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The impact of beyond mean field effects on the ground state and fission properties of superheavy
nuclei has been investigated in a five-dimensional collective Hamiltonian based on covariant density
functional theory. The inclusion of dynamical correlations reduces the impact of the Z = 120 shell
closure and induces substantial collectivity for the majority of the Z = 120 nuclei which otherwise
are spherical at the mean field level (as seen in the calculations with the PC-PK1 functional).
Thus, they lead to a substantial convergence of the predictions of the functionals DD-PC1 and
PC-PK1 which are different at the mean field level. On the contrary, the predictions of these two
functionals remain distinctly different for the N = 184 nuclei even when dynamical correlations are
included. These nuclei are mostly spherical (oblate) in the calculations with PC-PK1 (DD-PC1).
Our calculations for the first time reveal significant impact of dynamical correlations on the heights
of inner fission barriers of superheavy nuclei with soft potential energy surfaces, the minimum of
which at the mean field level is located at spherical shape. These correlations affect the fission
barriers of the nuclei, which are deformed in the ground state at the mean field level, to a lesser
degree.

PACS numbers: 21.10.Dr, 21.60.Jz, 25.85.-w, 27.90.+b

I. INTRODUCTION

One of the most active sub-fields of low-energy nuclear
physics is the investigation of superheavy elements (SHE)
[1]. At present, the nuclear chart extends up to the ele-
ment Og with proton number Z = 118 [2]. However, the
experimental difficulties in the studies of SHEs at this
extreme of the proton number are enormous: the exper-
iments lasting several months typically provide only few
events [1]. New facilities such as Superheavy Element
Factory in Dubna, Russia [3] will allow to observe sub-
stantially more events at presently available Z values and
hopefully to extend the nuclear chart to higher Z values.

In addition to experimental challenges, there are sub-
stantial theoretical uncertainties related to the predic-
tions of the position of the center of the island of sta-
bility of superheavy elements [4–7] and their fission
properties [8, 9]. Different models locate this center
at different particle numbers. For example, the mi-
croscopic+macroscopic (MM) models put it at Z =
114, N = 184 [4, 10, 11]. Most of the Skyrme energy
density functionals (SEDF) place it at Z = 126, N = 184
[5, 6]. However, there are also some SEDFs which predict
large shell gap at Z = 120 [5].

Note that the number of these predictions was obtained
in the calculations restricted to spherical shape. The
danger of this restriction has recently been illustrated in
the covariant density functional theoretical (CDFT [12–
14]) study of Ref. [7] based on axial relativistic Hartree-
Bogoliubov (RHB) calculations. Earlier CDFT studies

[5, 6, 15–17] restricted to spherical shape almost always
indicated Z = 120, N = 172 as the center of the island
of stability of SHEs. However, the inclusion of deforma-
tion has drastically changed this situation: it was found
that the impact of the N = 172 spherical shell gap on
the structure of SHE is very limited. Similar to non-
relativistic functionals, some covariant functionals pre-
dict the important role played by the spherical N = 184
gap. For these functionals (NL3* [18], DD-ME2 [19], and
PC-PK1 [20]) there is a band of spherical nuclei along
and near the Z = 120 and N = 184 lines. However, for
other functionals (DD-PC1 [22] and DD-MEδ [21]) oblate
shapes dominate at and in the vicinity of these lines.
Available experimental data (which do not extend up to
the Z = 120 and N = 184 lines) are described with com-
parable accuracy in the calculations with these function-
als which does not allow to discriminate between these
predictions. Note that all these functionals are globally
tested [7, 9, 23] and only DD-MEδ is not recommended
for the nuclei beyond lead region based on the studies
of inner fission barriers [9] and octupole deformed nuclei
[24].

The results obtained in Ref. [7] on the structure of
the ground states of superheavy nuclei could be further
modified. This is because the potential energy surfaces
of many nuclei along the Z = 120 and N = 184 lines are
soft in quadrupole deformation (see Figs. 3 and 4 of Ref.
[7] and Fig. 1 in the present manuscript). For such tran-
sitional nuclei the correlations beyond mean field may
substantially modify the physical situation, for example,
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by creating deformed ground state instead of spherical
one at the mean field level. However, this issue has not
been investigated before since the studies of SHEs are
almost always done on the mean field level. Only in Ref.
[25] the beyond mean field effects have been taken into
account for the ground states of several SHE located in
the α-decay chains of the 298,300120 nuclei in the rela-
tivistic calculations based on the DD-PC1 functional.

Another question of interest is the impact of dynami-
cal correlations on the fission barrier heights. So far the
majority of the fission barrier calculations have been per-
formed at the mean field level (see Refs. [8, 9, 26–29] and
references therein). Substantial differences in the pre-
dictions of inner fission barrier heights for SHE existing
between different non-relativistic and relativistic models
and between different covariant energy density function-
als in the CDFT calculations are summarized in Figs. 12
and 10 of Ref. [9], respectively. The CDFT predictions
for the inner fission barrier heights of SHE are located at
the lower end of the range of predictions of all considered
models/functionals in these figures.

The importance of dynamical correlations in triaxial
calculations has been studied only for few actinide [30–33]
and light superheavy [34] nuclei. However, the impact of
dynamical correlations on fission barriers of SHE has not
been studied in a relativistic framework. Contrary to the
actinides in which the ground state is prolate deformed,
the situation for superheavy nuclei in the vicinity of the
Z = 120 and N = 184 lines is different since such nuclei
have either spherical or oblate deformation in the ground
state and are transitional in nature [7]. Considering sig-
nificant impact of the fission barriers on the stability of
superheavy nuclei, it is necessary to evaluate the impact
of dynamical correlations on their heights.

The present manuscript aims at the investigation of the
impact of dynamical correlations on the ground state and
fission properties of superheavy nuclei along the Z = 120
isotopic chain (with N = 172 − 190), N = 174 (with
Z = 108− 124) and N = 184 (with Z = 112− 122) iso-
tonic chains. The calculations are performed within five-
dimensional collective Hamiltonian (5DCH) approach
[35–37] based on CDFT which has been extremely suc-
cessful in the description of many physical phenomena
[39–46].

They are carried out with two covariant energy den-
sity functionals (CEDFs), namely, PC-PK1 [20] and DD-
PC1 [22], representing two extremes of the predictions for
superheavy nuclei in the CDFT. PC-PK1 predicts the
bands of spherical nuclei along Z = 120 and N = 184 [7]
suggesting that the 304120 nucleus may be considered as
doubly magic. On the contrary, the nuclei along these
lines and beyond are oblate in the calculations with DD-
PC1 [7]. Note that these two functionals provide the best
description of experimental data in actinides and super-
heavy nuclei among 5 employed in Ref. [7] state-of-the-art
CEDFs.

In Sec. II we present a short outline of theoretical
framework for the 5DCH approach based on CDFT. The

systematics of collective potential energy surfaces, defor-
mations, low-energy spectra, and fission barriers are dis-
cussed in Sec. III. Section IV summarizes the principal
results.

II. THEORETICAL FRAMEWORK

The 5DCH that describes the nuclear excitations of
quadrupole vibration and rotation is expressed in terms
of two deformation parameters β and γ and three Euler
angles (φ, θ, ψ) ≡ Ω [35–37],

Ĥcoll(β, γ,Ω) = T̂vib(β, γ) + T̂rot(β, γ,Ω) + Vcoll(β, γ).
(1)

The three terms in Ĥcoll(β, γ,Ω) are the vibrational ki-
netic energy
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the rotational kinetic energy

T̂rot =
1

2

3
∑

k=1

Ĵ2
k

Ik
, (3)

and the collective potential Vcoll, respectively. Here, Ĵk
denote the components of the total angular momentum
in the body-fixed frame, and both the mass parameters
Bββ, Bβγ , Bγγ and the moments of inertia Ik depend
on the quadrupole deformation variables β and γ. Two
additional quantities that appear in the T̂vib term, r =
B1B2B3 and w = BββBγγ −B2

βγ , determine the volume
element in the collective space.
The eigenvalue problem of the Hamiltonian (1) is

solved using an expansion of eigenfunctions in terms of a
complete set of basis functions that depend on five col-
lective coordinates β, γ and Ω (φ, θ, ψ) [36]. The eigen-
functions of the collective Hamiltonian read as

ΨIM
α (β, γ,Ω) =

∑

K∈∆I

ψI
αK(β, γ)ΦI

MK(Ω), (4)

For a given collective state, the probability density dis-
tribution in the (β, γ) plane is defined as

ρIα(β, γ) =
∑

K∈∆I

∣

∣ψI
αK(β, γ)

∣

∣

2
β3, (5)

with the summation over the allowed set of values of the
projection K of the angular momentum I on the body-
fixed symmetry axis, and with the normalization

∫

∞

0

βdβ

∫ 2π

0

ρIα(β, γ)| sin 3γ|dγ = 1. (6)
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FIG. 1. (Color online) Potential energy surfaces (top panels), collective energy surfaces (CES) with zero-point-energy (ZPE)
taken into account (middle panels) and probability density distributions (in arbitrary units) in the β-γ plane for the 0+1 states
(bottom panels) of selected nuclei in Z = 120 isotopic chain. The results are obtained with PC-PK1 CEDF. The energy
difference between two neighboring equipotential lines is equal to 0.5 MeV. The minima and saddles in top and middle panels
are shown by circles and squares, respectively.

The reduced E2 transition probabilities are calculated
by

B(E2;αI → α′I ′)& = &
∑

µ,M ′,M

|〈α′I ′M ′|M̂(E2, µ)|αIM〉|2& = &
1

2I + 1
|〈α′I ′||M̂(E2)||αI〉|2,

(7)

where M̂(E2, µ) is the electric quadrupole operator
which can be expressed in the following form [38]

M̂(E2, µ) = D2
µ0q

p
20(β, γ) +

1√
2
(D2

µ2 +D2
µ−2)q

p
22(β, γ)

(8)
where

q
p
2κ = 〈

∑

p

epr
2
pY2κ〉 (9)

are the quadrupole moments for protons at the defor-
mation point (β, γ) calculated in a fully self-consistent
manner, the indices k equal to 0 and 2 and ep are the
bare charges.
In the framework of 5DCH-CDFT, the collective pa-

rameters of 5DCH, including the mass parameters Bββ,
Bβγ , Bγγ , the moments of inertia Ik, and the collective

potential Vcoll, are all determined microscopically from
constrained triaxial CDFT calculations. The moments of
inertia are calculated with Inglis-Belyaev formula [47, 48]
and the mass parameters with the cranking approxima-
tion [36, 49]. The collective potential Vcoll is calculated
by

Vcoll(β, γ) = Etot(β, γ)−∆Vvib(β, γ)−∆Vrot(β, γ),

(10)

where Etot(β, γ) is the mean field total energy.
∆Vvib(β, γ) and ∆Vrot(β, γ) are zero-point-energy (ZPE)
values of vibrational and rotational motions. The col-
lective ZPE corresponds to a superposition of zero-point
motion of individual nucleons in the single-nucleon po-
tential. Here, the ZPE corrections are calculated in the
cranking approximation [36, 49].
The energy surfaces Etot(β, γ) defined as a function

of deformation parameters β and γ are described as po-
tential energy surfaces (PES). In the present manuscript,
they are extracted from the triaxial relativistic mean field
+BCS (RMF+BCS) calculations. The energy surfaces
Vcoll(β, γ) are labelled here as collective energy surfaces
(CES); in addition to Etot(β, γ) they contain zero-point-
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energies of vibrational and rotational motion. The CES
enter into the action integral describing the fission dy-
namics (see Refs. [29, 50] and Eq. (13) and its discus-
sion below). Thus, the calculations of fission fragment
distributions, spontaneous fission half-lives etc depend
sensitively on CES (see, for example, Refs. [51, 52] and
references quoted therein). In addition, the height of
the fission barrier is defined as an energy difference be-
tween the saddle point and minimum of CES, namely, as
Vcoll(saddle) − Vcoll(min) (see, for example, Refs. [53–
55]). Note that different approaches exist for the calcu-
lations of ZPE contributions to CES and in a number of
publications zero-point-energies of vibrational motion are
neglected since their variation with deformation is rather
modest (see, for example, Ref. [54]).

-0.4
-0.2
0.0
0.2
0.4
0.6

172 176 180 184 188 192

108 112 116 120 124

-0.4
-0.2
0.0
0.2
0.4
0.6

(c)

(b)

  RMF+BCS (PC-PK1)
  RMF+BCS (DD-PC1)
  RMF+BCS+ZPE (PC-PK1)
  RMF+BCS+ZPE (DD-PC1)

N=174 (a)

Neutron number

Z=120

D
ef

or
m

at
io

n 
 

Proton number

N=184

FIG. 2. (Color online) The quadrupole deformations of the
minima in potential and collective energy surfaces obtained
in the RMF+BCS and RMF+BCS+ZPE calculations, re-
spectively. The results obtained with DD-PC1 and PC-PK1
CEDFs are presented for the N = 174 [panel(a)] and N = 184
[panel(c)] isotonic chains as well as for the Z = 120 isotopic
chain [panel(b)].

III. RESULTS AND DISCUSSION

The starting point is triaxial RMF+BCS calculations.
These calculations are performed imposing constraints on
the axialQ20 and triaxialQ22 mass quadrupole moments.
Note, that full-scale calculations are performed on the
grid which covers the quadrupole deformation range β2 =
0 − 0.6 in steps of ∆β2 = 0.05 and gamma deformation
range γ = 0◦ − 60◦ in steps of ∆γ = 6◦.
In order to avoid the uncertainties connected with the

definition of the size of the pairing window [56], we use
the separable form of the finite range Gogny pairing in-
teraction introduced by Tian et al in Ref. [57] which,
in addition, is multiplied by scaling factor f (see Eq.
(25) in Ref. [23]). The systematic investigation of pair-
ing properties in the actinides [23, 58] indicates that

scaling factor f = 1.0 is appropriate for the relativistic
Hartree-Bogoliubov (RHB) description of actinides and
superheavy nuclei and different physical observables in
these mass regions are well reproduced with such a fac-
tor [7, 16, 23, 24, 58]. However, the experience shows
that this factor has to be larger in the RMF+BCS frame-
work as compared with the RHB one [59]. Thus, for the
RMF+BCS framework this factor has been defined by
matching the gain of binding due to proton and neutron
pairing (as compared with unpaired solution) obtained
in the axial RHB calculations with fν = fπ = 1.0 for the
−0.6 < β2 < 0.6 deformation range of the 308120 nucleus.
This led to the following neutron and proton scaling fac-
tors for the RMF+BCS calculations: fν = 1.066 and
fπ = 1.052 for the DD-PC1 functional and fν = 1.073
and fπ = 1.058 for the PC-PK1 CEDF.
The truncation of the basis is performed in such a

way that all states belonging to the major shells up to
NF = 18 fermionic shells are taken into account for the
Dirac spinors. This truncation of the basis provides ex-
cellent numerical accuracy for the ground state properties
and sufficient numerical accuracy for the changes of fis-
sion barrier heights due to the correlations beyond mean
field. This basis is also sufficient for the calculation of the
E(2+1 ) energies and B(E2; 2+1 → 0+1 ) transition probabil-
ities. This was verified by comparing the results of the
5DCH calculations with NF = 18 and NF = 20 for a few
nuclei; the NF = 18 and NF = 20 results for these ob-
servables differ marginally and cannot be discriminated
on the plots presented in Figs. 3 and 4 below.
On the other hand, numerically accurate calculations

of absolute values of fission barrier heights in this mass
region require the fermionic basis with NF = 20 (see
Refs. [9, 28]). However, the 5DCH calculations in such
a basis are prohibitively expensive and they have to be
performed at all grid points. To overcome this problem
we use the fact that the dynamical contributions to fission
barrier height, defined as

EFB
dyn = [∆Vvib(β, γ) + ∆Vrot(β, γ)]saddle

−[∆Vvib(β, γ) + ∆Vrot(β, γ)]ground state,(11)

calculated with NF = 18 and NF = 20 differ by less
than 20 keV. This clearly indicates that numerical errors
in the fission barriers are dominated by the truncation
errors in the mean field part. This result is born in few
detailed full-scale calculations.
Note that the topologies1 of potential energy surfaces

(PES) [collective energy surfaces (CES)] are very simi-
lar in the calculations with NF = 18 and NF = 20 with
the deformations of the ground states and saddles being
almost independent of NF . This allows simplified ap-
proach discussed below to the calculation of the fission

1 The topology of potential energy surface means the general shape
of multidimensional potential energy surface in terms of minima
and saddles and general connectivity that characterize such a
surface [60].
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barriers in the RMF+BCS and RMF+BCS+ZPE calcu-
lations. First, based on PES and CES obtained in the
calculations with NF = 18, we define the regions close
to the saddle of fission barrier and ground state. Sec-
ond, for these regions, the RMF+BCS calculations are
repeated with NF = 20 and RMF+BCS fission barrier
EFB

RMF+BCS(NF = 20) is defined for NF = 20. Such pro-
cedure has been used earlier in Ref. [9]. Third, the fission
barrier in CES is defined as

EFB
RMF+BCS+ZPE(NF = 20) = EFB

RMF+BCS+ZPE(NF = 18)

+[EFB
RMF+BCS(NF = 20) − EFB

RMF+BCS(NF = 18)] (12)

This procedure saves a lot of computational time since
the NF = 20 calculations are performed only on a limited
part of the grid space and they are performed only at the
mean field level.
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FIG. 3. (Color online) Excitation energies of the 2+1 states a
function of proton number in the N = 174 and 184 isotonic
chains and as a function of neutron number in the Z = 120
isotopic chain.

The potential energy surfaces for the Z = 120 iso-
topes with N = 172, 178, 184 and 190 obtained in the
RMF+BCS calculations with the PC-PK1 functional are
shown in Fig. 1. The minima are located at spherical
shape for N = 172, 178, and 184 and only the 310120 nu-
cleus has an oblate ground state with β2 ∼ −0.4. Note
that PES are soft in quadrupole deformation in the vicin-
ity of the minima. As a result, the inclusion of ZPE leads
to substantial modifications in a number of nuclei. For
example, the N = 178 nucleus is no longer spherical in
its ground state since the minimum in collective energy
surface is located at β2 ∼ −0.25 (see Fig. 1). In addition,
the collective energy surfaces are very soft in quadrupole
deformation. As a consequence, the wavefunction of the
292120 nucleus is localized at β2 ∼ −0.15 despite the fact
the minimum in collective energy is located at spherical
shape. Thus, contrary to previous mean field studies this
nucleus cannot be considered in the 5DCH calculations
as “doubly magic” spherical nucleus.
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FIG. 4. (Color online) The B(E2; 2+1 → 0+1 ) values as a
function of proton number in the N = 174 and 184 isotonic
chains and as a function of neutron number in the Z = 120
isotopic chain.

Fig. 2 summarizes the results for the deformations of
the minima in potential and collective energy surfaces for
the Z = 120 isotopic and N = 174, 184 isotonic chains
obtained in the RMF+BCS and RMF+BCS+ZPE cal-
culations with the PC-PK1 and DD-PC1 CEDFs. These
surfaces as well as probability densities distributions for
the 0+1 collective wavefunctions are presented in Figs.
1-18 of supplemental material. One can see substan-
tial changes in equilibrium deformation of the nuclei lo-
cated in transitional regions when the correlations be-
yond mean field are included. For example, the tran-
sition from prolate to oblate shape is triggered in the
N = 174 nuclei with Z = 108 and 110 when ZPE are in-
cluded in the calculations with DD-PC1 (Fig. 2a). ZPE
also triggers the transition from spherical shape to de-
formed one in the N = 174 nuclei with Z = 118 and 120
in the calculations with PC-PK1. The modifications are
smaller in the N = 184 isotonic chain (Fig. 2c); the defor-
mation of the energy minimum is switched from highly
deformed oblate to spherical one only in the Z = 114
nucleus in the calculations with DD-PC1 when ZPE are
added. Otherwise, the DD-PC1 and PC-PK1 CEDF give
distinctly different predictions for the deformations of the
CES minima in the N = 184 nuclei. The former func-
tional predicts mostly oblate shapes in the ground state,
while the latter one only spherical shapes. The deforma-
tions of the Z = 120 nuclei are very weakly affected by
the ZPE’s in the calculations with DD-PC1 (Fig. 2). On
the contrary, they are drastically affected by ZPE in the
case of PC-PK1 CEDF; the deformations of the minima
of the N = 174− 180 and N = 188 isotopes change from
spherical to oblate ones when ZPE is added. While the
results of the RMF+BCS calculations for Z = 120 nuclei
are drastically different for the PC-PK1 and DD-PC1,
they mostly converge to the same deformed oblate solu-
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tion when ZPE are added. This points to reduced role
of the Z = 120 proton shell gap which in many earlier
RMF studies was interpreted as “magic” one.
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FIG. 6. (Color online) The same as Fig. 2 but for the im-
pact of dynamical correlations on the height of inner fis-
sion barrier. Negative (positive) value of EB(RMF+BCS)-
EB(RMF+BCS+ZPE) means higher (lower) fission barrier in
the calculations with dynamical correlations included.

Further information on the collectivity of the states
of interest can be obtained by analysing E(2+1 ) energies
(Fig. 3) and the B(E2; 2+1 → 0+1 ) transition rates (Fig. 4).
The excitation energies and transition rates are strongly
affected by the quadrupole deformations of the respective
minima and also by the dynamics of large shape fluctu-
ations around equilibrium shape which strongly depends
on the topology of PES. These properties can be rea-

sonably well described in the 5DCH calculations as illus-
trated by the studies of the Sn isotopes in Ref. [42].

With the exception of the Z = 118 and 120 nuclei,
the results for the E(2+1 ) values are very similar for the
N = 174 isotones in the calculations with PC-PK1 and
DD-PC1 CEDFs (Fig. 3a). Substantial difference be-
tween the B(E2; 2+1 → 0+1 ) values obtained with these
two functionals is observed only at Z = 120 (Fig. 4a).
Note that in this isotonic chain spherical shapes appear
on the mean field level only for the Z = 118 and 120
nuclei in PC-PK1 CEDF (Fig. 2); this is a reason for
some weakening of the collectivity in these nuclei in the
5DCH calculations with PC-PK1 as compared with the
ones based on DD-PC1 CEDF.

In the Z = 120 isotopic chain, the N = 180 − 184
nuclei are significantly less collective in the calculations
with CEDF PC-PK1 as compared with DD-PC1 (Figs.
3b and 4b). Above N = 186, there is no difference be-
tween the DD-PC1 and PC-PK1 results. BelowN = 178,
the nuclei are less collective in the calculations with PC-
PK1 but the difference is not that significant as in the
N = 180−184 nuclei. All these features closely correlate
with the presence/absence of spherical nuclei along the
Z = 120 chain in the RMF+BCS calculations with PC-
PK1/DD-PC1 functionals and with the modifications of
PES induced by dynamical correlations (see Fig. 2b and
Fig. 1).

The results for the N = 184 nuclei with Z = 112 −
118 obtained with the DD-PC1 and PC-PK1 functionals
are distinctly different (Figs. 3c and 4c). Indeed, the
combination of E(2+1 ) ∼ 1.0 MeV (which is substantially
higher than the E(2+1 ) values obtained for the N = 174
and Z = 120 chains) and low B(E2; 2+1 → 0+1 ) values
obtained in the 5DCH calculations with PC-PK1 strongly
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FIG. 7. (Color online) Dynamical correlations energies at the ground states and the saddles of inner fission barriers of the
nuclei under study.

suggests that the Z = 112 − 118, N = 184 nuclei may
be considered as truly spherical. The Z = 120, N = 184
nucleus is transitional in nature with small E(2+1 ) and
B(E2; 2+1 → 0+1 ) values and the Z = 122, N = 184
nucleus is collective in ground state in the calculations
with PC-PK1. On the other hand, all N = 184 isotones
are collective in their ground states in the calculations
with DD-PC1.

It is interesting to investigate the impact of ZPE on
the E(2+1 ) energies and B(E2; 2+1 → 0+1 ) transition rates.
This is done by neglecting ZPE in the 5DCH calculations;
such results are shown by dashed lines with open symbols
in Figs. 3 and 4.

The neglect of ZPE typically leads to the increase of
the E(2+1 ) energies and there is a correlation between
the magnitude of this increase and the deformation of the
system. This increase is either small or even non-existent
in the results obtained with the DD-PC1 functional (see
Fig. 3); note that the absolute majority of the calculated
nuclei have non-zero β deformations for the ground states
in the RMF+BCS and 5DCH calculations with this func-
tional (see Fig. 2). These deformations are similar or have
similar magnitude for the N = 174 isotopic chain in the
calculations with DD-PC1 and PC-PK1 (see Fig. 2a). As
a result, the increase in the E(2+1 ) energies due to neglect
of ZPE is comparable in both functionals. On the con-
trary, in the calculations with PC-PK1 the increases in
the E(2+1 ) energies due to neglect of ZPE are larger in
the N = 184 isotonic chain (see Fig. 3c) and they are es-
pecially large in the Z = 120 isotopic chain (see Fig. 3b).
In the former chain, the ground states of the nuclei have
β = 0 both in the RMF+BCS and RMF+BCS+ZPE
calculations (see Fig. 2c). In the latter chain, with ex-
ception of the N = 190 nucleus, in the ground states the

β deformation is zero in the RMF+BCS calculations and
the inclusion of ZPE triggers the transition to oblate de-
formation in the nuclei with N = 174−180 and N = 188
(see Fig. 2b).
In general, the neglect of ZPE leads to the decrease

of the B(E2; 2+1 → 0+1 ) transition rates (see Fig. 4).
The only exceptions are the N = 184 nuclei with
Z = 112 − 118 (see Fig. 4c) and Z = 120 nuclei with
N = 180, 182 (see Fig. 4b) in the calculations with PC-
PK1. However, these nuclei are characterized by very low
values of B(E2; 2+1 → 0+1 ). Note also that the decrease of
the B(E2; 2+1 → 0+1 ) transition rates due to the neglect
of ZPE depends on the nucleus and on the functional.
Note that no direct correlations between these decreases
in the B(E2; 2+1 → 0+1 ) values and the topologies of PES
and/or CES of the nuclei under consideration have been
found.
Fig. 5 shows the impact of dynamical correlations on

the heights of inner fission barriers of the nuclei under
consideration. In the mean field calculations, the height
of fission barrier is defined as the energy difference be-
tween the saddle point and minimum of PES. In the
beyond mean field calculations, this energy difference is
extracted from the energies of saddle and minimum of
collective energy surface: this is a consistent with the
definition of fission barrier height used before in beyond
mean field approaches based on Gogny and Skyrme en-
ergy density functionals [53–55].

The changes introduced in the fission barrier heights
due to dynamical correlations are summarized in Fig. 6.
The calculated heights obtained in the RMF+BCS cal-
culations are in general close to the ones obtained in the
RHB calculations of Ref. [9]; some differences are due
to the use of different frameworks (RMF+BCS in the
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present manuscript and RHB in Ref. [9]) and the dif-
ferences in the way the pairing interaction has been de-
fined in both manuscripts. Note that the height of fission
barrier extremely sensitively depends on the strengths of
pairing interaction (see Ref. [56] and references quoted
therein).

One can see that in the calculations with the DD-PC1
functional, the fission barriers obtained in the calcula-
tions with and without dynamical correlations are close
to each other; the modifications of the fission barrier
height by the dynamical correlations are typically in the
range of ±0.5 MeV (see Fig. 6). The only exceptions are
the (Z = 116, N = 174) (Fig. 6a), (Z = 120, N = 186)
(Fig. 6b) and (Z = 116, N = 184) (Fig. 6c) nuclei for
which the modifications of inner fission barrier due to dy-
namical correlations are close to or exceed 1 MeV. Note
that the absolute majority of the nuclei under considera-
tion are deformed in the ground states in the calculations
at and beyond mean field levels with DD-PC1 functional
(see Fig. 2 and Figs. 4, 5, 10, 11, 16 and 17 in supple-
mental material).

Similar features are also seen for the N = 174 isotones
in the calculations with the PC-PK1 functional (see Fig.
5d). The majority of the nuclei in the N = 174 chain are
deformed both at and beyond mean field levels (see Fig.
6a and Figs. 7 and 8 in supplemental material) and only
Z = 118 and 120 nuclei are spherical in the mean field
calculations. Only for the latter two nuclei the modifica-
tions of the fission barrier height by dynamical correla-
tions are close to or exceed 1 MeV (see Fig. 6a).

On the contrary, substantial changes in fission barrier
heights induced by dynamical correlations are seen in the
nuclei which are spherical in the ground states in the
RMF+BCS calculations with PC-PK1. These are the
Z = 118, 120 nuclei in the N = 174 isotopic chain, the
N = 172 − 182 nuclei in the Z = 120 chain and the
Z = 112− 116 nuclei in the N = 184 chain. Dynamical
correlations lead to a substantial increase (decrease) of
fission barriers in the N = 184 isotones with Z = 112−
116 (in the Z = 120 isotopes with N = 172 − 182).
However, they have very limited impact of the fission
barriers of spherical nuclei located in close vicinity of
the Z = 120, N = 184 nucleus; these are nuclei which
have the features of spherical nucleus both at and beyond
mean field levels.

To better understand the origin of these changes in the
fission barrier heights we plot dynamical correlation ener-
gies for the ground states and the saddles of inner fission
barriers in Fig. 7. Several interesting features emerge
from the analysis of this figure. First, the variation of
dynamical correlation energies with neutron number is
rather smooth at the saddles of inner fission barriers.
Moreover, these energies are around of 5 MeV in all nu-
clei under study. On the contrary, dynamical correlation
energies for the ground states typically show much larger
fluctuations as a function of neutron number; these fluc-
tuations are especially pronounced for the chains of the
nuclei which are calculated to be spherical at the mean

field level. Second, these dynamical correlation energies
are very similar at the ground state and the saddle of
inner fission barrier in deformed nuclei (see Fig. 7a, b,
c and d). As a consequence, the impact of dynamical
correlations on the fission barriers of deformed nuclei is
limited. On the other hand, they are quite different in
the nuclei which have spherical ground states in the mean
field calculations. This feature explains observed increase
of the importance of dynamical correlations for the cal-
culation of inner fission barrier of SHE with soft PES the
minimum of which is located at spherical shape.
It is also interesting to look on potential impact of the

ground state energy on the description of some fission
processes. For example, the calculation of spontaneous
fission half lives τSF depends on the energy E of collec-
tive ground state (see Ref. [8]) since it enters into the ac-
tion integral S, corresponding to trajectory between two
points a and b in q-space (collective coordinate space),

S(a,b, E) =

∫ s

0

√

2Bs(q(s′))[E − V (q(s′))]ds′ (13)

where the trajectory length counts from zero at a to s at
b (see Sect. 5.1.3. in Ref. [50]). In many applications, the
tunneling energyE (which is also the ground state energy
of the nucleus before fission) is either approximated by
E0 = 0.5 MeV (see Refs. [54, 63–66]) or defined from
WKB quantization rules (see Ref. [8]). In the latter case,
this energy is extracted from the condition that V (q) =
E0 at classical turning points.
On the contrary, one can take a more microscopic ap-

proach and associate tunneling energy E with the energy
of collective ground state defined either in Generator Co-
ordinate Method (GCM) or in 5DCH. To our knowledge,
this has been done so far only in Ref. [67] in which the
collective ground state energy is defined from GCM cal-
culations; these calculations are based on Skyrme energy
density functional but are restricted to axial shape. As
discussed in Ref. [8], the microscopic values of tunneling
energies differ from approximate ones. In a similar fash-
ion, one can associate the tunneling energy E with the
energy E(0+1 ) of the ground state obtained in 5DCH. The
E(0+1 ) energies, shown in bottom panels of Fig. 8, devi-
ate substantially in many cases both from E0 = 0.5 MeV
and from the ground state energies defined by means of
the WKB quantization rules (which are displayed in Fig.
4 of Ref. [8]). The differences between these values also
substantially depend on proton and neutron numbers.
These differences in the values of tunneling energy E

are expected to have a profound effect on spontaneous
fission half lives τSF . Although the calculation of τSF is
beyond the scope of the present manuscript, the compari-
son of Vcoll(saddle)−E(0+1 ) and Vcoll(saddle)−Vcoll(min)
allows to estimate the major trends. The difference
Vcoll(saddle) − E(0+1 ) defines the maximum variation
of the (E − V (q)) difference in the action integral of
Eq. 13. It is lower than the fission barrier height
Vcoll(saddle) − Vcoll(min) typically by more than 0.5
MeV. In many cases this difference reaches few MeV.
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All this suggest that the approximation of tunneling en-
ergy by E0 = 0.5 MeV (as done in many applications)
is highly unreliable. The present results suggest that the
use of E(0+1 ) (as defined by 5DCH) for the energy of col-
lective ground state will result in a substantial reduction
of spontaneous fission half-lives as compared with esti-
mates based on E = E0.
The magnitude of the E(0+1 ) with respect of the min-

imum of the collective energy surface (the E(0+1 ) −
Vcoll(min) quantity in Fig. 8) depends on the soft-
ness of collective energy surface in the vicinity of
spherical/normal-deformed minimum. The soft (stiff)
CES leads to low (high) values of the E(0+1 )−Vcoll(min)
quantity. This dependence is especially pronounced in
the N = 184 isotonic chain (see Fig. 8h). The CES’s of
these isotopes are soft in the vicinity of spherical mini-
mum at Z = 112 and oblate minimum at Z = 114−122 in
the DD-PC1 functional (see Fig. 17 in supplemental ma-
terial) and this leads to E(0+1 ) − Vcoll(min) ≈ 1.0 MeV.
On the contrary, the CES’s are stiffer in the vicinity of
spherical minimum in the PC-PK1 functional with their
stiffness decreasing with increasing Z (see Fig. 14 in sup-
plemental material) and this leads to substantially higher
E(0+1 )−Vcoll(min) values which decrease with increasing

Z (see Fig. 8h). Similar correlations between the softness
of CES in the vicinity of the minimum under consider-
ation and the E(0+1 ) − Vcoll(min) values can be found
in the Z = 120 isotopic chain (compare Figs. 2 and 5
in supplemental material with Fig. 8i in the manuscript)
and N = 174 isotonic chain (compare Figs. 8 and 11 in
supplemental material with Fig. 8g).

IV. SUMMARY

In conclusion, the impact of beyond mean field effects
on the ground state and fission properties of superheavy
nuclei has been investigated in five-dimensional collective
Hamiltonian. We focus here on two functionals (DD-PC1
and PC-PK1) which give distinctly different predictions
along the Z = 120 and N = 184 lines at the mean field
level. For the first time it is shown that the inclusion
of dynamical correlations brings the predictions of these
two functionals closer for nuclei along the Z = 120 line.
Only few nuclei around N = 184 remain spherical in the
calculations with PC-PK1; the rest of nuclei possess sig-
nificant collectivity. This stresses again that the impact
of spherical shell closure at Z = 120 is quite limited.
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On the contrary, the predictions of these two function-
als remain distinctly different for the N = 184 nuclei
even when dynamical correlations are included. These
nuclei are mostly spherical (oblate) in the calculations
with PC-PK1 (DD-PC1). The impact of dynamical cor-
relations on the height of inner fission barrier has been
investigated. It is typically moderate (significant) when
the ground state is deformed (spherical) at the mean field
level. This result for the first time shows the importance
of the inclusion of dynamical correlations for the calcula-
tion of inner fission barriers of the superheavy nuclei with
soft potential energy surfaces the minimum of which at
mean field level is located at spherical shape.
It is important to keep in mind that potential energy

surfaces of many superheavy nuclei are soft also in non-
relativistic theories (see, for example, Refs. [61–63]). It is
reasonable to expect that similar to this study the corre-
lations beyond mean field could have a substantial impact
on their ground state and fission properties and poten-

tially on the localization and the properties of predicted
islands of stability of superheavy elements.
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and J. Meng, Phys. Rev. C 84, 054304 (2011).

[42] Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao and J. Meng, Phys.
Lett. B 717, 470 (2012).

[43] Y. Y. Wang, Z. Shi, Q. B. Chen, S. Q. Zhang, and
C. Y. Song, Phys. Rev. C 93, 044309 (2016).

[44] S. Quan, Q. Chen, Z. P. Li, T. Nikšić, and D. Vretenar,
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