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Bethe wrote a pivotal paper providing the formalism for the theory of nuclear level densities.
At that time, there were no known deformed nuclei, so Bethe mad the assumption that all nuclei
are spherical. After deformed nuclei were discovered, theorists predicted that the level density for
such nuclei should be substantially enhanced over the level density for neighboring spherical nuclei.
Despite these results, two comprehensive level density compilations based on neutron resonances
counting at low neutron energy failed to find significant enhancement in level density for deformed
nuclei. A recent paper has concluded that the Bethe spin distribution for nuclear levels is not
appropriate for deformed nuclei. When a more accurate spin distribution is used in resonance
analysis, it is found that an enhancement of approximately the predicted magnitude is observed.

I. INTRODUCTION

A paper by Bethe [1] provided the basis for most of the
research in the area of nuclear level density. His deriva-
tion of the spin distribution specifically involves the as-
sumption that the nucleus is spherical, since there was
no knowledge of deformed nuclei at that time the paper
was written.
Using assumption that the density of single particle

states is independent of energy, Bethe [1] was able to
show that

ρT (E) =

√
π

12

exp(2
√
aE)

a1/4E5/4
(1)

In this equation, ρT (E) is the total number of excited
states of the nucleus per MeV, E is the excitation energy
in MeV, and a is the level density parameter, which is
typically found to be A/10 ≤ a ≤ A/8 (MeV−1), where
A is the nucleon number. If the nucleus is spherical,
each nuclear level consists of (2J+1) degenerate states,
where J is the angular momentum and the states have
spin projections on Z axis Jz, where −J ≤ Jz ≤ J. If
ρ(E) denotes the level density, it may be shown that

ρ(E) =
1√
2πσ

ρT (E) (2)

where σ =< J2
z >1/2 is the spin cutoff parameter. Fi-

nally,

ρ(E, J) =
ρT (E)√
2πσ

(J + 1/2)

σ2
exp(− (J + 1/2)2

2σ2
) =

ρ(E) · S(J) (3)

This is the original Bethe result.
It was subsequently discovered that while many nuclei

were spherical, a substantial number were deformed. In
most cases, the deformed nuclei were found to be axially
symmetric. For this situation, there result two spin cut-
off parameters. σ‖ is the parameter for rotations about
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the symmetry axis and σ⊥ is the parameter for rotations
about an axis perpendicular to the symmetry axis.
Bohr and Mottelson [2] concluded that for such a de-

formed nucleus the level density would be increased by
a factor of about σ2

⊥. Similar result was obtained by
Junghans et al [3]. If the rotational enhancement fac-
tor is actually as large as σ2

⊥, there will be an energy

dependence, since σ2
⊥ varies as E1/2. If there is no J de-

pendence to the rotational enhancement, then the Bethe
spin formula will still be valid, even though Bethe had to
assume spherical symmetry to derive it.
More recently, it was shown that the correct form for

the rotational enhancement factor depends on J and K
as well as on E. Here, K is the spin projection on a sym-
metry axis. It is shown in Ref.[4] that the rotational
enhancement factor is equal to

R(E, J,K) =

(J + 1)2 −K2

2J + 1
exp

(

−K2 ·
(

1

2σ2
‖(E)

− 1

2σ2
⊥(E)

))

(4)

The above expression gives the rotational enhancement
factor for the nuclear state density. The corresponding
expression for the level density is multiplied by (J+1)
for even A and (J+1/2) for odd-A nuclei. For deformed
nuclei, it is found that the quantum number K is a good
quantum number for E ≤ 3 MeV but becomes mixed
above this energy. Thus, it is more reasonable to define
a rotational enhancement factor

R1(E, J) =

∑

K=0,1/2 R(E, J,K)ρ(E, J,K)
∑

K=0,1/2 ρ(E, J,K)
(5)

The K sum extends from zero (even A) or 1/2 (odd-
A) to J. Note that the variation of R or R1, with J is
very large. For J=0 or J=1/2, the magnitude of R is 1.
The lack of enhancement for these Js is understandable.
The rotational enhancement comes about from 2 separate
factors. The deformation causes a single level of spin
J in a spherical nucleus to split into (J+1) (even-A) or
(J+1/2) (odd-A) level, each with spin J but with different
values of ±K. Instead of having a (2J+1) degeneracy,
the deformed levels have only a ±K degeneracy. If the
rotational levels are now built in bands on each level, it
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is clear that the enhancement in level density comes only
from levels which are based on lower J. Thus, there is
no enhancement for levels of the lowest possible J. On
the other hand, it can be seen that both of thee factors
give large enhancement from deformation as the J value
increases.

II. LEVEL DENSITIES FROM RESONANCE

COUNTING

A large part of the experimental information available
on nuclear level densities come from neutron resonance
counting at low neutron energies. Under this condition,
the only resonances populated will be those reached by
l=0 neutrons. If l=0 condition is applied, this means that
resonances in compound nucleus will have spin 1/2 if a
target has J0=0 and J=J0 ± 1/2 if J0 6= 0. These spin
restrictions and the fact that the resonances will have
the same parity as a target ground state mean that the
resonances can be resolved even for targets with A=240.
It also means, however, the correction must be applied
to correct for levels with missing spin and parities. A
study by Al-Quaishi et al. [5] gives an empirical form
for the ratio between levels of the two parities for levels
at a given energy. This ratio formula predicts that two
parities are about equally likely at high energies, but also
give inequality at the binding energy for targets A≤60.
It is also true that corrections occur for missing J lev-
els which depend on σ2 for spherical nuclei and σ2

⊥ for
deformed nuclei. The formula for this correction will be

ρ(E) =
2ρ(E, 1/2)

S(1/2)

∑

J

S(J) (6)

for even A targets or

ρ(E) =
2(ρ(E, J0 − 1/2) + ρ(E, J0 + 1/2))

S(J0 − 1/2) + S(J0 + 1/2)

∑

J

S(J)

(7)
for odd-A targets. In each case the factor of two on
a right hand side of the equation is the correction due
to parity. Two compilations of level density parameters
have been prepared by Rohr [6] and Iljinov et al. [7]. In
each case, the analysis included nuclei which were spher-
ical as well as some that were deformed. Both studies
used equations 6 and 7 for calculations of the total level
density. This is despite the fact that the two equations
rely on a Bethe spin distributions formula, which Bethe
states is only valid for spherical nuclei.
Rohr specifically states that his results do not show the

expected enhancement of a factor of σ2
⊥ in level density

for deformed nuclei. This is surprising, since the factor
ranges from about 8 near A=25 to over 50 for A about
240. Iljinov et al. [7] do not state that they find no en-
hancement. They derive a value for the numerical results
which is similar to values from nearby spherical nuclei.
The authors of Ref.[7] then divide their level density by

a factor of σ2
⊥ to derive the intrinsic (pre-rotational en-

hanced) level density. This, however, is much smaller
then the level density for neighboring spherical nuclei.
Thus, it seems as if they also do not find a level density
enhancement for deformed nuclei.
The problem can be resolved if we use the correct spin

distribution formula instead of the Bethe form for de-
formed nuclei. Instead of Eq.6 and 7 deformed nuclei
should be analyzed using

ρ(E) =
2ρ(E, 1/2)

∑

J S(J)R1(E, J)

S(1/2)R1(E, 1/2)
(8)

and

ρ(E) =

2(ρ(E, J0 − 1/2) + ρ(E, J0 + 1/2))

S(J0 − 1/2)R1(E, J0 − 1/2) + S(J0 + 1/2)R1(E, J0 + 1/2)

X
∑

J

S(J)R1(E, J) (9)

where the factor of 2 on the right hand side is to correct
for parity and Eq. 8 and 9 are used for deformed targets
with J0 = 0 and J0 6= 0, respectively.
Table. 1 shows a summary of a comparison between

the results obtained in Ref.[7] using the Bethe spin distri-
bution and those obtained from the same resonance data
but using Eq.8 or 9. The table includes compound nu-
cleus, neutron binding energy and the spins populated in
a compound nucleus. Values labeled a1 are those derived
by Iljinov et al. for level density parameter (MeV −1)
for the level density they deduced for compound nucleus.
D0 is the average spacing (in eV) in resonances at the
binding energy Sn. They then divided the resulting level
density by a factor σ2

⊥ to deduce an intrinsic level den-
sity. This level density is what they used to get a2, which
they claim is the level density for the nucleus without ro-
tational enhancement. The a2 values are significantly
less than the a values deduced for nearby spherical nu-
clei, presenting an inconsistency that the authors do not
comment upon.
The analysis was then repeated using Eq.8 or 9 instead

of Eqs.6 or 7. To use these equations σ⊥ and σ‖ are
needed. Values of σ‖ were obtained using the procedure
summarized in Ref.[8]. It can be shown that

σ2
⊥

σ2
‖

=
1 + 1

2
β + 16

7
β2 + β3

1− β + 10
7
β2 − 2

7
β3

(10)

In this equation β is the quadrupole deformation param-
eter (β ≥ 0 is prolate, β = 0 is spherical, β ≤ 0 is oblate).
The values of β were taken from Ref. [9]. In table 1, the
a3 value (MeV −1) is the level density parameter derived
from the level density obtained from Eq.8 and 9. a4 is
the value derived from total level density divided by the
rotational enhancement factor. Thus, the total level den-
sity at the binding energy may be obtained by using a3
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TABLE I. Level densities for deformed nuclei inferred with spherical and deformed spin distributions. Units for parameters
a1 − a4 are MeV−1

Nucleus Spin Sn (MeV) D0 (eV) a1 a2 a3 a4 R2

24Na 1,2 6.96 9.5·104 3.49 1.75 4.35 2.76 8.3
25Mg 1/2 7.33 4.7·105 3.67 1.92 6.33 4.14 7.6
26Mg 2,3 11.073 5.5·104 4.16 2.37 4.48 2.85 8.75
159Dy 1/2 6.83 30 20.81 13.05 30.0 22.1 47.8
161Dy 1/2 6.45 27.3 22.12 14.06 32.3 23.7 42.9
162Dy 2,3 8.197 2 21.34 13.58 26.8 18.4 45.3
163Dy 1/2 6.27 69 21.08 13.01 31 22.4 42.5
164Dy 2,3 7.63 5 21.2 13.24 26.9 19.2 46.1
165Dy 1/2 5.71 170 21.05 12.67 31.7 22.8 44
235U 1/2 5.298 10.6 30.26 19.23 44.8 32.8 63
238U 0,1 6.15 3.5 30.55 19.58 45.1 32.8 67

in the level density formula or by using a4 in the level
density equation and multiplying by the rotational en-
hancement factor. Of these two, the second is superior,
since the excitation energy dependence of R is approx-
imately E1/2 when used as the a4 parameter will give
an energy dependence of the intrinsic level density (be-
fore deformation) multiplied by the energy dependence of
rotational enhancement factor. This energy dependence
will not be the same as that obtained using a3 without
an enhancement factor. Finally, the J dependence of the
level density using a4 and rotational enhancement factor
will give the proper J dependence while use of a3 will
give an incorrect spin distribution.
In table 1 we also present an avarange rotational en-

hancement factor for each nucleus at the binding energy
averaged over J. This quantity is denoted R2

R2(E) =

∑

J S(J)R1(J)ρ(E, J)
∑

J ρ(E, J)
(11)

The form for R2 does not have a simple closed form
sum unlike the Bethe formula. An empirical form found
to fit present results for the A range 25-240 is

R2 ≈ 0.65σ2
⊥(1 +

2.1

σ⊥
). (12)

In each case, the correct total level density for nuclei in
Table 1 can be obtained by using a4 in Eq. 1 and Eq. 2
and multiplying this result by R2. The corresponding
level density as a function of J can be obtained by multi-
plying by R1(E, J) ·S(J). The results before multiplying
by R2 should be similar to the results obtained using
the Bethe spin formula if the target is even A. For odd-
A targets the rotational enhancement factor will not be
one for the compound nuclei J values nor will it be equal
to the Bethe formula for that J. Thus, the results of an
analysis using the Bethe form will be between intrinsic
level density and the rotationally enhanced level density.

Comparison of the present results with those of T. Ren-
strøm et al. [10] shows that results from this reference for
the level density for 162Dy are between the intrinsic level
density and the rotationally enhanced level density of the
present paper, while the results for 163Dy in Ref. [10] are
close to the intrinsic level density of the present paper.
Results of the Ref. [10] for 162Dy are about a factor of 7
larger than the present intrinsic level density and about
a factor of 6 smaller than the present rotationally en-
hanced level density. For 163Dy, the results of Ref. [10]
are within 20% of those in prensent paper for intrinsic
level density, while the rotationally enhanced level den-
sity of the present paper is about of factor of 30 larger
than the results in Ref. [10]. A similar pattern results
when the present level densities are compared with those
of the Ref. [7]. In all three mass regions, the values of
the level density of Ref. [7] are close to the present values
for the intrinsic level density and are lower than the ro-
tationally enhanced level density. For even-A compound
nuclei, the level densities derived from the parameters of
Ref. [7] are factor of 2 to 5 higher than the current in-
trinsic level densities and a factor of 4-5 (mass 25) to 45
(mass 238) lower than the present rotationally enhanced
level densities. For odd-A compound nuclei the results
of Ref. [7] are typically within 20-30% of the current in-
trinsic level density values and are approximately lower
by rotational enhancement factor than the rotationally
enhanced level densities.

III. MICROSCOPIC LEVEL DENSITY

CALCULATIONS

The present analysis is based on the assumptions that
the deformation is axially symmetric and independent
of energy. It should be noted that some calculations
have been published in Ref.[11] for 162Dy which do not
specifically assume that the deformation is independent
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of energy. This is important for two reasons. It is ex-
pected that at higher energies deformed nuclei will be-
come spherical. In addition, it has been pointed out in
Ref.[12] that the extra levels comprising the rotational
bands are not created spontaneously by deformation.
They are levels which were brought down from higher
energy regions by quadrupole forces. At sufficiently high
energies the effect will leave the intrinsic level density
depleted and effectively lower the rotational enhance-
ment factor. These two effects should be incorporated
in microscopic level density calculations. Calculations
of Ref.[11] have been compared with those obtained for
162Dy reported in Ref.[13]. These values have been ob-
tained from the shape of the emission spectra of parti-
cles with coincidence with γ-rays (Oslo method). These
results give relative level densities, which is then nor-
malized at the neutron binding energy. Unfortunately,
the authors of Ref.[13] used the Bethe spin distribution
in calculating the binding energy level density. This re-
sults in a significant underestimate of the level density
as it is shown in Table 1. The calculations of Ref.[11]
also used the Bethe spin distribution for calculating the
J distribution of levels from the state density. Thus, both
Refs.[11] and [13] underestimated the level density signif-
icantly. Using the correct form for the spin distribution
for a deformed nucleus in both research works leaves the
agreement between the two results quite good but the
value of the level density is considerably higher than is
reported in either paper.

IV. ROTATIONAL ENHANCEMENT FACTOR

IN NUCLEAR REACTIONS

Since the rotational enhancement factor is large, it
would seem that it would be easy to observe this effect in
nuclear reactions. In fact, if the rotational enhancement
factor is independent of energy and is also the same in
all final nuclei, it will actually have no effect on evap-
oration spectrum. The factor by which the numerators
in Hauser-Feshbach equation are multiplied is the same
as that by which the denominators are multiplied. The
only effect will be that the cross sections for populating
isolated levels will be reduced. A possible way of find-
ing a clear effect on the continuum is to find energies
where the factor changes substantially. As the energy in-
creases, it is expected that a nucleus which is deformed
at low energy would eventually become spherical at high
energies. If this transition occurs at an energy covered
by the emission spectrum, the loss of rotational enhance-
ment would result in a slower increase of the level density
with energy in that region. A number of measurements
have been performed in attempts to see this transition
[14–17]. One study found no indications of the reduction
in the enhancement factor [15], while the others found in-
dications of smaller change than expected. There is the
reason using reaction technique for studying rotational
enhancement factors would lead to smaller values. It has

been shown [18] that the spectra from evaporation are
in fact populated proportional to the density of states
rather then density of levels. While the state density
is a factor of

√
2πσ larger than the level density for a

spherical nucleus, it is only a factor of 2 larger for the
deformed case. Thus, the factor of 0.65σ2

⊥(1 + 2.1
σ⊥

) be-

comes 0.52σ⊥(1 +
2.1
σ⊥

) for an evaporation spectrum.

A further complication is that the present results in-
dicate that this factor could change with the reaction.
A reaction such as (n,n’) would tend to populate low J
states while a reaction of the type (12C,α) populating
the same final nucleus would give a much higher spin on
the average. Thus could result in a difference of a factor
of 2 or 3 in a rotational enhancement factor for a given
nucleus.

It is also possible to look for the rotational enhance-
ment factor in reactions using a different technique. If a
target is choisen so that compound nucleus will populate
a spherical nucleus with an alpha-decay but a deformed
nucleus with a proton decay, it should be possible to see
the effect of the rotational enhancement factor even if is
not changing rapidly with energy. As has already been
pointed out, the enhancement in cross section for the
deformed final nucleus will be enhanced by a factor of
0.52σ⊥(1 +

2.1
σ⊥

). For the deformed nuclei with A about
150 the enhancement should be about of factor of 4. The
effects described in this section should appear in Houser-
Feshbach calculations done with codes correctly dealing
with deformation [4, 19].

V. SUMMARY

The present paper presents a resolution of a long-
standing paradox. Although, theoretical calculations
have predicted enhancement of the order of σ2

⊥ in level
density for deformed nuclei compared to nearby spherical
nuclei, level density values derived from low energy neu-
tron resonance counting have typically shown small or no
enhancement. A recent paper points out that the Bethe
spin distribution does not correctly describe level spin
distribution for deformed nuclei. If a correct form is used,
a rotational enhancement factor of about 0.65σ2

⊥(1+
2.1
σ⊥

)
is observed for the level density.

An additional puzzle is that evapotration spectra have
shown a smaller rotational enhancement factor than pre-
dicted. The resolution of this puzzle is that the evapo-
ration spectra for deformed nuclei are multiplied not by
the rorational enhancement factor for nuclear level den-
sity but rather by a corresponding factor for the state
density. This factor is sufficiently small compared to the
level density factor that it brings the predictions into
agreement with the measurements.



5

VI. ACKNOWLEDGMENTS

Support for this project was provided by US DOE,
grant no. DE-FG02-88ER40387 and DE-NA-0001837.

[1] H. A. Bethe, Phys. Rev. 50, 332 (1936).
[2] N. Bohr, Nature 137, 344 (1936).
[3] A. Junghans, M. de Jong, H.-G. Clerc, A. Ignatyuk,

G. Kudyaev, and K.-H. Schmidt, Nuclear Physics A 629,
635 (1998).

[4] S. M. Grimes, Phys. Rev. C 88, 024613 (2013).
[5] S. I. Al-Quraishi, S. M. Grimes, T. N. Massey, and D. A.

Resler, Phys. Rev. C 67, 015803 (2003).
[6] G. Rohr, Zeitschrift für Physik A Atoms and Nuclei 318,

299 (1984).
[7] A. Iljinov, M. Mebel, N. Bianchi, E. D. Sanctis, C. Guar-

aldo, V. Lucherini, V. Muccifora, E. Polli, A. Reolon,
and P. Rossi, Nuclear Physics A 543, 517 (1992).

[8] S. M. Grimes, A. V. Voinov, and T. N. Massey, Phys.
Rev. C 94, 014308 (2016).

[9] E. Segre, Nuclei and Particles (W.A. Benjamin, Berlin,
Reading Massatchusets, 1977).

[10] T. Renstrøm, H. Utsunomiya, H. T. Nyhus, A. C. Larsen,
M. Guttormsen, G. M. Tveten, D. M. Filipescu, I. Ghe-
orghe, S. Goriely, S. Hilaire, Y.-W. Lui, J. E. Midtbø,
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