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We explore the situation of intertwined quantum phase transitions (IQPTs), for which a QPT
involving a crossing of two configurations is accompanied by a shape evolution of each configuration
with its own separate QPT. We demonstrate the relevance of IQPTs to the Zr isotopes, with such
coexisting Type I and Type II QPTs, and ground state shapes changing from spherical to prolate
axially deformed and finally to gamma-unstable. Evidence for this scenario is provided by a detailed
comparison with experimental data, using a definite symmetry-based conceptual framework.

I. INTRODUCTION

Quantum Phase transitions (QPT) have in recent years
become of great interest in a variety of fields [1]. In par-
ticular, they have been the subject of many investigations
in nuclear physics [2–5], where they were originally intro-
duced [6, 7]. In this field, most of the attention has been
devoted to shape phase transitions in a single configura-
tion, described by a single Hamiltonian,

Ĥ = (1− ξ) Ĥ1 + ξĤ2 , (1)

where ξ is the control parameter. As ξ changes from 0
to 1, the symmetry and equilibrium shape of the system
change from those of Ĥ1 to those of Ĥ2. For sake of
clarity, we denote these phase transitions Type I.

A different type of phase transitions occurs when two
(or more) configurations coexist [8]. In this case, the
quantum Hamiltonian has a matrix form [9]

Ĥ =

[
ĤA(ξA) Ŵ (ω)

Ŵ (ω) ĤB(ξB)

]
, (2)

where the index A, B denotes the two configurations
and Ŵ denotes their coupling. We call for sake of clar-
ity these phase transitions Type II [9], to distinguish
them from those of a single configuration [10]. The two
types of QPTs are usually discussed separately and both
have been established in nuclei, e.g., Type I QPT in the
neutron number 90 region for Nd-Sm-Gd isotopes, and
Type II QPT in nuclei near shell closure, e.g., in the light
Pb-Hg isotopes, with strong mixing between the two con-
figurations. In the present work, we explore a situation
where the two crossing configurations, although coupled,
still maintain individually a pronounced shape evolution
with nucleon number. We refer to such a scenario as
intertwined quantum phase transitions (IQPTs) in the
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sense that Type I and Type II coexist, and show empir-
ical evidence for it in transitional nuclei, analyzed in a
physically transparent symmetry-based framework.

II. ALGEBRAIC APPROACH TO QPTS

A variety of methods have been used to study shape
phase transitions in nuclei. We prefer here to use alge-
braic models, in which both Hamiltonians, ĤA and ĤB ,
and their coupling, Ŵ , are written in terms of the Inter-
acting Boson Model (IBM) [11], with bosons representing
valence nucleon pairs counted from the nearest closed
shells. This provides a simple tractable shell-model-
inspired framework, where global trends of structure and
symmetries can be clearly identified and diversity of ob-
servables calculated. Other microscopic but computa-
tionally demanding approaches include mean-field meth-
ods, both non-relativistic [12] and relativistic [13], and
very recently the Monte-Carlo shell-model (MCSM) [14].
In this paper, we focus on the 40Zr isotopes and find
a complex variety of phase transitions both of Type I
and Type II coexist, thus exemplifying IQPTs. These
isotopes have been very recently the subject of several
experimental investigations [15–21].

To be specific, we use the configuration mixing model
(IBM-CM) of [22], and write the Hamiltonian not in ma-
trix form, but rather in the equivalent form

Ĥ = Ĥ
(N)
A + Ĥ

(N+2)
B + Ŵ (N,N+2) , (3)

where Ô(N) = P̂ †N ÔP̂N and Ô(N,N ′) = P̂ †N ÔP̂N ′ , for an

operator Ô, with P̂N , a projection operator onto the [N ]

boson space. Here Ĥ
(N)
A represents the so-called normal

(N boson space) configuration and Ĥ
(N+2)
B represents

the so-called intruder (N+2 boson space) configuration,
which we have assumed, as in [23] where a similar cal-
culation was done for the 42Mo isotopes, to be a proton
excitation across the subshell closure at proton number
40 (see Fig. 1 of [23]). The explicit form of these Hamil-
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TABLE I. Parameters of the IBM-CM Hamiltonian, Eq. (4), are in MeV and χ is dimensionless. The first row of the Table
lists the number of neutrons, and particle-bosons (N,N + 2) or hole-bosons (N̄ , N̄ + 2) in the (A,B) configurations.

52(1, 3) 54(2, 4) 56(3, 5) 58(4, 6) 60(5, 7) 62(6, 8) 64(7, 9) 66(8, 10) 68(7̄, 9̄) 70(6̄, 8̄)

ε
(A)
d 0.7 0.8 1.82 1.75 1.2 1.2 1.2 1.2 1.2 1.2

κ(A) −0.005 −0.005 −0.005 −0.007 −0.006 −0.006 −0.006 −0.006 −0.006 −0.006

ε
(B)
d 0.35 0.37 0.6 0.45 0.3 0.15 0 0 0 0.15

κ(B) −0.02 −0.02 −0.015 −0.02 −0.02 −0.025 −0.0275 −0.03 −0.0275 −0.025

κ′(B) 0.01 0.01 0.01 0.01 0.0075 0.01 0.0125 0.0125 0.0125 0.01

χ −0.6 −0.6 −0.6 −0.6 −1.0 −1.0 −0.75 −0.25 −0.25 0

∆
(B)
p 1.6 1.6 1.84 1.43 0.8 0.8 0.8 0.8 0.8 0.8

ω 0.1 0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

tonians is

ĤA = ε
(A)
d n̂d + κ(A)Q̂χ · Q̂χ , (4a)

ĤB = ε
(B)
d n̂d + κ(B)Q̂χ · Q̂χ + κ′(B)L̂ · L̂+ ∆(B)

p , (4b)

where the quadrupole operator is defined as Q̂χ = d†s+

s†d̃+χ(d†×d̃)(2). In Eq. (4b), ∆
(B)
p is the off-set between

the normal and intruder configurations, where the index
p denotes the fact that this is a proton excitation. The
mixing term has the form [11, 22]

Ŵ = [ωd (d† × d†)(0) + ωs (s†)2 ] + H.c. , (5)

where, for simplicity, a single parameter ω = ωs = ωd is
used. Hamiltonians of the above form, have been used
extensively for studying coexistence phenomena in nu-
clei [22–31]. The resulting eigenstates |Ψ;L〉 with an-
gular momentum L, are linear combinations of the wave
functions, ΨA and ΨB , in the two spaces [N ] and [N+2],

|Ψ;L〉 = a|ΨA; [N ], L〉+ b|ΨB ; [N + 2], L〉 , (6)

with a2 + b2 = 1. We note here that one of the advan-
tages of the algebraic method is that one can also study
phase transitions semi-classically by introducing intrinsic
states [32, 33] and constructing the corresponding energy
functional (or potential function). For a single configu-
ration, the latter is a scalar function of the quadrupole
variables, β and γ [11]. When two configurations coexist,
the energy functional becomes a matrix. Diagonalization
of this two-by-two matrix produces the so-called eigen-
potentials, E±(β, γ) [9, 34, 35].

III. QPTS IN THE ZIRCONIUM CHAIN

The IBM-CM framework described above has been
previously employed to the Zr chain in [30], where the
Hamiltonian parameters were determined by a map-
ping between microscopic-derived and IBM energy sur-
faces. Due to the mean-field nature of this procedure,
the Hamiltonian obtained exhibited noticeable deviations
from the data in the vicinity of the critical point. In the

current study, we adapt a different approach as in [23–
28], with parameters determined from a combined fit to
the data on spectra and E2 transitions for the states of
92−110Zr shown in Fig. 1, allowing a gradual change be-
tween adjacent isotopes, but taking into account the pro-
posed shell-model interpretation for the structure evolu-
tion in this region [36–38]. The Hamiltonian parameters
used are given in Table I and are consistent with those of
previous calculations in this mass region [23–25], where
a similar fit procedure was employed. It should be noted
that beyond the middle of the shell at neutron number 66,
bosons are replaced by boson holes [11], and denoted by
a bar over their number, and a symmetry about mid-shell
was imposed on all parameters (except χ), in accord with
microscopic aspects of the IBM [39]. Apart from some
fluctuations due to the subshell closure at neutron num-
ber 56 (the filling of the 2d5/2 orbital [36]), the values of
the parameters are a smooth function of neutron number
and, in some cases, a constant. A notable exception is
the sharp decrease by 1 MeV of the energy off-set param-

eter ∆
(B)
p beyond neutron number 56. Such a behavior

was observed for the Mo and Ge chains [23–25] and, as
noted in [23], it reflects the effects of the isoscalar residual
interaction, Vpn, between protons and neutrons occupy-
ing the partner orbitals 1g9/2 and 1g7/2, which is the
established mechanism for descending cross shell-gap ex-
citations and onset of deformation in this region [37, 38].

This trend in ∆
(B)
p agrees with shell model estimates for

the monopole correction of Vpn [40]. The parameter ω (5)
is determined from E2 transitions in-between configura-
tions, and is constant except for 92,94Zr where the normal
configuration space is small (N = 1, 2). Fine-tuning the
parameters for individual isotopes can improve the fit,
but the main conclusions of the analysis, to be reported
below, are not changed.

In Fig. 1 we show a comparison between experimental
and calculated levels. One can see here a rather com-
plex structure. In the region between neutron number
50 and 56, there appear to be two configurations, one
spherical (seniority-like), (A), and one weakly deformed,
(B), as evidenced by the ratio R4/2, which is at 52-56,

R
(A)
4/2
∼= 1.6 and R

(B)
4/2
∼= 2.3. From neutron number 58,
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FIG. 1. Comparison between (a) experimental [19, 42] and
(b) calculated energy levels 0+

1 , 2
+
1 , 4

+
1 , 0

+
2 , 2

+
2 , 4

+
2 . Empty

(filled) symbols indicate a state dominated by the normal
A-configuration (intruder B-configuration), with assignments
based on the decomposition of Eq. (6). Note that the cal-
culated values start at neutron number 52, while the experi-
mental values include the closed shell at 50.

there is a pronounced drop in energy for the states of con-
figuration B and at 60, the two configurations exchange
their role indicating a Type II QPT. At this stage, the
intruder configuration (B) appears to be at the critical
point of a U(5)-SU(3) Type I QPT, as evidenced by the
low value of the excitation energy of the first excited 0+

state of this configuration (the 0+3 state in 100Zr shown in
Fig. 3). The same situation is seen in the 62Sm and 64Gd
isotopes at neutron number 90 [11, 41]. Beyond neutron
number 60, the intruder configuration (B) is strongly de-
formed, as evidenced by the small value of the excitation
energy of the state 2+1 , E2+1

=139.3 keV and by the ratio

R
(B)
4/2 = 3.24 in 104Zr. At still larger neutron number 66,

the ground state band becomes γ-unstable (or triaxial)
as evidenced by the close energy of the states 2+2 and 4+1 ,
E2+2

= 607.0 keV, E4+1
= 476.5 keV, in 106Zr, and espe-

cially by the recent results E4+1
=565 keV and E2+2

=485

keV in 110Zr [19], a signature of the SO(6) symmetry.
In this region, the ground state configuration undergoes
a crossover from SU(3) to SO(6).

The above spectral analysis suggests a situation of co-
existing Type I and Type II QPTs, which is the defining
property of IQPTs. In order to understand the nature
of these phase transitions, one needs to study the behav-
ior of the order parameters. In the present study, the
latter involve the expectation value of n̂d in the ground
state wave function, |Ψ;L= 0+1 〉 and in its ΨA and ΨB

components (6), denoted by 〈n̂d〉0+1 , 〈n̂d〉A, 〈n̂d〉B , re-

spectively. 〈n̂d〉A and 〈n̂d〉B portray the shape-evolution
in configuration (A) and (B), respectively, and 〈n̂d〉0+1 =

a2 〈n̂d〉A + b2 〈n̂d〉B contains information on the normal-
intruder mixing. Fig. 2(a) shows the evolution along
the Zr chain of these order parameters (〈n̂d〉A , 〈n̂d〉B
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FIG. 2. Evolution of order parameters and of observables
along the Zr chain. Symbols (solid lines) denote experi-
mental data (calculated results). Relevant parameters are
given in the text. (a) Order parameters (see text for de-
tails). (b) B(E2) values in Weisskopf units (W.u.). Data
taken from [15–18, 20, 21, 42]. Dotted lines denote calcu-
lated E2 transitions within a configuration. (c) Isotope shift,
∆ 〈r̂2〉

0+1
in fm2. Data taken from [43]. The horizontal dashed

line at 0.235 fm2 represents the smooth behavior in ∆ 〈r̂2〉
0+1

due to the A1/3 increase of the nuclear radius. (d) Two-
neutron separation energies, S2n, in MeV. Data taken from
AME2016 [44].

in dotted and 〈n̂d〉0+1 in solid lines), normalized by the

respective boson numbers, 〈N̂〉A = N , 〈N̂〉B = N + 2,

〈N̂〉0+1 = a2N+b2(N+2). Configuration (A) is seen to

be spherical for all neutron numbers considered. In con-
trast, configuration (B) is weakly-deformed for neutron
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FIG. 3. Experimental and calculated energy levels in MeV and E2 rates in W.u. for 100Zr [panels (a)-(b)], and 110Zr [panels
(c)-(d)].

number 52-58. One can see here clearly a jump between
neutron number 58 and 60 from configuration (A) to con-
figuration (B), indicating a 1st order Type II phase tran-
sition [9], a further increase at neutron numbers 60-64
indicating a U(5)-SU(3) Type I phase transition, and, fi-
nally, there is a decrease at neutron number 66, due in
part to the crossover from SU(3) to SO(6) and in part
to the shift from boson particles to boson holes after the
middle of the major shell 50-82. 〈n̂d〉0+1 is close to 〈n̂d〉A
for neutron number 52-58 and coincides with 〈n̂d〉B at 60
and above, consistent with a high degree of purity with
respect to configuration-mixing. These conclusions are
stressed by an analysis of other observables, in particular,
the B(E2) values. Adapted to two configurations, the

E2 operator reads T̂ (E2)=e(A)Q̂
(N)
χ + e(B)Q̂

(N+2)
χ , with

Q̂
(N)
χ = P̂ †N Q̂χP̂N and Q̂

(N+2)
χ =P †N+2Q̂χP̂N+2. The bo-

son effective charges e(A) =0.9 and e(B) =2.24 (W.u.)1/2

are determined from the 2+→0+ transition within each
configuration, and χ is the same parameter as in the
Hamiltonian (4). As shown in Fig. 2(b), the calculated
B(E2)’s agree with the empirical values and follow the
same trends as the respective order parameters.

Further evidence can be obtained from an analysis
of the isotope shift ∆ 〈r̂2〉0+1 = 〈r̂2〉0+1 ;A+2 − 〈r̂2〉0+1 ;A,

where 〈r̂2〉0+1 is the expectation value of r̂2 in the ground

state 0+1 . In the IBM-CM the latter is given by 〈r̂2〉 =

r2c+αNv+η[〈n̂(N)
d 〉+〈n̂(N+2)

d 〉], where r2c is the square ra-
dius of the closed shell, Nv is half the number of valence
particles, and η is a coefficient that takes into account the
effect of deformation [11, 45]. ∆ 〈r̂2〉0+1 depends on two

parameters, α = 0.235, η = 0.264 fm2, whose values are
fixed by the procedure of Ref [45]. ∆ 〈r̂2〉0+1 should in-

crease at the transition point and decrease and, as seen in
Fig. 2(c), it does so, although the error bars are large and
no data are available beyond neutron number 60. (In the
large N limit, this quantity, proportional to the deriva-
tive of the order parameter 〈n̂d〉0+1 , diverges at the criti-

cal point). Similarly, the two-neutron separation energies

S2n can be written as [11], S2n = −Ã−B̃Nv±Sdef
2n −∆n,

where Sdef
2n is the contribution of the deformation, ob-

tained by the expectation value of the Hamiltonian in
the ground state 0+1 . The + sign applies to particles and
the − sign to holes, and ∆n takes into account the neu-
tron subshell closure at 56, ∆n = 0 for 50-56 and ∆n = 2
MeV for 58-70. The value of ∆n is taken from Table XII
of [46] and Ã = −16.5, B̃ = 0.758 MeV are determined
by a fit to binding energies of 92,94,96Zr. The calculated
S2n, shown in Fig. 2(d), displays a complex behavior.
Between neutron number 52 and 56 it is a straight line,
as the ground state is spherical (seniority-like) configura-
tion (A). After 56, it first goes down due to the subshell
closure at 56, then it flattens as expected from a 1st or-
der Type I QPT (see, for example the same situation in
the 62Sm isotopes [41]). After 62, it goes down again due
to the increasing of deformation and finally it flattens as
expected from a crossover from SU(3) to SO(6).

We note that our calculations describe the experimen-
tal data in the entire range 92−110Zr very well. A full
account is given in [47]. Here we show only two exam-
ples, 100Zr and 110Zr. 100Zr is near the critical point
of both Type I and Type II QPT and yet our de-
scription of energy levels and B(E2) values is excellent,
Fig. 3(a)-(b). The ground state band, configuration (B),
appears to have features of the so-called X(5) symme-
try [48], while the spherical configuration (A) has now
become the excited band 0+2 . 110Zr, Fig. 3(c)-(d), ap-
pears instead to be an excellent example of SO(6) sym-
metry [49], although few experimental data are avail-
able. In general, the results of the current phenomeno-
logical study resemble those obtained in the microscopic
approach of the MCSM [14] (which focuses on spectra
and E2 rates), however, there are some noticeable differ-
ences. Specifically, the replacement γ-unstable→ triaxial
and the inclusion of more than two configurations in the
MCSM. The spherical state in 100Zr is identified in the
MCSM as 0+4 , in contrast to 0+2 in the current calcula-
tion and the data. Both calculations show a large jump
in B(E2; 2+1 → 0+1 ), between 98Zr and 100Zr, typical of a
1st order QPT. This is in contrast with mean-field based
calculations [30, 50, 51], which due to their character
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FIG. 4. Contour plots in the (β, γ) plane of the lowest eigen-potential surface, E−(β, γ), for the 92−110Zr isotopes.

smooth out the phase transitional behavior, and show
no such jump at the critical point of the QPT (see Fig. 2
of [21]). The observed peak in B(E2; 2+1 → 0+1 ) for 104Zr,
is reproduced by the current calculation but not by the
MCSM.

As mentioned above, one of the main advantages of
the algebraic method is that one can do both a quan-
tum and a classical analysis. In Fig. 4, we show the
calculated lowest eigen-potential E−(β, γ). These clas-
sical potentials confirm the quantum results, as they
show a transition from spherical (92−98Zr), Fig. 4(a)-(d),
to a flat-bottomed potential at 100Zr, Fig. 4(e), to ax-
ially deformed (102−104Zr), Fig. 4(f)-(g), and finally to
γ-unstable (106−110Zr), Fig. 4(h)-(j).

IV. CONCLUSIONS

In this article, we have calculated the spectra and
several other observables for the entire chain of 40Zr
isotopes, from neutron number 52 to 70, in the frame-
work of the IBM-CM. The results of the comprehensive
analysis suggest that IQPTs appear to be manifested
empirically in these isotopes. The latter exhibit a
complex phase structure with two configurations, one
spherical (A) and the other (B) undergoing first a
QPT U(5)-SU(3) and then a crossover SU(3)-SO(6).

These shape-changing Type I QPTs occur simultane-
ously with a configuration-changing Type II QPT, in
which the normal and intruder configurations cross,
a characteristic pattern of IQPTs. Further details of
our results, including the calculation of spectra and
transition rates in all the 92−110Zr isotopes and of
other quantities not reported here, will be given in a
forthcoming publication based on [47]. Our method of
calculation could also be applied to the 38Sr isotopes,
which show similar features, and we are planning to do
so in a future publication. The present work provides
the first evidence for intertwined quantum phase tran-
sitions in nuclear physics and may stimulate research
for this type of phase transitions in other fields of physics.
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