over-
estimated as in the dot-dashed line in Fig. 3. Therefore,
the choice of Rim 6= R for the square-well model does not
seem to be preferred, at least for the 16O+16O system.

III. SUMMARY

We have investigated the origin of a shallow depth
of a square-well potential for nuclear astrophysical reac-
tions. We have argued that this is caused by the follow-
ing two effects. Firstly, the square-well potential changes
abruptly at the boundary, leading to a large radius pa-
rameter. Because of this, the absorption of the flux starts
from relatively large distances. The potential depth then

becomes shallow, so that the amplitude of the radial wave
function is damped, in order to hinder the absorption ef-
fect. It is important to notice that these are artifacts of
a square-well potential, and a shallow depth has noth-
ing to do with microscopic origins of a repulsive core in
internuclear potentials, such as the Pauli principle effect
[18, 19]. Indeed, if one uses a Woods-Saxon potential,
one can employ a more reasonable value for the radius
and the depth parameters. This would imply that a care
must be taken in interpreting the results of a square-well
model and in extrapolating the results down to astro-
physically relevant energies, even though the model is
simple and convenient, and often provides a good fit to
experimental data.
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