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We study the role of dynamic pairing correlations in fission dynamics by considering intrinsic
Hartree-Fock-Bogoliubov wave functions that are obtained by minimizing the particle number pro-
jected energy. For the restricted variational space, the set of self-consistent wave functions with
different values of proton and neutron number particle fluctuations are considered. The particle
number projected energy is used to define potential energy surface for fission whereas collective
inertias are computed within the traditional formulas for the intrinsic states. The results show
that the effect of the restricted variation after particle number projection in the potential energy
surface is small while collective inertias substantially decrease. On the other hand, we show that
this quenching is strongly mitigated when Coulomb anti-pairing is considered and therefore the
final outcome of the complete calculation is close to the plain mean field result without Coulomb
anti-pairing. In the light of these beyond mean-field calculations, the validity of traditional fission
calculations is discussed.

I. INTRODUCTION

Undoubtedly, pairing correlations represent a key in-
gredient in the description of the dynamics of the fission
phenomenon experienced by heavy atomic nuclei [1, 2].
For instance, the amount of pairing correlations has a
strong impact on quantities such as spontaneous fis-
sion lifetimes [3–13], the shape of the barriers separat-
ing the ground state from scission [14–20] and fission
fragments distributions [21–24]. At the mean-field level,
pairing is traditionally described using the Hartree-Fock-
Bogoliubov (HFB) theory, which is a reasonable approx-
imate scheme when pairing correlations are strong [25].
In nuclear physics, however, the pairing strength is not
strong enough and, as a consequence, many mean field
configurations show little or no pairing correlations at
all [26, 27]. In this case the mean-field description of the
nucleus breaks down, and the inclusion of dynamic pair-
ing correlations stemming from beyond mean-field effects
becomes necessary. The evolution of the nucleus through
the different shapes involved in fission affects the level
density around the Fermi energy, with a large impact on
pairing correlations. This effect is reflected by the in-
tricate behavior shown along the fission path, including
many regions of very weak static pairing which points out
the possible crucial role of dynamic pairing correlations
in the studies of fission.

In order to account for such effects, beyond mean field
calculations involving the restoration of the particle num-
ber of the nuclear wave function are required. Unfortu-
nately the computational cost of beyond mean field cal-
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culations limited so far their application to fission stud-
ies, keeping the impact of dynamic pairing correlations
unexplored. Moreover, to properly address the role of dy-
namic pairing correlation one should account for all those
effects that may mitigate the effective pairing strength
and that are usually neglected for the sake of computa-
tional time, like for instance Coulomb anti-paring [28],
which is the name given to the destructive effect of the
repulsive Coulomb interaction in proton’s pairing corre-
lations. If proton and neutron pairing strengths are in-
dependently adjusted to experimental data in the region
of interest [29], Coulomb anti-pairing is taken into ac-
count in an effective way by the fitted pairing strengths.
Conversely, in forces like Gogny [30] the neutron pairing
strength is fitted to experimental data (for instance in the
tin isotopic chain) and the proton pairing strength comes
from isospin invariance. In those cases, Coulomb anti-
pairing must be explicitly taken into account to avoid
the self-energy problem and the breaking of the Pauli
principle in particle number projected calculations. The
Coulomb anti-pairing effect can reduce proton’s pairing
gap by a 20− 30% [31, 32], with a strong impact on ob-
servables such as moments of inertia [28, 33], but their
effect is usually neglected due to the enormous compu-
tational cost associated to the evaluation of Coulomb’s
pairing field [28].

In the light of this discussion, it is possible to conclude
that the inclusion of dynamic pairing will have a twofold
effect: On the one hand, collective inertias driving fission
dynamics, with their inverse dependence on the square of
the pairing gap [1, 12, 34, 35], are expected to increase
when the Coulomb anti-pairing effect is considered, in-
creasing the collective action and leading to longer fis-
sion lifetimes tSF. On the other hand, dynamic pairing
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correlations are expected to increase the pairing gap re-
ducing thereby the collective inertias. The outcome of
these competing effects is uncertain and it is the pur-
pose of this paper to clarify this situation and establish
a step forward in the study of beyond mean-field effects
in fission calculations.

In previous studies, angular momentum projection [36]
has been used to compute fission barrier heights. How-
ever, the results are almost indistinguishable from the
ones obtained with the rotational correction [2, 37]. Par-
ity projection has also been considered in the reflection
asymmetric section of the fission path [16, 38] with little
or no impact at all. Finally, the impact of particle num-
ber projection on fission barrier heights has been consid-
ered in [16]. A change of at most ± 0.5 MeV is obtained
in all the cases.

In this paper we are considering the contribution to dy-
namic pairing correlation coming from a restricted varia-
tion after projection for particle number projection. The
evolution of the pairing properties of the nucleus as it
evolves towards fission, will be studied as a function of
the axial quadrupole moment q = 〈Q20〉. We will analyze
the impact of dynamic pairing correlations in the poten-
tial energy surface, computed with the particle number
projected wave function |ΨN (q)〉 = P̂N |ϕ(q)〉, and in the
collective inertia computed with the intrinsic state |ϕ(q)〉
associated to the former.

II. METHODOLOGY

Dynamic pairing correlations require a beyond mean
field framework involving the restoration of the particle
quantum number of the nuclear wave function. In or-
der to gain more correlations, the intrinsic mean field
wave function has to be determined by minimizing the
projected energy in the so called variation after pro-
jection (VAP) method. In this paper we use the re-
stricted variation after projection (RVAP) [39] particle
number projection (PNP) method [40]. The RVAP-PNP
has been shown to be superior to other alternatives like
the Lipkin-Nogami method commonly used in the litera-
ture [39]. In the RVAP-PNP method the variational sub-
space is formed by projecting onto good particle number
(protons and neutrons separately) intrinsic wave func-
tions obtained from a HFB calculation constraining on
the particle number fluctuation for protons and neutrons
|Φ(〈∆Z2〉π, 〈∆N2〉ν)〉 [41]. Henceforth, we will introduce
new variables fν = 〈∆N2〉 and fπ = 〈∆Z2〉 to allevi-
ate notation. The RVAP intrinsic state |Φ(fπ, fν)〉 cor-
responds to the minimum of the projected energy

EZ,N (fπ, fν) =
〈Φ(fπ, fν)|ĤPZPN |Φ(fπ, fν)〉

〈Φ(fπ, fν)|Φ(fπ, fν)〉
, (1)

as a function of the fπ and fν variables. The minimum of
the two dimensional function EZ,N (fπ, fν) is determined
by a simple gradient method in two dimensions. The po-

tential energy surface for fission is obtained by introduc-
ing an additional constraint on the quadrupole moment
Q20 of the axially symmetric intrinsic state and is given
by the projected energy of the RVAP for each Q20 value.
We could also introduce easily additional constrains like
the octupole moment or the necking operator to form
multidimensional potential energy surfaces (PESs) which
are so popular in fission studies, but this is not the pur-
pose of the present work. An example of both the HFB
and PNP potential energy surfaces obtained as a func-
tion of fν and fπ is given in Fig. 1 where those energies,
computed with the Gogny D1M parametrization [42], are
plotted for the nucleus 240Pu and three different values
of the quadrupole moment (see caption for details). The
chosen quadrupole moments correspond to the ground
state, first fission barrier and fission isomer. Both the
HFB and PNP energies show a parabolic behaviour as a
function of (fπ, fν) that is slightly distorted in both cases.
In the figure, it is clearly observed how the minimum of
the PNP energy is shifted to higher fν and fπ values as
compared to the HFB ones. This is in agreement with
the expectation that the RVAP method provides intrinsic
states with more pairing correlations than those intrinsic
states obtained by the HFB method. This has important
consequences for fission dynamics as the collective inertia
strongly depend upon the amount of pairing correlations.

The other quantity required to study the dynamics
of spontaneous fission is the collective inertia associ-
ated to the collective variables used to drive the nucleus
from its ground state to fission. The collective inertia
plays a crucial role in several fission observables, such
as the spontaneous fission lifetimes tSF obtained within
the Wenzel-Kramers-Brillouin (WKB) formula and the
fission fragments distributions obtained in both time de-
pendent frameworks [21, 43] and stochastic Langevin ap-
proaches [22, 24]. For instance, the tSF has an exponen-
tial dependence on the collective inertia than can amount
to changes of several orders of magnitude in this quan-
tity [10–12]. As mentioned before, the magnitude of the
collective inertia depends on the amount of pairing cor-
relations in a way that can be quantified as an inverse
dependence on the square of the pairing gap. This de-
pendence on the amount of pairing correlations implies
that the larger the pairing correlations are, the smaller
the collective inertia (and therefore tSF) is. Therefore,
we expect a strong dependence of the collective inertia
on the combined action of both the Coulomb anti-pairing
effect and the PNP.

There are two types of collective inertias: the one
coming from adiabatic time dependent Hartree-Fock-
Bogoliubov (ATDHFB) theory and the one coming for
the Gaussian overlap approximation (GOA) to the Gen-
erator Coordinate Method (GCM) [2]. Unfortunately, so
far none of these schemes has been generalized to the
case of non-HFB states like the PNP ones considered in
this paper. In these respect, the GCM-GOA framework
is more promising since its formalism is not intimately
rooted to the HFB method. However, the perturbative
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FIG. 1. (Color online) In the left (right) panels contour plots
of the HFB (PNP) energy as a function of fν = 〈∆N2〉 and
fπ = 〈∆Z2〉 are given for three different quadrupole moments.
Namely, Q2 = 14b (ground state) (panels a and b), Q2 = 28b
(first fission barrier) (panels c and d), and Q2 = 42b (fission
isomer) (panels e and f). The results are obtained with the
Gogny D1M force for the nucleus 240Pu. The minima are
marked by a dot and the color range spans 5 MeV.

cranking approximation (where the linear response ma-
trix is approximated by its diagonal both in the expres-
sions of the inertia and in the definition of the collective
momentum [44]), required to alleviate the computational
cost of the evaluation of the collective inertias, is not
easy to implement in the PNP case. Therefore we take a
pragmatic approach and use for the PNP case the pertur-
bative cranking inertias computed with the intrinsic state
|Φ〉 obtained in the RVAP. Work to obtain a sound and

easy way to compute the inertia for PNP wave functions
is underway and will be reported elsewhere.

To avoid the appearance of divergences in the calcula-
tion of the PNP energy with the Gogny force, we com-
puted the exchange, direct and pairing channels for each
of the terms of the interaction [40]. The required Hamil-
tonian and norm overlap between the HFB state |Φ〉 and

its rotated in gauge space eiΦpẐeiΦnN̂ |Φ〉 are computed
using the methodology of the generalized Wick theorem
as developed in [45, 46]. For the density dependent part
of the interaction we use the so-called “PNP projected
density prescription” that is commonly used for particle
number projection [40, 47] (be aware, however, of the
fundamental difficulties encountered when using the pro-
jected density prescriptions in the context of spatial sym-
metries restoration [48]).

III. RESULTS

We have considered three nuclei as prototypical exam-
ples illustrating the issues discussed in the previous sec-
tion. The first nucleus studied is the light actinide 236U,
characterized by a double humped potential energy sur-
face (PES) with high and wide barriers. Reflection sym-
metry is broken right after the fission isomer and there-
fore asymmetric fragment mass distribution is expected
for this nucleus. In Fig. 2 we show the most relevant
quantities for a theoretical understanding of fission. In
panel a) potential energy surfaces (to be discussed be-
low) are shown as a function of the quadrupole moment.
The corresponding particle-particle correlation energies
1
2Tr(∆τκτ ) (with τ = p, n) are shown in panels b) and
c). In panel d) the self-consistent octupole and hexade-
capole moments are also shown along with the neck pa-
rameter given by the mean value of the neck operator
QN = exp[−(z − z0)2/a2

0] with z0 = 0 and a0 = 1.0 fm.
Finally, in panel e) the collective inertia computed in the
traditional perturbative ATDHFB scheme is displayed.

Panel a) shows the potential energy surfaces for four
different calculations. The black solid line (HFBt)
corresponds to the traditional HFB calculation where
Coulomb exchange is evaluated in the Slater approxi-
mation and Coulomb and spin-orbit anti-pairing are ne-
glected. The dashed red line (HFBCep) corresponds to a
HFB calculation where both Coulomb exchange and anti-
paring are fully considered. Comparing the predicted
isomer energies (EII) and inner (BI) and outer (BII) fis-
sion barrier heights (see Table I) we notice that HFBCep

predicts values that are 0.75− 0.83 MeV larger. This in-
crease is an expected behavior when pairing correlations
get reduced [11, 16]. Also, more pronounced structures
are observed in HFBCep, particularly at large quadrupole
deformations, which can be traced back to the reduced
pairing correlations [49] associated to the presence of
Coulomb anti-pairing. These changes in the potential en-
ergy surface are partially washed out in the HFB calcula-
tion obtained with intrinsic RVAP states (HFBRVAP, blue
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FIG. 2. (Color online) In panel a) the potential energies ob-
tained in the different approaches discussed in the text are
plotted as as function of the quadrupole moment of the in-
trinsic state. The color code and the labels are described in
the main text. In panels b) and c) the particle-particle cor-
relation energy 1

2
Tr∆τκτ for protons and neutrons, respec-

tively, is given. The octupole, hexadecapole and neck param-
eters are given in panel d). Finally, in panel e) the ATDHFB
quadrupole collective inertia computed in the perturbative
approximation is given.

dashed line). The HFBRVAP barriers heights and isomer
excitation energy are 0.52 − 0.55 larger than the HFBt,
and the potential energy surfaces at large deformations
are also similar. This result suggests that pairing correla-
tions induced by the RVAP partially cancel out the effect
of the Coulomb anti-pairing quenching (see below). Fi-
nally, the blue full curve with symbols corresponds to the
RVAP projected energy (EPNP). This energy is around
two MeV deeper than the intrinsic energies, being the
fission parameters 0.50−0.64 MeV larger than the HFBt
results.

In order to better understand the impact of dynamic
correlations on fission, it is worth to analyze the changes
in the other quantities depicted in Figure 2. Proton

particle-particle correlation energies are shown in panel
b) for the HFBt, HFBCep and HFBRVAP intrinsic states
(this quantity is meaningless in the PNP case). Coulomb
anti-pairing quenches the particle-particle proton corre-
lation energy, but the quenching is softened by the ef-
fect of the PNP-RVAP, being the latter results closer to
the HFBt ones. In the neutron case, shown in panel
c), no significant differences are observed between the
HFBt and HFBCep cases as expected. The effect of PNP-
RVAP is to increase neutron pairing correlations bring-
ing the particle-particle correlation energy of the intrinsic
state above the other two curves. The quadrupole, oc-
tupole and necking shape parameters are shown in panel
d). For each of the three parameters, the results ob-
tained with the three different types of intrinsic states
lie each on top of the other. The impact on the de-
formation parameters of using different types of treat-
ments for the pairing correlation is negligible. Finally,
in panel e) the ATDHFB perturbative collective inertia
for the three intrinsic states are shown. As compared
to the HFBt reference calculation, the HFBCep inertia is
larger as a consequence of the quenched pairing. Overall,
the HFBCep inertia is around two times larger than the
HFBt one. It also shows more pronounced structures in
the form of high peaks. On the other hand, the increase
of pairing correlations associated to PNP-RVAP brings
the HFBRVAP intrinsic inertia back to the range of the
HFBt curve. It is worth mentioning that the HFBRVAP

inertia looks a bit smoother than the HFBt one. From
this comparison we conclude that the HFBt inertia (i.e.
without Coulomb exchange, and what is more impor-
tant, without Coulomb anti-pairing) represents a good
approximation, in the case of the Gogny force, to the in-
ertia obtained from the PNP-RVAP intrinsic states. It is
worth mentioning that this cancellation is typical of the
Gogny forces and is not expected in calculations where
the strength of the pairing interaction is fitted separately
for protons and neutrons to experimental data [50]. In
this case, the effect of Coulomb anti-pairing is taken into
account by the fitted pairing strength and therefore a
reduction of a factor of two in the inertias has to be ex-
pected in the PNP-RVAP case. This reduction could be
mitigated if the fitting of the pairing strength is carried
out at the PNP-RVAP level.

Finally, we have computed the spontaneous fission
half-live tSF using the traditional WKB formula (see
Refs [2, 11] for details and applications) with a E0 pa-
rameter of 1 MeV. The results for the HFBt and HFBCep

cases are computed with the corresponding PES and
collective inertias, whereas the PNP-RVAP is computed
with the PNP PES but using the collective inertia of the
HFBRVAP intrinsic state. The results are summarized in
Table I along with the values of EII , BI and BII dis-
cussed above. The effect of Coulomb anti-pairing in the
inertia is to increase tSF by 20 (14) orders of magnitude
in the ATDHFB (GCM) cases, but this huge impact is
canceled out by the dynamic pairing effect associated to
RVAP-PNP. The final RVAP-PNP tSF values are very
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tSF

ATDHFB GCM BI EII BII

(s) (s) (MeV) (MeV) (MeV)

2
3
6
U

HFBt 3.0× 1043 2.4× 1032 9.07 4.05 10.22
HFBCep 3.1× 1063 1.2× 1046 9.82 4.88 10.97
HFBRVAP 8.3× 1041 1.1× 1032 9.64 4.77 10.74
PNP 1.0× 1042 1.4× 1032 9.74 4.69 10.72

2
4
0
P

u

HFBt 7.4× 1038 7.5× 1029 10.23 4.39 10.20
HFBCep 2.0× 1054 2.4× 1039 10.91 4.94 10.75
HFBRVAP 3.0× 1037 9.5× 1028 10.74 4.74 10.57
PNP 2.8× 1037 1.2× 1029 10.83 4.79 10.63

2
5
2
C

f

HFBt 2.3× 1022 1.7× 1018 11.18 3.71 7.77
HFBCep 7.6× 1024 2.9× 1018 11.60 3.45 6.86
HFBRVAP 7.8× 1019 2.5× 1015 11.19 3.40 7.09
PNP 1.9× 1021 6.2× 1016 11.22 3.71 7.49

TABLE I. On the left hand side, spontaneous fission half-lives
(in seconds) computed with two different sets of collective
inertias (ATDHFB and GCM) and for the four different sets
of calculations for the nuclei considered. On the right hand
side, the values of the fission barrier heights BI , BII and
fission isomer excitation energy EII (in MeV) are also given.

close to the HFBt ones. It is important to emphasize
that the RVAP-PNP tSF values are lower than the HFBt
ones in spite of the larger fission barrier heights. This is
due to the smaller values of the inertias in the projected
case.

The results obtained for the nucleus 240Pu look qual-
itatively the same as those obtained for 236U, being the
small differences observed mostly due to shell effects as-
sociated with the different proton and neutron numbers.
The values of EII , BI and BII are given in Table I. The
most notorious difference is in the larger values of BI
which are around 1 MeV higher than in the 236 U case.
The impact of Coulomb anti-pairing in tSF is 16 (10)
orders of magnitude the ATDHFB (GCM) inertias and,
as in the uranium case, the inclusion of dynamical pair-
ing correlations reduce substantially tSF and brings it
closer to the traditional HFBt value. As in the previous
case, we conclude that dynamic pairing compensates the
Coulomb anti-pairing effect and the tSF values obtained
in the traditional HFB approach are very similar to the
ones obtained in the RVAP-PNP context.

We have also carried out calculations for the heav-
ier 252Cf isotope. The potential energy surfaces, parti-
cle particle energy correlations, deformation parameters
and ATDHFB collective inertias are shown in Fig. 3. In
all the cases, the PESs show a rather high inner barrier
(see Table I for the values of the different parameters).
The reflection symmetric fission isomer lies at around
3.7 MeV excitation energy, whereas the slightly reflection
asymmetric outer barrier is around 7 MeV high. In this
particular nucleus the impact of the different theoretical
schemes used in the calculation of the outer barrier is
stronger with changes in its height of more than 1 MeV.
It turns out that in the region of the outer barrier the
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FIG. 3. Same as Fig. 2 but for the nucleus 252Cf.

HFBt PES is very flat with several coexisting minima
but one of them is clearly favored when Coulomb anti-
pairing is considered. The particle-particle correlation
energy for protons looks similar to the one of 236U for
the HFBCep and HFBRVAP cases but differs significantly
from the HFBt value around the outer barrier region.
The reason for this behavior is the same that explains
the discrepancies in the PESs in that region. The Epp
for neutrons follows the same pattern as in the uranium
case and only small differences are noticed in the outer
barrier region. The same observation is valid for the de-
formation parameters of panel d). The behavior of the
ATDHFB inertia in panel e) is qualitatively similar to
the one of 236U.

Concerning tSF, we observe longer values when
Coulomb anti-pairing is considered but the difference
amounts to 2 (0) orders of magnitude in the ATDHFB
(GCM) case. This is in strong contrast with the 236U
and 240Pu cases. A possible explanation is the reduction
of the outer barrier height of more than 1 MeV seen in
this particular case. Considering dynamical pairing low-
ers tSF by 5 (3) orders of magnitude in the ATDHFB
(GCM) cases as compared to the HFBCep result. The
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net effect of this opposite trends is to yield final values
for the RVAP-PNP calculation which are, again, pretty
close to the HFBt ones.

IV. CONCLUSIONS

In this paper we studied the impact of dynamical pair-
ing correlations in the theoretical estimation of fission
properties. We found that particle number projection in
the restricted variation after projection framework (using
〈∆N2〉 for protons and neutrons as variational parame-
ters) has a profound impact on some of the quantities re-
lated to fission such as spontaneous fission half-lives. The
parameters defining the potential energy surface, like the
fission barrier heights and fission isomer location are lit-
tle affected by particle number projection in the three
examples analyzed. On the other hand, the increase in
pairing correlations due to particle number restoration
leads to a quenching of the collective inertia by a fac-
tor of the order of two. The consequences for the spon-
taneous fission half-life depend on the nucleus but it is
quantified to be large and can reach a reduction of 20 or-
ders of magnitude. This reduction is compensated by the
Coulomb anti-pairing effect, which is often neglected in
mean field calculations but is required in particle num-
ber projection to avoid the self-energy and self-pairing
problems. The reduction of pairing correlations associ-
ated with Coulomb anti-pairing increases the collective
inertias by a factor of around two in the examples con-
sidered and can increase the calculated tSF up to 20 or-

ders of magnitude. On the other hand, the consequences
of an exact treatment of the Coulomb exchange poten-
tial in the potential energy surface are relatively small
and have a relatively less important impact on tSF. The
two opposite effects, Coulomb anti-paring and dynami-
cal pairing correlations tend to suppress each other and
the final outcome turns out to be similar to the results
obtained omitting both of them. This result is relevant
for calculations with nuclear forces (Gogny among them),
where the nuclear pairing interaction is isospin invariant
and Coulomb anti-pairing has to be considered. The ef-
fect of dynamical pairing correlations alone is relevant
for other interactions where the pairing strength for pro-
tons and neutrons used at the mean field level is fitted
to experimental data.

For future work, the evaluation of the collective in-
ertias with particle number projected wave functions is
the next step to consider. Also, the consequences of par-
ticle number projection on induced fission half-lives and
properties of the fission fragments could be an interesting
subject of research.
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Physics Letters B 161, 227 (1985).
[5] Y. A. Lazarev, Physica Scripta 35, 255 (1987).
[6] A. Staszczak, S. Pi lat, and K. Pomorski, Nuclear Physics

A 504, 589 (1989).
[7] Z.  Lojewski and A. Staszczak, Nuclear Physics A 657,

134 (1999).
[8] K. Pomorski, International Journal of Modern Physics E

16, 237 (2007).
[9] M. Mirea and R. C. Bobulescu, Journal of Physics G:

Nuclear and Particle Physics 37, 055106 (2010).
[10] S. A. Giuliani and L. M. Robledo, Physical Review C 88,

054325 (2013).
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