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The precise reconstruction of jet transverse momenta in heavy-ion collisions is a challenging task. A major ob-
stacle is the large number of (mainly) low-pT particles overlaying the jets. Strong region-to-region fluctuations
of this background complicate the jet measurement and lead to significant uncertainties. In this paper, a novel
approach to correct jet momenta (or energies) for the underlying background in heavy-ion collisions is intro-
duced. The proposed method makes use of common Machine Learning techniques to estimate the jet transverse
momentum based on several parameters, including properties of the jet constituents. Using a toy model and
HIJING simulations, the performance of the new method is shown to be superior to the established standard
area-based background estimator. The application of the new method to data promises the measurement of jets
down to extremely low transverse momenta, unprecedented thus far in data on heavy-ion collisions.

INTRODUCTION

In ultrarelativistic heavy-ion collisions a new state of nu-
clear matter is created: the Quark-Gluon Plasma (QGP) [1].
In the QGP, deconfined quarks and gluons interact strongly
and form a hot and dense medium that can be approximately
described by hydro- and thermodynamics. The regime of
strong coupling at large distances, especially in systems of
high temperature or large energy densities, is still not well un-
derstood in Quantum Chromodynamics (QCD). An ideal self-
generated probe to explore the properties of the medium and
its interactions are particle jets [2]. Reconstructed in the de-
tector as collimated sprays of color-neutral particles, jets are
created in a large-momentum-transfer scattering of partons in
the early stage of a high-energy collision. Their production is
well understood within the framework of QCD and their rates
can be perturbatively calculated in vacuum. In a heavy-ion
collision, jets traverse the strongly-interacting medium and in-
teract mainly non-perturbatively and, thus, can serve as valu-
able probes of the QGP.

The reconstruction of particle jets in heavy-ion collisions
is a complex task. The main obstacle is the overwhelmingly
large background of particles that do not originate from hard
interactions. In ALICE [3], the mean momentum density in
0–10% most central collisions at

√
sNN = 2.76 TeV leads to

a contribution to the jet momentum that is already of the or-
der of the typical jet momentum itself. The average charged
particle transverse momentum density for particles with mo-
menta above 0.15 GeV/c is 〈ρ〉 ≈ 138.2 GeV/c per unit area,
while its standard deviation is σ(ρ) = 18.5 GeV/c [4]. Since
jets are rare objects, these numbers provide already a good
estimate of the mean background in the selected events. In
addition, this background shows large uncorrelated and also
correlated region-to-region fluctuations. Uncorrelated fluctua-
tions are due to random Poissonian fluctuations of the number
of particles and their momenta. Sources of correlated fluctua-
tions are e.g. physical correlations of the particles from the
particle flow or also the non-uniform detector acceptances.
These fluctuations have a large impact on the reconstructed
jet momentum and on the jet axes by directly affecting the jet

finding algorithm and eventually result in large uncertainties
on the final measurements. An approach to at least lower the
impact of the background at the expense of a potential frag-
mentation bias is a higher pT-cut for constituents used in the
jet finding algorithm. This massively reduces the background,
which mostly consists of low-pT particles, but it also discards
the low-pT parts of the jet. The treatment of the background
and its fluctuations depends on the observable under study. In
this paper, the focus is on the correction of observables based
on jet momentum, i.e. the correction of the jet energy scale,
without applying a particular constituent cut. The impact of
the background on the jet (sub)structure, e.g. by distorting the
jet axis, is not discussed here.

In the standard method for jet spectra measurements in AL-
ICE, the background momentum density per unit area is cal-
culated on an event-by-event basis. Each jet is then corrected
by taking into account the event-averaged density multiplied
by the jet area. The area-based method corrects the jet mo-
mentum for the average background but leads to large resid-
ual fluctuations. These residual fluctuations are then typically
corrected for on a statistical basis in an unfolding procedure,
see for instance Ref. [5].

The new approach, introduced in this paper, calculates the
corrected jet momentum on a jet-by-jet basis to reduce the
residual fluctuations and to allow a more precise estimate for
the jet momentum. As we demonstrate below, this enables the
measurement of jets in heavy-ion collisions with transverse
momenta much lower than what is currently possible. We
apply Machine Learning (ML) techniques, which are widely
used in the HEP community [6], to obtain the mapping be-
tween jet parameters, e.g. constituent momenta, and the true
transverse momentum of the jet. The background estima-
tor is trained on a toy model that embeds jets with known
(true) transverse momenta in a simulated thermal heavy-ion
background. Using this toy model, the performance of the
new method is compared to that of the established correc-
tion method. To demonstrate the applicability of the new ap-
proach on jet populations in heavy-ion collisions, the correc-
tion method performance is then also presented when applied
onto HIJING [7] simulations.
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JET DEFINITION AND TOY DATASETS

The basis of this analysis are reconstructed charged
jets.1 They are reconstructed by the anti-kT algorithm [8]
implemented in Fastjet [9]. Since the background and its
fluctuations increase quadratically in R, current jet analyses
in heavy-ion physics typically avoid larger resolution param-
eters. The resolution parameter is chosen deliberately at the
relatively high value R = 0.4 to test the method. Charged
particles above pT = 0.15 GeV/c are taken into account in the
jet reconstruction.

In contrast to an algorithmic correction approach where
the correction, i.e. the mapping of raw and corrected jet
momentum, is directly described, ML techniques learn the
mapping from a training dataset. The quality of the training
dataset is crucial for the final performance of the correction
method on real data. It should only encode well-known
physics features and should be as simple as possible. A good
dataset allows the method to learn general features connected
to the problem and enables the method to generalize to
even slightly different data. To judge its performance, the
correction method is evaluated on the toy dataset and directly
compared to the established correction method (described
below). The events in the toy dataset used for the evaluation
are not used in the training phase.

To create events with particle jets in a heavy-ion back-
ground, PYTHIA-generated events are embedded in a thermal
background. The events from PYTHIA [10] are generated at
√

s = 2.76 TeV with particles in a pseudorapidity range of
|η| < 0.9 and in full azimuth.

The PYTHIA part of the events is created with PYTHIA6,
using the Perugia 2011 tune [11]. The thermal background
is created by randomly distributing charged particles accord-
ing to realistic particle multiplicity and momentum distribu-
tions. The multiplicity distribution is modeled with a Gaus-
sian function with a mean of 1800 and a width of 200. This
roughly reproduces the multiplicity in central Pb–Pb events at
√

sNN = 2.76 TeV [12, 13]. The impact of different thermal
background multiplicities on the model performance will be
evaluated below. The momentum distribution is a modified
power law function and defined such that it coincides with the
momentum distribution at low pT [14] but falls much faster
for higher particle momenta roughly above 4 GeV/c. Actual
details on the higher-pT region of the thermal spectrum do not
influence the model much, as this region only corresponds to
a small part of the dataset.

For the actual application of the correction method to real
detector-level heavy-ion events, the method should be trained
on a dataset that describes the real, reconstructed data as pre-
cise as possible. For instance, the momentum distribution

1 An extension of this method to fully-reconstructed jets including neutral
particles is straightforward.

could be adjusted to better fit the real data at low pT. Or
the entire thermal model could be replaced by mixed events
created from real data [15].

For the training, the supervised learning techniques that are
applied need a truth value assigned to each sample, i.e. to each
jet. In the present model, the truth that will be approximated
by the new correction method is the true jet momentum. Here,
it is defined as the reconstructed jet momentum multiplied by
the momentum fraction that is carried by PYTHIA particles in
the jet,

ptrue
T, ch jet = praw

T, ch jet ·
∑

i

pPYTHIA
T, const i/

∑
i

pT, const i. (1)

In this equation, praw
T, ch jet is the reconstructed jet transverse

momentum before any background correction. With this def-
inition of the true jet momentum, also the true background is
implicitly defined: It consists of all the particles from the ther-
mal model. As an alternative definition, the true jet momen-
tum can also be defined as the momentum of jets reconstructed
by PYTHIA particles only and geometrically matched to the
reconstructed jets in the full toy event. Since the background
influences the jet finding algorithm, these matched jets are
conceptually closer to the perfectly corrected jets. On the
other hand, this definition is technically more complex since it
needs further parameters like the matching radius and is thus
less robust. There is a chance for mismatching jets, in partic-
ular at low transverse momentum. However, in the end both
truth definitions allow to train a model with very similar per-
formance.

The toy model dataset is split into a training and a test-
ing dataset, which is a standard procedure for ML-based ap-
proaches. In total, 5M toy events were generated from which
roughly 6.5M samples were extracted for further analysis.
More samples would be available in the generated events, but
only fractions are used to save memory. In subsequent anal-
yses, these fractions are fully taken into account in the nor-
malization. For the training, 10% of the data is used. The
remaining 90% form the testing dataset.

For the training of the estimators, only jets with ptrue
T, ch jet > 5

GeV/c are processed. The inclusion of jets below this thresh-
old in the training distorted the corrected spectrum at higher
pT. The jet production in bins of pT, hard have not been
reweighted before being used for the training. Therefore, the
training sample consists of more jets at higher transverse mo-
mentum compared to the natural abundances. This has the ad-
vantage that the training sample is not dominated by low-pT
jets.

Besides the evaluation of the background estimator con-
cerning its resolution and potential biases, the performance
of the correction method for actual heavy-ion-like collision
data is also tested. For this purpose, the toy model cannot be
used as it represents just one hard jet–jet interaction in a soft
background. Instead, a test dataset of 2M events is created by
HIJING at the energy of

√
sNN = 2.76 TeV, with jet quenching
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switched off in the simulation. HIJING is tuned to roughly re-
produce the expected multiplicities. An impact parameter of
b < 3.6 fm and pT, hard > 5.8 leads to a nearly Gaussian mul-
tiplicity distribution with a mean value of N ≈ 2200 and a
width of 200, which is further discussed below.

BACKGROUND ESTIMATORS

As introduced above, the established method to correct the
transverse momentum of jets is based on a per-event back-
ground estimate [16]. In each event, clusters are reconstructed
using the kT algorithm because it is particularly sensitive to
background. After removing the two hardest clusters from the
cluster collection, the estimated background density is calcu-
lated as the median of the kT-cluster momentum densities. It
is defined by

ρ = median
(

pT, i

Ai

)
, (2)

where i represents the index of all kT-clusters of the collec-
tion and Ai their areas. The median provides stability against
outliers in the underlying distribution, e.g. against outliers
from the jet signal clustered by the kT algorithm. Jets are
corrected for this background density on a jet-by-jet basis by
subtracting the background density multiplied by the jet area,
prec

T, ch jet = praw
T, ch jet − ρ · A.

Residual fluctuations are usually treated in an unfolding
procedure. They can be quantified by embedding jets of
known transverse momenta into heavy-ion events. These jets
are affected by the heavy-ion environment and, therefore, their
reconstructed momenta are directly modified by residual fluc-
tuations. δpT quantifies the fluctuations and is defined by

δpT = prec
T, ch jet − ptrue

T, ch jet, (3)

for reconstructed jets matched with a known reference jet. As
described in detail in [4], these fluctuations can be approxi-
mated by a Γ-function. In an alternative procedure to quantify
residual fluctuations, one calculates the background-corrected
momentum of particles in jet-sized cones randomly placed in
heavy-ion events.

The novel background estimator introduced in this paper
follows a different approach. Instead of calculating the back-
ground once for an event, the background correction is applied
completely on a jet-by-jet basis. The main idea behind this is
that the properties of background particles and those belong-
ing to the jet process are very different. While the background
is dominated by low-pT particles, the jet signal should con-
tain sizable higher momentum contributions. The information
on the fraction of momentum from background is therefore
partially encoded within the jet. However, the relation of the
input parameters, including jet constituents, and the true jet
momentum is not trivial. Machine Learning techniques are
ideal to approximate this mapping by learning from data in-
stead of modeling the relation by hand with expert knowledge.

FIG. 1. Illustration of the full proposed analysis strategy. Explana-
tions are given in the text.

Since the task is to predict a numerical value for each sample,
a regression algorithm needs to be used.

Several algorithms have been evaluated and will be com-
pared in the next section: shallow neural networks [17], ran-
dom forests [18], and linear regression. The neural network is
implemented as a shallow multi-layer perceptron, consisting
of three layers with [100, 100, 50] nodes. The ADAM opti-
mizer [19], an improved stochastic gradient-based optimizer,
is used and the nodes/neurons are activated by the ReLU ac-
tivation function [20]. For the random forest algorithm, an
ensemble of 30 decision trees is used. The linear regression
model is the simplest model probed. All models are used as
implementations within the scikit-learn [21] Python module.
If a parameter is not explicitly given above, its default setting
in scikit-learn v0.19.2 is used.

In order to find a suitable combination of input parameters,
the analysis was repeated for a large variety of parameter sets.
The number of parameters used is kept small to avoid a de-
pendence on data subtleties. Eventually, the following input
parameters prove to be useful, discriminative features:
(1) The uncorrected jet momentum as reconstructed by the jet
finding algorithm,
(2) the jet transverse momentum, corrected by the established
area-based method,
(3) several jet shape observables, namely jet mass, radial mo-
ment, momentum dispersion, and LeSub,
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(4) the number of constituents within the jet,
(5) mean and median of all constituent transverse momenta,
(6) the transverse momenta of the first ten leading, i.e. hardest,
particles within the jet.

The new ML-based approach defines a background esti-
mator that works on a jet-by-jet basis and that uses the jet
constituents as major input. Residual fluctuations – which
turn out to be smaller than for the established area-based
background correction method – can still be corrected in an
unfolding procedure. The corresponding response should be
estimated with the embedding method, given in Eq. 3.

The proposed analysis strategy to train, validate, and apply
the model to real data is depicted in Fig.1. The first step
is the creation of the toy model data, which is described in
the previous section. Proton–proton data promise to provide
more realistic vacuum jets compared to PYTHIA simulations
and can be used instead if available for comparable detector
conditions and same energy. For the same reason, as a more
accurate alternative to a thermal model, the vacuum jets can
also be embedded into heavy-ion events or mixed heavy-ion
events. Background estimators trained on different toy
model configurations could serve for a systematic uncertainty
analysis on real data. The second step is the training of the
ML-based estimators and their evaluation on the toy model as
will be described in the next section. Training and evaluation
dataset are independent subsamples of the full toy model
dataset. During this step, the model hyperparameters can
be adjusted to obtain a good performance. These first two
steps are presented in this paper. In the third step, the trained
and commissioned estimator is applied to heavy-ion data to
obtain background-corrected spectra, e.g. jet momentum or
jet mass spectra. In addition, a response matrix is created to
unfold residual fluctuations (and possible detector effects).
We propose to create the response matrix by embedding
vacuum jets into a realistic background, e.g. given by data.
The last step is the unfolding procedure to measure the final
spectra.

COMPARISON OF THE BACKGROUND ESTIMATORS

To assess the performance of the new ML-based back-
ground estimator, it is applied to data created by the PYTHIA
+ thermal toy model introduced above and compared to the
established area-based method. A direct measure for the res-
olution and the overall bias of an estimator is the distribution
of residuals prec

T, ch jet − ptrue
T, ch jet. The residual distributions are

normalized to unity to present a probability density and shown
with Gaussian fits. The mean of these fits can be interpreted
as the overall bias, where the width σ indicates the resolution
of the method.

In the following, some results will only be presented for the
neural network estimator. However, in these cases, the other
estimators exhibit qualitatively the same results.
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FIG. 2. Residual distributions for several background estimators and
40 ≤ ptrue

T, ch jet < 60 GeV/c.

In Fig. 2, the residual distributions of the estimators consid-
ered are shown for jets with 40 ≤ ptrue

T, ch jet < 60 GeV/c. It is
immediately seen that all ML-based estimators considered ex-
hibit a superior performance compared to the area-based cor-
rection method. While, to first order, the ML-based estimators
all perform equally well on the toy model, the area-based cor-
rection has an inferior resolution, as summarized in Tab. I. The
width of the residuals is a factor two smaller for the new back-
ground method. These smaller fluctuations also lead to much
less purely combinatorial jets at low jet transverse momentum
and, therefore, allow to measure jets down approximately fac-
tor two lower pT.

It can also be shown that the new background estimator
works similarly for different ptrue

T, ch jet. The ptrue
T, ch jet-dependence

of the estimator is depicted in Fig. 3. The estimator has
roughly the same resolution and no sizable bias.

An important property of the estimator is how robust it is
to modifications in the underlying background or with respect
to jet fragmentation or jet type. The estimators performance
should not strongly depend on these ingredients of the toy
model. In reality, the background is definitely more complex
than in the present model and the jets will be different in real
data. First, the jets in the toy model are generated by PYTHIA
and the PYTHIA-simulated jet fragmentation will be slightly
different than in real data. Second, the fraction of quark and
gluon jets is different in heavy-ion collisions than in PYTHIA,
so a dependence on the jet type could bias the results. And fi-
nally, for the same reason, the background estimator should
not yield qualitatively different results for quenched and un-
quenched jets, which may differ in shape and fragmentation.

To estimate the sensitivity to differences in the underly-
ing thermal background, the correction is applied in events
with modified thermal background multiplicities. The mul-
tiplicities are adjusted by roughly 10%, from the baseline of
N = 1800 to N = 1600 and N = 2000. Hydrodynamic par-
ticle flow is not part of the thermal toy model but will occur
on data. Its influence on the model performance is checked by
applying the model to a particle distribution with N = 1800
which is modulated with v2 = 0.1 in azimuth φ using

dNflow/dφ = dN/dφ · (1 + 2 · v2 cos(2φ)). (4)
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FIG. 3. Residual distributions for the neural network estimator and
several (true) jet transverse momenta.
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FIG. 5. Comparison of the widths of the residual distributions as a
function of the jet resolution parameter for 40 ≤ ptrue

T, ch jet < 60 GeV/c.

This corresponds to a relative particle modulation of up to
20% in the azimuthal yield distribution. It turns out that these
changes have only a negligible effect on the model perfor-
mance, as seen in Fig. 4. Here, the impact of different thermal
backgrounds is presented for 40 ≤ ptrue

T, ch jet < 60 GeV/c, but
also for lower jet transverse momenta it is very small.

Since jets are extended objects consisting of correlated par-
ticles up to large distances far beyond R = 0.4, using a large
jet resolution parameter is in general desirable. While the pre-
sented study was performed for jets with R = 0.4, the per-
formance of larger jet resolution parameter was also tested.
Figure 5 presents the dependence of the background estima-

Estimator Inclusive jets Quark jets Gluon jets
Fit param. (GeV/c) Mean σ Mean σ Mean σ
Area-based method 0.7 7.8 0.8 7.3 0.9 7.7
Neural network 0.2 3.5 1.0 3.1 -0.5 3.6
Random Forest -0.1 4.0 0.7 3.6 -0.8 3.9
Linear regression -0.5 4.2 0.8 3.8 -1.4 4.1

TABLE I. Properties of the residual distributions for the considered
estimators for 40 ≤ ptrue

T, ch jet < 60 GeV/c. Mean and σ represent mean
and standard deviation of the Gaussian fits, respectively.

Feature Score Feature Score
Jet pT (no corr.) 0.1355 p1

T, const 0.0012
Jet mass 0.0007 p2

T, const 0.0039
Jet area 0.0005 p3

T, const 0.0015
Jet pT (area-based corr.) 0.7876 p4

T, const 0.0011
LeSub 0.0004 p5

T, const 0.0009
Radial moment 0.0005 p6

T, const 0.0009
Momentum dispersion 0.0007 p7

T, const 0.0008
Number of constituents 0.0008 p8

T, const 0.0007
Mean of const. pT 0.0585 p9

T, const 0.0006
Median of const. pT 0.0023 p10

T, const 0.0007

TABLE II. Random forest feature importances. A higher score cor-
responds to a higher importance of the feature. pi

T, const is the trans-
verse momentum of the ith-hardest particles. The four most important
features are marked in bold face.

tor on the jet resolution parameter as the R-dependence of the
width of the residual distribution, obtained by a Gaussian fit.
As expected, the width gets larger, i.e. the resolution wors-
ens, for larger R. However for the ML-based approach, both,
the increase with increasing R, as well as the absolute value
of the width, are significantly smaller than for the area-based
correction.

To analyze the impact of different jet fragmentation or jet
types on the background estimator, the residual distributions
are calculated for different jet types. As a quite extreme test,
quark and gluon jets serve here as proxies for jets with differ-
ent fragmentation. The residual distributions are presented in
Figs. 6 and 7. A small bias can be observed, which is of the
order of the inclusive jet bias, see also Tab. I.

Another check on the fragmentation dependence of the
background estimator was performed with jets generated by
JEWEL [22] with the no recoils-setting. JEWEL is a Monte
Carlo generator that simulates the jet evolution within a
medium created in heavy-ion collisions and was used to pro-
duce samples of jets affected or not affected by medium ef-
fects. The residual distribution for the neural network esti-
mator can be found in Fig. 8. Like for the quark/gluon jet
comparison, a small bias can also be observed for JEWEL
jets in the medium. The bias is of similar magnitude as the
quark/gluon bias, though slightly smaller.

It should be emphasized that even a small bias can have a
sizeable effect on the jet production yields due to the steeply
falling jet spectrum. It might lead to deviations of up to
approximately 20% at low transverse momentum around 20
GeV/c for the worst-case of pure quark or gluon samples.
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For more relatistic jet collections, the bias will be signifi-
cantly lower. In an analysis on real data, a systematic un-
certainty should be evaluated taking this effect into account.
Note though, that this bias will at least partially be corrected
in an unfolding procedure.

The random forest estimator in scikit-learn directly calcu-
lates the mean decrease in impurity in the tree ensemble, also
called Gini importance [24], for each input parameter/feature.
In the Gini definition, a feature is more important when it is
used in more tree splittings of more samples. Feature impor-
tances are simple measures (potentially) indicating how the
random forest estimator learns from the data. Since all esti-
mators perform approximately equally well, the importances
should also give a rough estimate for the features’ importances
in the other estimators. The values can be found in Tab. II. The
most important features are all related to variables that char-
acterize the “hardness” of the jet. The most important feature
turns out to be the area-based corrected jet momentum, indi-
cating that the area-based correction already gives a reason-
able estimate for the true jet momentum. Interestingly, it is
not the hardest particle within the jet which has the highest
importance but the second-hardest.

The performance evaluation on the toy model data is helpful
in gaining insights on how precisely the true momentum of
a jet in a heavy-ion-like background is reconstructed by the
correction method. Unfortunately, the corrected jet spectra
in the toy model are not realistic heavy-ion-like jet spectra,
since they are made from one PYTHIA spectrum, embedded
in thermal background. This changes drastically the amount
of expected purely combinatorial jets as well as the jet spectra
itself. Therefore, the toy model jet spectra are not presented
here.

Instead, an independent study is performed on HIJING sim-
ulated data, shown in Fig. 10. Central HIJING events are sim-
ulated and the new correction method (without retraining) is
applied as if the HIJING data were real data. The corrected
jet spectra are then compared to Ncoll-scaled PYTHIA spectra
to judge the performance of the background estimators. The
spectra comparison reveals that the new background estima-
tors are also superior for realistic heavy-ion-like events down
to very low transverse momenta of about 20 GeV/c. The spec-
tra are closer to the expected truth and, therefore, an unfold-
ing procedure of residual fluctuations will be possible with
much higher precision and smaller uncertainties than for the
standard method. As a further cross check, several HIJING
spectra were analyzed for different minimum pT, hard-cuts and
different impact parameter ranges, leading to the same con-
clusion.

In order to test how the measurement of the jet mass is
affected by the different jet energy scales introduced by the
background estimators, the jet mass has been measured for
the toy model data for area-based and neural network back-
ground estimators. Figure 9 shows the jet mass for jets with
40 ≤ pT, ch jet < 60 GeV/c, where the definition of prec

T, ch jet –
and therefore the jet energy scale – differs for the shown distri-
butions. The jet mass itself is also background-corrected [23].
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It turns out that the reconstructed jet masses coincide well for
the true and ML-based jet energy scale. Therefore, the higher
precision of the jet energy scale might allow a jet mass mea-
surement at lower jet momenta than currently possible. The jet
mass for the area-based method energy scale seems to be sig-
nificantly overestimated. Further tests show that these general
observations are also valid for higher transverse jet momenta,
although the bias of the area-based method decreases.
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FIG. 9. Jet mass distribution compared for different jet energy scales.
A background correction for the jet mass itself was also applied [23].
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SUMMARY AND OUTLOOK

A novel method to correct for the large and strongly-
fluctuating background in central heavy-ion collisions using
Machine Learning techniques is introduced. In contrast to the
established correction method, the background is estimated
on a jet-by-jet basis rather than event-by-event. A toy-model
analysis indicates that the new background estimator is supe-
rior to the established method in terms of precision. Studies
also show that the residual fluctuations do not depend on the
jet transverse momentum above ptrue

T, ch jet ≥ 20 GeV/c. The
method was evaluated on several different underlying back-
ground models to investigate its susceptibility to differences
compared to real data, revealing that the performance does not
strongly depend on subtleties of the background. In addition,
quark and gluon jets as well as JEWEL-generated jets are used
as proxies for a different jet fragmentation, with a small bias
observed. An analysis on real data should take into account
a possible systematic uncertainty that could arise from this
bias. It has also been shown that the jet mass reconstructed
with the ML-based jet energy scale coincides well with the

mass in the true jet energy scale. Hence, the application of
the new method on real experimental data may allow consid-
erably more precise measurements in heavy-ion collisions, in
particular at low transverse momentum.
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