

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Ground-state electromagnetic moments of ^{37}Ca

A. Klose, K. Minamisono, A. J. Miller, B. A. Brown, D. Garand, J. D. Holt, J. D. Lantis, Y. Liu, B. Maaß, W. Nörtershäuser, S. V. Pineda, D. M. Rossi, A. Schwenk, F. Sommer, C. Sumithrarachchi, A. Teigelhöfer, and J. Watkins
Phys. Rev. C 99, 061301 — Published 7 June 2019
DOI: 10.1103/PhysRevC.99.061301

1	Ground State Electromagnetic Moments of ³⁷ Ca				
2	A. Klose, ¹ K. Minamisono, ^{2,3} A. J. Miller, ^{2,3} B. A. Brown, ^{2,3} D. Garand, ² J. D. Holt, ⁴				
3	J. D. Lantis, ^{2,5} Y. Liu, ⁶ B. Maaß, ⁷ W. Nörtershäuser, ⁷ S. V. Pineda, ^{2,5} D. M. Rossi, ⁷				
4	A. Schwenk, ^{7,8,9} F. Sommer, ⁷ C. Sumithrarachchi, ² A. Teigelhöfer, ⁴ and J. Watkins ^{2,3}				
5 6 7	¹ Department of Chemistry, Augustana University, Sioux Falls, South Dakota 57197, USA ² National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA ³ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA				
7 8	⁴ TRIUMF. Vancouver. BC V6T 2A3. Canada				
9	⁵ Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA				
LO	⁶ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA				
11	⁷ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany				
12	⁸ ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany				
13	⁹ Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany				
L4	(Dated: May 15, 2019)				
15	The hyperfine coupling constants of neutron deficient ³⁷ Ca were deduced from the atomic hyper-				
L6	fine spectrum of the 4s ${}^{2}S_{1/2} \leftrightarrow 4p {}^{2}P_{3/2}$ transition in Ca II, measured using the collinear laser				
17	spectroscopy technique. The ground-state magnetic-dipole and spectroscopic electric-quadrupole				
18	moments were determined for the first time as $\mu = +0.7453(72)\mu_N$ and $Q = -15(11) \ e^2 \text{fm}^2$, respec-				
19	tively. The experimental values agree well with nuclear shell model calculations using the $USDA/B$				
20	interactions in the sd -model space with a 95% probability of the canonical nucleon configuration.				
21	It is shown that the magnetic moment of 39 Ca requires a larger non-sd-shell component than that				
22	of ³ Ca for good agreement with the shell-model calculation, indicating a more robust closed sub-				
23	shell structure of ³⁰ Ca at the neutron number $N = 16$ than ⁴⁰ Ca. The results are also compared				

to valence-space in-medium similarity renormalization group calculations based on chiral two- and

PACS numbers: 21.10.Ky, 21.60.Cs, 27.30.+t, 42.62.Fi

three-nucleon interactions.

Introduction — 27

24

25

26

A nucleus with finite spin possesses electromagnetic 28 moments capable of providing critical information for the 29 investigation of nuclear structure. Most notably, close to 30 nuclei with magic numbers of nucleons (e.g. 2, 8, 20, 28, 31 50, 82...) such systems, due to their simple and robust 32 ³³ structures, provide discerning comparisons between experiment and theory. One of the highlights of modern 34 nuclear structure studies has been the disappearance of 35 established magic numbers (essentially those seen in sta-36 ble nuclei [1, 2]) and the appearance of new magic num-37 bers at extreme neutron-to-proton ratios [3], for example 38 the neutron number N = 16 [4, 5]. 39

The ground-state electromagnetic moment of ³⁷Ca, 40 which has one neutron added to the $N = 16^{-36}$ Ca nu-41 42 cleus in the vicinity of the proton dripline, was deter- $_{\rm 43}$ mined in the present study. The neutron occupies the 44 $d_{3/2}$ orbital with $j_{<} \equiv l - 1/2$ where l is the orbital 45 angular momentum. The spin-orbit partner $d_{5/2}$ with $_{46} j_{>} \equiv l + 1/2$ is fully occupied. Here, the first-order core-⁴⁷ polarization effect, first introduced by Arima and Horie ⁴⁸ [6, 7], is expected to play an important role on the mag-⁴⁹ netic moment due to collective M1 excitations between ⁵⁰ the spin-orbit partners. The counterpart is a ³⁹Ca nu-⁵¹ cleus with one neutron hole in the doubly-closed ⁴⁰Ca ⁸⁰ ergy of 29850 eV as ion bunches for the bunched-beam j_{s_2} core in the $j_{<} \equiv l - 1/2$ shell. In the single-particle j_1 collinear laser spectroscopy [13, 14]. Laser-induced fluo- $_{53}$ model magnetic moments of 37 Ca and 39 Ca are equal, $_{52}$ rescence measurements were performed on the 4s $^2S_{1/2}$ $_{54}$ and take the Schmidt value. This provides a unique sit- $_{83} \leftrightarrow 4p \ ^2P_{3/2}$ transition in Ca II at 393 nm to measure $_{55}$ uation where the transition from the JJ closed sub-shell $_{84}$ the hyperfine (hf) spectrum. The ion-beam bunch was $_{56}$ 36 Ca to the LS doubly closed 40 Ca configuration can be $_{55}$ extracted from the RFQ every 330 ms and the bunch

57 seen in nearby isotopes in a single element. The variation ⁵⁸ of structure around the ³⁶Ca and ⁴⁰Ca nuclei is investi-⁵⁹ gated through the first order core-polarization model in 60 the context of the USDA/B Hamiltonian and the chiral effective field theory. 61

Experiment — The radioactive ion beam of 37 Ca (I^{π} $_{63} = 3/2^+$, $T_{1/2} = 175$ ms) was produced via projectile-⁶⁴ fragmentation reactions of a ⁴⁰Ca primary beam on a ⁶⁵ Be target. The ⁴⁰Ca beam was accelerated to 140 66 MeV/nucleon in the coupled cyclotrons at the Na-67 tional Superconducting Cyclotron Laboratory at Michi-⁶⁸ gan State University. The ³⁷Ca fragments were separated ⁶⁹ using the A1900 fragment separator [8], thermalized in 70 a He-filled gas cell [9] and extracted as singly-charged ⁷¹ ions at an energy of 30 keV. The low-energy beam was ⁷² then mass analyzed through a dipole magnet and trans-73 ported to the BEam COoling and LAser spectroscopy ⁷⁴ (BECOLA) facility [10, 11]. The typical rate of ³⁷Ca at ⁷⁵ the BECOLA facility was 10^3 ions/s.

At BECOLA, the ³⁷Ca beam was first injected into a 76 77 radio frequency quadrupole (RFQ) cooler and buncher 78 [12]. The ion beam was trapped, cooled (improving ⁷⁹ the emittance) and extracted at an approximate en-

87 88 89 ⁹⁰ quently frequency doubled to 393 nm light using a Spect- ¹²⁴ like nucleus. ⁹¹ raPhysics Wavetrain. The Matisse was stabilized using a ¹²⁵ A Voigt profile [16] was used in the fitting of the hf ⁹² HighFinesse WSU-30 wavelength meter, calibrated with ¹²⁶ spectrum. All six peaks of the ³⁹Ca hf spectrum were ⁹³ a frequency-stabilized He-Ne laser. The laser-light power ¹²⁷ fitted with a common line shape and width, and free $_{94}$ was stabilized at 300 μ W, which gave a maximum sig- $_{128}$ parameters of ground and excited states hf coupling con-95 96 97 98 99 100 onance with the hf transitions. 101

¹⁰⁷ of ³⁷Ca is shown in Figure 1. The hf spectrum of $_{137}$ in Table I. It is noted that the $A^{\rm hf}$ -factor ratio was deter-¹⁰⁵ $^{39}{\rm Ca}(3/2^+, 859.6 {\rm ms})$ was also measured in the present $_{138}$ mined in the previous measurement as 25.92(3) [29] and ¹⁰⁶ study. The ³⁹Ca beam was produced in a similar proce-¹³⁹ deviates from the present ratio. The reason is not known. ¹⁰⁷ dure as ³⁷Ca, and the hf spectrum was measured with ₁₄₀ Variation in fitted hyperfine coupling constant due to the ¹⁰⁸ the same laser power as ³⁷Ca to be used as a line shape ₁₄₁ deviation of A^{hf}-factor ratios was taken into account as ¹⁰⁰ reference in the fitting of ³⁷Ca. There are six allowed hf ¹⁴² systematic uncertainties. It is also noted that the $A^{\rm hf}$ ¹¹⁰ transitions between the ${}^{2}S_{1/2}$ and ${}^{2}P_{3/2}$ states since the ¹⁴³ and $B^{\rm hf}$ parameters are highly correlated in the fit. The ¹¹¹ nuclear spins of 37,39 Ca are I = 3/2. The shift of a hf 144 statistical error for the results of 37 Ca in Table I takes 112 level is given by

$$\Delta E = \frac{K}{2} A^{\rm hf} + \frac{3K(K+1) - 4I(I+1)J(J+1)}{8I(2I-1)J(2J-1)} B^{\rm hf} \ (1)$$

¹¹³ where $A^{\rm hf}$ and $B^{\rm hf}$ are the magnetic and quadrupole hf 114 coupling constants, respectively, K = F(F+1) - I(I +(115 1) - J(J+1), I is the nuclear spin, J is the atomic ¹¹⁶ spin and F = I + J. The hf coupling constants are ¹¹⁷ defined as $A^{\rm hf} = \mu B_0/IJ$ and $B^{\rm hf} = eQV_{zz}$. Here, μ $_{\tt 118}$ and Q are the magnetic-dipole and spectroscopic electric-¹¹⁹ quadrupole moments of the nucleus, respectively, B_0 and

FIG. 1. Hyperfine spectra and residuals of (a) 37 Ca and (b) ³⁹Ca. The solid circles are the data and the solid line is the best fit of a Voigt profile.

 $_{86}$ width (full width at half-maximum) was set to $\sim 1 \ \mu s$ $_{120} V_{zz}$ are the magnetic field and the electric field gradient, without degrading the typical resolution of ~ 80 MHz of $_{121}$ respectively, generated by orbital electrons at the posithe hf spectrum. A Sirah Matisse TS Ti:sapphire ring $_{122}$ tion of the nucleus and e is the elementary charge. The laser was used to produce 787 nm light that was subse- $123 B_0$ and V_{zz} are isotope-independent, assuming a point-

nal to noise ratio, using a laser power controller [15]. 129 stants, Lorentz fraction and intensities of each peak. The Two identical photon detectors were used in series along 130 high ion-beam rate allowed the reliable determination of the beam line to detect the resonant fluorescence. A $_{131}$ these parameters with high precision. The 37 Ca hf specscanning voltage was applied to the light collection sec- 132 trum was fitted with the relative peak intensities and tion to vary the incoming ion beam velocity so that the 133 Lorentz fraction constrained to those determined in the Doppler-shifted laser frequency could be tuned into res- ${}_{134}$ 39 Ca analysis. Also the ratio between $A^{hf}({}^{2}S_{1/2})$ and ance with the hf transitions. Experimental results — The obtained hf spectrum 135 $A^{hf}(^{2}P_{3/2})$ was fixed to 26.24(4) deduced from the 39 Ca 136 fit. The obtained hf coupling constants are summarized 145 the correlation into account to be conservative, and used 146 in the present analysis. Without the correlation, statis- 147 tical errors of the $A^{\rm hf}(^2S_{1/2})$ and $B^{\rm hf}(^2P_{3/2})$ of $^{37}{\rm Ca}$ are 148 6.3 MHz and 8.4 MHz, respectively. Quadratic sums of 149 the statistical and systematic uncertainties were taken 150 for following discussions.

> Unknown nuclear moments may be deduced from hf 151 ¹⁵² coupling constants using a reference nucleus of the same ¹⁵³ element, whose hf coupling constants for the same elec-154 tronic level, nuclear spin and electromagnetic moments ¹⁵⁵ are known. A simple ratio of hf coupling constants de-¹⁵⁶ rives nuclear moments as $\mu = \mu_{\rm R} \frac{A_{\rm R}^{\rm hf}}{A_{\rm R}^{\rm hf}} \frac{I}{I_{\rm R}}$ and $Q = Q_{\rm R} \frac{B_{\rm R}^{\rm hf}}{B_{\rm R}^{\rm hf}}$, ¹⁵⁷ where the subscript R indicates a reference nucleus. In ¹⁵⁷ where the subscript it indicates a refer-¹⁵⁸ the present study, ${}^{43}\text{Ca}(I = 7/2)$ was employed as a refer-¹⁵⁹ ence, and $A^{\text{hf}}({}^{2}S_{1/2}) = -806.40207160(8)$ MHz [17] and ¹⁶⁰ $\mu = -1.317643(7)\mu_{N}$ [18] were used to extract the mag-¹⁶¹ netic moment. A theoretical value of $eV_{zz} = 1.513(7)$ $_{162}$ MHz/fm² [19] was used for the extraction of the Q since ¹⁶³ a sufficiently precise measurement of $B_{\rm R}^{\rm hf}(^2P_{3/2})$ does not 164 exist.

TABLE I. The obtained hf coupling constants of ^{37,39}Ca for the 4s ${}^{2}S_{1/2}$ and 4s ${}^{2}P_{3/2}$ states. The first and second parentheses contain uncertainties due to statistical and systematic errors, respectively. The systematic errors are from high voltage calibrations and the variation of the $A^{\rm hf}$ -factor ratio from the literature value, which dominates the systematic error.

		$A^{\rm hf}$ (N	$B^{\rm hf}$ (MHz)	
A	I^{π}	$^{2}S_{1/2}$	$^{2}P_{3/2}$	$^{2}P_{3/2}$
37	$3/2^{+}$	+1064.5(103)(08)	+40.57(39)(27)	-22.9(163)(05)
39	$3/2^{+}$	+1457.20(14)(34)	+55.53(9)(32)	+5.79(26)(32)

TABLE II. Results for the magnetic moments of $3/2^+$ states for Z = 20 (³⁹Ca and ³⁷Ca) and N = 20 (³⁹K and ³⁷Cl). Numbers are given in the unit of μ_N except $\langle s_z \rangle$. The effective g-factors are taken from the Table I of [20] for the four-parameter (4) and six-parameter (6) forms of the M1 operator. The $\mu(IS)$ and $\mu(IV)$ are defined as $\mu(IS/IV) = \mu(T_3 = +T) \pm \mu(T_3 = -T)$.

A		Z = 20	N = 20	$\mu(IS)$	$\langle s_z \rangle$	$\mu(IV)$
	${ m sp}\;g^{ m free}$	+1.148	+0.124	+1.272	-0.600	+1.024
39	Exp.	+1.0217(1) [21]	+0.3915073(1) [22]	+1.4131(1)	-0.2284(3)	+0.6302(1)
	${ m sp}\;g^{ m eff}$	+0.930	+0.469	+1.399	-0.266	+0.461
	VS-IMSRG	+1.349	-0.035	+1.314	-0.488	+1.384
37	Exp.	+0.7453(72)	+0.6841236(4) [23]	+1.429(7)	-0.19(2)	+0.061(7)
	USDA-EM1	+0.770	+0.677	+1.447	-0.139	+0.093
	USDB-EM1	+0.754	+0.675	+1.429	-0.187	+0.079
	VS-IMSRG	+1.055	+0.290	+1.345	-0.409	+0.765

The spectroscopic quadrupole moments were deter- $_{208}$ orbital is empty. When both $j_>$ and $j_<$ orbitals are mined to be $Q(^{37}\text{Ca}) = -15(11) \ e^2\text{fm}^2$ and $Q(^{39}\text{Ca}) = _{209}$ mostly filled, which we will call the *LS* closed-shell con- $_{167}$ +3.82(27) $e^2\text{fm}^2$. The present $Q(^{39}\text{Ca})$ is consistent with $_{210}$ figuration, the core-polarization effect is small. The ^{40}Ca 168 $_{170}$ ous value with experimental determination of the prolate $_{213}$ 36 Ca and 40 Ca have an LS closed shell for protons. The $_{171}$ deformation (the positive sign). The $Q(^{37}\text{Ca})$ is deter- $_{214}$ observable associated with this change from JJ to LS ¹⁷² mined for the first time in the present study including ²¹⁵ closed shell configurations is the μ (³⁷Ca), which has one 173 $_{174}$ model calculation with the USDB interaction, discussed $_{217}$ that of 39 Ca with one hole inside the 40 Ca neutron LS¹⁷⁵ later in this Letter, effective charges, $e_{\rm p} = 1.5$ and $e_{\rm n}$ ²¹⁸ core. We can also observe the similar transition in their ¹⁷⁶ = 0.5, gives $Q(^{37}\text{Ca}) = -2.6 \ e^2 \text{fm}^2$. The agreement ²¹⁹ mirror $\mu(^{37}\text{Cl})$ (one particle outside of the ³⁶S proton JJ $_{177}$ is fair, but no further discussion is made here because $_{220}$ core) relative to that of 39 K (one hole inside the 40 Ca $_{178}$ the present value has a large uncertainty due to the low $_{221}$ proton LS core). ¹⁷⁹ signal-to-noise ratio to resolve the ${}^{2}P_{3/2}$ splitting in the 180 hf spectrum.

181 ¹⁸² the $A^{\text{hf}}(^2\breve{S}_{1/2})$ to be $\mu(^{37}\text{Ca}) = +0.7453(72) \ \mu_N$. The ²²⁵ $g_s \langle s \rangle + g_p \langle [Y_2, s] \rangle$, where l, s, p represent the orbital 183 result is summarized in Table II. It is noted that the 226 angular momentum, spin and tensor terms, respectively. 184 hf anomaly is neglected in the extraction of the mag- 227 The results of the calculations are summarized in Tais in anomaly is neglected in the extraction of the mag- 227 the results of the calculations are summarized in Ta-185 netic moment. The hf anomaly, ${}^{1}\Delta^{2}$, is caused by the 228 ble II. The free nucleon g factors $(g_{l}^{\rm p} = 1, g_{l}^{\rm n} = 0,$ 186 difference of the nuclear magnetization distribution [25] 229 $g_{s}^{\rm p} = 5.586$, $g_{s}^{\rm n} = -3.826$) were used for single-particle 187 between two isotopes 1 and 2, and is given by $A_{1}^{\rm hf}/A_{2}^{\rm hf} \approx 230$ (Schmidt) values denoted as "sp $g^{\rm free}$ ". All other calcu-188 $g_{1}/g_{2} (1 + \Delta^{2})$, where the g factor is defined as $g = \mu/I$. 231 lations were performed with the effective g factors that 189 For ^{39,43}Ca, there exist independent measurements of 222 are obtained from a six-parameter fit to other magnetic 190 $A^{\rm hf}(^{43}\text{Ca})$ [17], $g(^{43}\text{Ca})$ [18] and $g(^{39}\text{Ca})$ [21]. The hf 233 moments in the A = 16 - 40 mass region [20]. The re-¹⁹¹ anomaly can be deduced together with the present value ²³⁴ sults labeled USDA-EM1 and USDB-EM1 are given in ¹⁹² of $A^{\rm hf}({}^{39}{\rm Ca})$ for the ${}^{2}S_{1/2}$ state as ${}^{43}\Delta{}^{39} = +0.0012(3)$. ²³⁵ Table II and discussed in this paper. ¹⁹³ The hf anomaly between ³⁷Ca and ⁴³Ca is expected to ²³⁶ negligible compared to the experimental uncertainty. 195

196 197 198 199 200 $_{201}$ ing [6, 7]. The first-order corrections are important for $_{244}$ to the single-particle value of $1.148\mu_N$ ($0.124\mu_N$), and $_{202}$ closed-shell nuclei, where the $j_{>} = l + 1/2$ component of $_{245}$ the variation indicates the contribution from the higher-203 the spin-orbit pair is mostly filled, and the $j_{<} = l - 1/2$ 246 order corrections through g^{eff} . $_{204}$ component is mostly empty, which we will call the JJ_{248} The experimental magnetic moment for 37 Ca is in ex-205 closed-shell configuration. The ³⁶Ca wavefunction is 249 cellent agreement with USDA/B-EM1 calculations. The

the previous value [24] determined using the β -NMR 211 wavefunction is dominated by the $(d_{5/2})^6 (s_{1/2})^2 (d_{3/2})^4$ technique, and three times more precise than the previ- 212 LS-type configuration for neutrons. It is noted that both its oblate deformation (the negative sign). In the shell $_{216}$ particle outside of the 36 Ca neutron JJ core, relative to

For the calculations we use the *sd*-shell model space ²²³ with the USDA and USDB Hamiltonians [26]. The mag-The magnetic moment of ³⁷Ca was determined from $_{224}$ netic moment (M1) operator is defined as $\mu = g_l \langle l \rangle$ +

The first-order core polarization is contained within be similar to ${}^{43}\Delta^{39}$, and the contribution to $\mu({}^{37}Ca)$ is ${}_{237}$ the sd-shell model space for present calculations, and $_{238}$ the effective *g*-factors reflect higher-order corrections due Discussion — The magnetic moments of ³⁷Ca and ³⁷Cl ²³⁹ to correlations beyond the sd model space and meson-with one particle in the $d_{3/2}$ shell, and their counter-²⁴⁰ exchange currents [20]. For the $d_{3/2}$ orbital the effective parts ³⁹Ca and ³⁹K with one hole in the $d_{3/2}$ shell pro-²⁴¹ single-particle magnetic moment for A = 37 or singlevide a unique opportunity to study the first-order core- ²⁴² hole magnetic moment for A = 39 denoted as "sp $g^{\text{eff.}}$ " polarization model for the nucleon configuration mix- 243 for neutrons (protons) is $0.930 \mu_N$ ($0.469 \mu_N$) compared

²⁰⁶ dominated by the $(d_{5/2})^6 (s_{1/2})^2 JJ$ -type configuration ²⁵⁰ wavefunctions for ³⁷Ca are given in Table III in terms ²⁰⁷ for neutrons, where the $d_{5/2}$ orbital is filled and the $d_{3/2}$ ²⁵¹ of the percent probabilities for the six allowed parti-

TABLE III. Wave function for ${}^{37}Ca(3/2^+)$. The occupation for each configuration is shown in %.

(n5, n1, n3)	USDA-EM1	USDB-EM1	VS-IMSRG
(621)	94.61	95.03	90.28
(603)	1.68	1.64	2.81
(612)	0.32	0.68	0.51
(423)	2.63	2.21	5.61
(513)	0.51	0.23	0.29
(522)	0.23	0.20	0.45
μ (μ_N)	0.770	0.754	1.055

 $_{253}$ of neutrons that occupy each orbital (n5, n1, n3) as in $_{311}$ duction in $\mu(IV)$ coming both from the change of q^{free} to $_{254}$ $(d_{5/2})^{n5}(s_{1/2})^{n1}(d_{3/2})^{n3}$. The partitions that are impor- $_{312}$ g^{eff} and from the core-polarization within the sd-model $_{255}$ tant for the magnetic moment are (621), (603) and (522). $_{313}$ space. The μ (IV) is reduced to be near zero for A = 37 $_{256}$ The magnetic moments for the (621) and (603) partitions $_{314}$ and the shell model calculation reproduces the experi- $_{257}$ are just the single-particle value of $0.930\mu_N$. The interfer- $_{315}$ ment, however for A = 39 the discrepancy is large. The $_{258}$ ence of the (621) and (522) partitions decreases the mag- $_{316}$ good agreement for 37 Ca and 37 Cl confirm the impor- $_{259}$ netic moment to $0.760\mu_N/0.750\mu_N$ for USDA/B-EM1. $_{317}$ tance of core-polarization for the JJ closed-shell nuclei. 260 261 in excellent agreement with experiment. 262

263 264 265 $_{266}$ is moved from the $d_{5/2}$ to the $d_{3/2}$ orbital [6, 7]. On the $_{324} = 20$ [29]. In this regard it appears that the 36 Ca (36 S) $_{267}$ other hand, the LS closed-shell partition (604) plus one $_{325}$ nucleus may be a better closed sub-shell nucleus at N =²⁶⁸ neutron hole in the $d_{3/2}$, (603), has no core-polarization ³²⁶ 16 (Z = 16) than the ⁴⁰Ca nucleus. $_{269}$ correction. This is also true for the LS closed shell par- $_{327}$ We also calculate magnetic moments of A = 37 and 270 tition (624) plus one neutron hole in $d_{3/2}$ (623) that is 328 39 pairs using the valence-space formulation of the ab 271 the sd-shell configuration for ³⁹Ca. Thus, the magnetic 329 initio in-medium similarity renormalization group (VS- $_{272}$ moment is sensitive to the mixing between the $s_{1/2}$ and $_{330}$ IMSRG) [30–33]. In this approach we consistently trans- $_{273} d_{3/2}$ orbitals, via the relative amounts of the (621) and $_{331}$ form the M1 operator and no effective g factors were 274 (603) partitions. The agreement with experiment indi- 332 used [34, 35]. The 1.8/2.0 chiral interaction defined in 275 cates that ³⁷Ca is dominated by the (621) partition that ³³³ Refs. [36–38] was taken as the initial two- and three- $_{276}$ represents 36 Ca in a $(d_{5/2})^6(s_{1/2})^2$ closed sub-shell con- $_{334}$ nucleon potentials within a harmonic oscillator basis of 277 figuration plus one neutron in the $d_{3/2}$ orbital.

278 ²⁷⁹ of the mirror nucleus ³⁷Cl. The effective single-particle ³³⁷ with a ¹⁶O core. The results are summarized in Table II value of $0.469\mu_N$ is increased by the core-polarization 338 and III. The calculations for 37,39 Ca overestimate the ex- $_{281}$ to $0.675\mu_N$, which is also in good agreement with the 282 experimental value.

As the configuration is varied from the JJ type 283 $_{284}$ for 37 Ca to the LS type for 39 Ca, the magnetic mo-285 ment is expected to increase from $0.754\mu_N$ (USDB) to $_{286}$ 0.930 μ_N (sp g^{eff}). The experimental values increase from $_{287}$ 0.7453(72) μ_N to 1.0217(1) μ_N [21]. The agreement of 288 ³⁷Ca is excellent but the calculation for ³⁹Ca underesti-²⁸⁹ mates the experimental value as shown in Figure 2. This ²⁹⁰ increase can be understood by observing that the ground ²⁹¹ state I = 3/2 of ³⁷Ca can be obtained with the excitation $_{292}$ of neutrons from the $d_{5/2}$ to the $d_{3/2}$ shell, whereas for ²⁹³ the I = 3/2 state of ³⁹Ca such excitation is prohibited in ²⁹⁴ the *sd*-shell model space. A similar behavior can be seen ²⁹⁵ in their mirror magnetic moments. Going from ³⁷Cl to ²⁹⁶ ³⁹K we expect a reduction of the magnetic moment from

 $_{297}$ 0.675 μ_N to 0.469 μ_N , whereas the experimental values de-298 crease from $0.6841236(4)\mu_N$ [23] to $0.3915073(1)\mu_N$ [22]. The isoscalar $\mu(IS)$ and isovector $\mu(IV)$ parts of a mag-299 $_{300}$ netic moment are also evaluated, which are deduced as $_{301} \mu(\text{IS/IV}) = \mu(T_3 = +T) \pm \mu(T_3 = -T)$ with the isospin $_{302}$ $T_3 = +1/2$ for protons. The isoscalar spin expectation ³⁰³ value $\langle s_z \rangle$ was evaluated as $\mu(IS) = I + 0.38 \langle s_z \rangle$ [27, 28] $_{304}$ and also listed in Table II. The change in $\mu(IS)$ from the $_{305}$ single-particle value of 1.272 to those deduced from ex-³⁰⁶ perimental moments of 1.4131(1) for A = 39 and 1.429(7)307 for A = 37, is mainly due to the change of g^{free} to g^{eff} . ³⁰⁸ This can be seen in Figure 2 as the "sp q^{eff} " value (blue $_{309}$ bar) for $\mu(IS)$ well explains the experimental values for $_{252}$ tions. The partitions are given in terms of the number $_{310} A = 37$ and 39. On the other hand, there is a large re-The addition of the other four partitions give a final re- 318 The larger deviation between theory and experiment for sult of $0.770\mu_N/0.754\mu_N$ for USDA/B-EM1. These are $_{319}$ 39 Ca and 39 K than those for 37 Ca and 37 Cl indicates that 320 additional non-sd-shell components of ⁴⁰Ca are larger The mixing of the (522) partition with the JJ closed- $_{321}$ than those of 36 Ca and 36 S. It is also noted that magnetic shell partition (620) plus one neutron particle in the $d_{3/2}$, $_{322}$ moments of heavier 41,43,45 Ca suggest large nucleon exci-(621), is the core-polarization effect, where one neutron $_{323}$ tations across the sd shell around the neutron number N

 $_{335}$ 13 major shells, a frequency $\hbar\omega = 16$ MeV, operators The same situation occurs for the magnetic moment 336 truncated at the two-body level and sd-shell model space

FIG. 2. Comparison between experimental values (solid circles) and shell-model calculations with USDB-EM1 (bars) for (a) magnetic moments and (b) isoscalar and isovector magnetic moment.

 $_{339}$ perimental values, but have the canonical nucleon config- $_{362}$ moments of the mirror partners 37 Cl and 39 K. This indi-341 342 ³⁴³ for ³⁶Ca. However, the amount of the (522) partition ³⁶⁶ as represented by the USDB Hamiltonian. The ab-initio ³⁴⁴ that gives the core-polarization correction is a factor of ³⁶⁷ VS-IMSRG calculations give reasonable agreement with $_{345}$ two larger. The deviation is likely due to meson-exchange $_{368}$ experimental $\mu(^{39,37}Ca)$ and confirms a closed sub-shell $_{346}$ currents [39], which are not included in the present VS- $_{369}$ structure of 36 Ca. ³⁴⁷ IMSRG calculations, but are included indirectly through the effective q factors in the USDA/B-EM1 calculations. 348 Summary – Bunched-beam collinear laser spectroscopy 349 was performed to determine electromagnetic moments of 350 37 Ca to probe the closed sub-shell nature of the 36 Ca 351 nucleus. Shell-model calculations were performed in the 371 352 353 354 355 356 357 core polarization effect within the sd shell is critical for 376 of Nuclear Physics, Grant No. DE-AC05-00OR22725 $_{358}$ the agreement. The calculated value for $\mu(^{39}Ca)$, which $_{377}$ with UT-Battelle, LLC; Natural Sciences and Engi-³⁵⁹ has one neutron hole inside the ⁴⁰Ca core, shows poor ³⁷⁸ neering Research Council of Canada under grant num-₃₆₀ agreement with the experimental value compared to that ₃₇₉ ber SAPPJ-2017-00039; the Deutsche Forschungsgemein- $_{361}$ of $\mu(^{37}$ Ca). A similar behavior can be seen in magnetic $_{380}$ schaft through Grant SFB 1245.

- [1] M. G. Maver, Phys. Rev. 75, 1969 (1949). 381
- [2]O. Haxel, J. H. D. Jensen, and H. E. Guess, Phys. Rev. 382 416 75, 1766 (1949). 383 417
- [3] A. Ozawa, T. Kobayashi, T. Suzuki, K. Yoshida, and 418 384 I. Tanihata, Phys. Rev. Lett. 84, 5493 (2000). 385
- R. Kanungo, C. Nociforo, A. Prochazka, T. Aumann, 386 [4]D. Boutin, D. Cortina-Gil, B. Davids, M. Diakaki, 421 387 F. Farinon, H. Geissel, R. Gernhäuser, J. Gerl, R. Janik, 422 388
- B. Jonson, B. Kindler, R. Knöbel, R. Krücken, M. Lantz, 389
- H. Lenske, Y. Litvinov, B. Lommel, K. Mahata, P. Maier-390
- beck, A. Musumarra, T. Nilsson, T. Otsuka, C. Perro, 425 391
- C. Scheidenberger, B. Sitar, P. Strmen, B. Sun, I. Szarka, 392
- I. Tanihata, Y. Utsuno, H. Weick, and M. Winkler, Phys. 427 393 Rev. Lett. 102, 152501 (2009). 428 394
- C. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Chris-[5]395 tian, D. Denby, P. DeYoung, J. Finck, N. Frank, J. Hin-396 nefeld, S. Mosby, W. Peters, W. Rogers, A. Schiller, 397 A. Spyrou, M. Scott, S. Tabor, M. Thoennessen, and 398 P. Voss, Physics Letters B 672, 17 (2009). 399
- [6] A. Arima and H. Horie, Prog. Theor. Phys. 11, 509 400 434 401 (1954).
- A. Arima and H. Horie, Prog. Theor. Phys. 12, 623 [7]402 436 (1954).403
- D. J. Morrissey, B. M. Sherrill, M. Steiner, A. Stolz, and 438 [8] 404 I. Wiedenhoever, Nucl. Instrum. Methods Phys. Res. B 405 **204**, 90 (2003). 406
- K. Cooper, C. Sumithrarachchi, D. Morrissey, A. Levand, [9]407 J. Rodriguez, G. Savard, S. Schwarz, and B. Zabransky, 442 408 Nucl. Instrum. Methods Phys. Res. A 763, 543 (2014).
- 409 K. Minamisono, P. F. Mantica, A. Klose, S. Vinnikova, 444 [10]410
- A. Schneider, B. Johnson, and B. R. Barquest, Nucl. 445 [22] 411 Instrum. Methods Phys. Res. A 709, 85 (2013). 412
- [11]D. M. Rossi, K. Minamisono, B. R. Barquest, G. Bollen, 447 [23] 413
- K. Cooper, M. Davis, K. Hammerton, M. Hughes, P. F. 448 414

5

uration of 90% and confirm a closed sub-shell structure of 363 cates that additional non sd-shell components of ⁴⁰Ca are ³⁶Ca. Compared to the USDA/B-EM1 calculations, the ₃₆₄ larger than those of ³⁶Ca. The ³⁶Ca nucleus appears to VS-IMSRG agrees with the dominance of (620) partition $_{365}$ be a better closed sub-shell nucleus at N = 16 than 40 Ca

ACKNOWLEDGMENTS

370

415

432

437

This work was supported in part by the National Scisd-shell-model space with the USDA/B-EM1 interaction 372 ence Foundation, grant Nos. PHY-15-65546 and PHY-18and effective g factors. The calculated $\mu(^{37}Ca)$ repro- $_{373}$ 11855; the U.S. Department of Energy, National Nuclear duces the experimental value with a 95% probability of 374 Security Administration, Grant No. DE-NA0002924; the the canonical nucleon configuration, yet the first-order 375 U.S. Department of Energy, Office of Science, Office

- Mantica, D. J. Morrissey, R. Ringle, J. A. Rodriguez, C. A. Ryder, S. Schwarz, R. Strum, C. Sumithrarachchi, D. Tarazona, and S. Zhao, Rev. of Sci. Instrum. 85, 093503 (2014).
- B. R. Barquest, G. Bollen, P. F. Mantica, K. Mi-419 [12]namisono, R. Ringle, and S. Schwarz, Nucl. Instrum. 420 Method Phys. Res. A 866, 18 (2017).
- [13]P. Campbell, H. L. Thayer, J. Billowes, P. Dendooven, K. T. Flanagan, D. H. Forest, J. A. R. Griffith, 423 J. Huikari, A. Jokinen, R. Moore, A. Nieminen, G. Tun-424 gate, S. Zemlyanoi, and J.Aystö, Phys. Rev. Lett. 89, 082501 (2002). 426
- A. Nieminen, P. Campbell, J. Billowes, D. H. Forest, [14]J. A. R. Griffith, J. Huikari, A. Jokinen, I. D. Moore, R. Moore, G. Tungate, and J. Aystö, Phys. Rev. Lett. 429 88, 094801 (2002). 430
- [15]See http://www.brocktoneo.com for information on the 431 laser-power controller. (accessed in 2018.).
- 433 [16]A. L. Stancik and E. B. Brauns, Vibrational Spectroscopy **47**, 66 (2008).
- F. Arbes, M. Benzing, T. Gudjons, F. Kurth, and 435 [17]G. Werth, Zeitschrift fr Physik D Atoms, Molecules and Clusters **31**, 27 (1994).
- O. Lutz, A. Schwenk, and A. Uhl, Z. Naturforsch. A 28, [18]1534 (1973). 439
- B. K. Sahoo, Phys. Rev. A 80, 012515 (2009). [19]440
- [20]W. A. Richter, S. Mkhize, and B. A. Brown, Phys. Rev. 441 C 78, 064302 (2008).
- 443 T. Minamisono, J. Hugg, D. Mavis, T. Saylor, H. Glavish, [21]and S. Hanna, Physics Letters B 61, 155 (1976).
- W. Sahm and A. Schwenk, Z. Naturforsch. 29a, 1763 (1974).446
 - J. Blaser, O. Lutz, and W. Steinkilberg, Z. Naturforsch. A 27, 72 (1972).

- [24] K. Matsuta, T. Onishi, M. Fukuda, T. Minamisono, 473 449
- H. Akai, M. Sasaki, T. Yamaguchi, T. Miyake, K. Sato, 474 [32] S. R. Stroberg, A. Calci, H. Hergert, J. D. Holt, S. K. 450
- K. Minamisono, F. Ohsumi, Y. Muramoto, S. Oui, 475 451
- C. Ha, K. Tanaka, K. Kidera, A. Morishita, A. Kita- 476 452
- gawa, M. Torikoshi, M. Kanazawa, T. Nishio, S. Koda, 477 453
- T. Ohtsubo, S. Fukuda, Y. Nojiri, S. Momota, A. Ozawa, 478 454
- K. Yoshida, T. Suzuki, T. Kobayashi, I. Tanihata, 479 455 S. Hanna, J. Alonso, G. Krebs, and T. Symons, Hy-456
- perfine Interactions 120/121, 673 (1999). 457
- [25]A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950). 458
- B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 459 [26]
- (2006).460 R. G. Sachs, Phys. Rev. 69, 611 (1946). 461 [27]
- [28]K. Sugimoto, Phys. Rev. 182, 1051 (1969). 462
- [29] R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, 463 N. Frömmgen, M. Hammen, J. D. Holt, M. Kowal-464
- ska, K. Kreim, J. Menéndez, R. Neugart, G. Neyens, 489 465
- W. Nörtershäuser, F. Nowacki, J. Papuga, A. Poves, 490 466 A. Schwenk, J. Simonis, and D. T. Yordanov, Phys. Rev. 467
- C 91, 041304(R) (2015). 468
- [30] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. 469 Rev. C 85, 061304 (2012). 470
- [31] 471
- S. Binder, A. Calci, J. Langhammer, and R. Roth, Phys. 472

Rev. Lett. 113, 142501 (2014).

- Bogner, R. Roth, and A. Schwenk, Phys. Rev. Lett. 118, 032502 (2017).
- [33] S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenk, Phys. Rev. C 93, 051301 (2016).
- N. M. Parzuchowski, S. R. Stroberg, P. Navrátil, H. Herg-[34]ert, and S. K. Bogner, Phys. Rev. C 96, 034324 (2017). 480
- J. Henderson, G. Hackman, P. Ruotsalainen, S. R. [35]481 Stroberg, K. D. Launey, J. D. Holt, F. A. Ali, N. Bernier, 482 M. A. Bentley, M. Bowry, R. Caballero-Folch, L. J. 483 Evitts, R. Frederick, A. B. Garnsworthy, P. E. Gar-484 rett, B. Jigmeddorj, A. I. Kilic, J. Lassen, J. Measures, 485 D. Muecher, B. Olaizola, E. O'Sullivan, P. O., J. Park, 486 J. Smallcombe, C. E. Svensson, R. Wadsworth, and C. Y. 487 488 Wu, Phys. Lett. B 782, 468 (2018).
 - [36]K. Hebeler, S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Phys. Rev. C 83, 031301 (2011).
- 491 [37] J. Simonis, K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk, Phys. Rev. C 93, 011302 (2016). 492
- 493 [38] J. Simonis, S. R. Stroberg, K. Herbeler, J. D. Holt, and A. Schwenk, Phys. Rev. C 96, 014303 (2017). 494
- S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, 495 [39] S. Bacca and S. Pastore, J. Phys. G 41, 123002 (2014).