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Results are presented for an updated multichannel energy-dependent partial-wave analysis of
mN scattering. Our earlier work incorporated single-energy amplitudes for TN — 7N, YN — 7N,
©N — 7N, mN — nN, and tN — KA. The present work incorporates new single-energy solutions
for yp — np up to a c.m. energy of 1990 MeV, vp — KA up to a c.m. energy of 2230 MeV, and yn —
nn up to a c.m. energy of 1885 MeV, as well as updated single-energy solutions for tN — nN, =N —
KA, and YN — 7 N. In this paper, we present and discuss the resonance parameters obtained from
a combined fit of all these single-energy amplitudes. Our determined energy-dependent amplitudes
provide an excellent description of the corresponding measured observables.

I. INTRODUCTION

According to quark models, the baryon is typically
viewed as a particle composed of three constituent
quarks. With sufficient energy, one or more of the quarks
can be excited, giving rise to a spectrum of particles
called resonances. The primary experimental method
used to search for resonances has been to analyze wINV
reactions including 7N — 7N and yN — wN. This
search has yielded many well-known and established res-
onances. The first observed resonance, the Ps3(1232),
was followed by many others, including the S11(1535),
511(1650), and F15<1680)

In the literature, there are also many theoretical mod-
els [1-5] that attempt to explain the interactions of the
quarks inside of baryons. Each of these theoretical mod-
els has one thing in common, they predict more reso-
nances than have been experimentally found. One pos-
sible explanation is that these predicted resonances de-
couple from the wNN channel. This idea has led to re-
cent experimental efforts using photon beams and meson
photoproduction reactions aimed at searching for these
resonances.

To aid in the interpretation of the new data,
groups such as EBAC-JLab [6], Bonn-Gatchina [7],
GWU/SAID [8], and KSU [9] have all developed mul-
tichannel formalisms to analyze experimental data in a
self-consistent framework. The EBAC-JLab group uses
a coupled-channel approach that contains the channels
N, 7N, nN, KA, and pion photoproduction. Bonn-
Gatchina (BnGa) uses a K-matrix formalism with Breit-
Wigner resonances and includes 1N — 7N, YN — 7N,
as well as channels nN, KA, and K¥X. The GWU/SAID
model is also based on a K-matrix approach that fo-
cuses on analyses of TN — wN [10] and YN — 7N [11],
but more recent efforts have allowed the inclusion of
mN — nN as well.

The KSU model [9] used in this work is based on a gen-
eralized energy-dependent Breit-Wigner parametrization
of amplitudes that treats all channels on an equal footing,
and also takes full account of non-resonant backgrounds.
Previous fits using this model included partial-wave am-

plitudes for tN — 7N, tN — naN, yN — 7N, 7N —
NN, and 7N — KA [12]. The current work updates and
supersedes this earlier work by adding single-energy am-
plitudes for the photoproduction reactions yp — np and
yn — nn [13] and yp — K+ A [14]. Our previous single-
energy TN — nN and 7N — KA amplitudes [15] were
also updated [16] to be self-consistent with new exper-
imental data for photoproductions reactions having the
same final states.

Section II briefly discusses the formalism behind the
generalized K-matrix approach. Section III discusses the
fitting procedure used to obtain a fit of the partial-wave
amplitudes for each reaction. Section IV discusses re-
sults describing the determined resonance structure. Ap-
pendix A summarizes details of the KSU Model, which
is the parametrization used for our multichannel energy-
dependent fits. Appendix B contains tables of partial
widths, branching fractions, and resonant amplitudes. It
also contains Argand diagrams showing the final dimen-
sionless energy-dependent partial-wave amplitudes.

II. THEORETICAL MODEL

In the KSU model [9], the unitary and symmetric
partial-wave scattering matrix S, or S-matrix, is given

by
S = BTRB, (1)

where BT is the transpose of B, which is parametrized
as a product of unitary, symmetric background matrices

B=B;B; - By (2)

and R represents the resonant part of the scattering am-
plitude or s-channel process. Consequently, B itself is
unitary but not necessarily symmetric whereas S is both
unitary and symmetric. This is equivalent to the conser-
vation of probability and time-reversal symmetry. The



matrix R is constructed by writing

R=1+2iTgr
=1+ 2K(I-iK)™* (3)
= (I+iK)(I-iK)™ !,

where K is a Hermitian K-matrix, K = K' and I is
an identity matrix. To satisfy time-reversal symmetry,
K also must be symmetric. Tg is called the resonant
transition matrix, or T-matrix for short. Each of the
resonances corresponds to a pole in T and, therefore,
also in the total S-matrix.

In constructing the background, a “distant poles” ap-
proximation was used. In this approximation, the func-
tional behavior used for the background was a modified
Breit-Wigner form where the mass was kept negative
and usually large (the majority have magnitudes greater
than 3000 MeV, with many larger than 10* MeV). This
ensured that the background poles exist far from the
physical region of the complex plane. The background
terms were also allowed very large widths (on the order
of 10* MeV). These features guaranteed that the back-
ground had the correct threshold behavior, was slowly
varying, and was flexible enough in form to allow the fit-
ting of a large number of potential functional behaviors.

Because scattering can happen off attractive and repul-
sive potentials, separate background terms were used for
each process. An attractive (repulsive) background was
assured by using a positive (negative) width for the back-
ground, as explained in [17]. In the absence of resonance
terms, an attractive (repulsive) background term alone
exhibits counter-clockwise (clockwise) motion on an Ar-
gand diagram, but such background amplitudes (unlike
resonant amplitudes) do not cross the imaginary axis.

All amplitudes used in the parametrization are dimen-
sionless by construction, while the single-energy photo-
production amplitudes [13, 14] have dimensions of mfm.
Once an initial single-energy fit has been performed, the
dimensioned single-energy amplitudes are converted to
dimensionless amplitudes using [17]:

By = CrvVkq(L+1) (14 2) Epy, (4a)

Eqyy- = Crvkql (1+1) Eqy)—, (4b)

My = Cr\/kql (14 1) My, (4c)

and
M(lJrl), =CrvVkq (l—|—1) (l—|—2) M(lJrl),, (4d)

where the multipoles with a tilde denote the dimension-
less amplitudes. Here C7 is an isospin coefficient. For
YN — nN and YN — KA, Cy/; = 1 and C5/5 = 0.
For yN — 7N, Cy/; = —v3 and C5/5 = /2/3. For

YN — 7N, k and ¢ are the c.m. momentum for the in-
coming vN and outgoing 7wV, respectively, and similarly
for YN — nN and yN — KA.

The model contains resonance and background cou-
plings for the reactions tN — «# N, 1N — 7aN, 1N —
nN, tN — KA, vp — np, yn — mn, and YN — 7N
all of which have single-energy amplitudes determined.
It also includes channels that have not been analyzed to
date (such as pA, wN, and 7N*), which are included in
fits as “dummy channels” to satisfy unitarity and prevent
over-saturating couplings for measured channels. Further
details are presented in Appendix A.

III. FITTING PROCEDURE

The fitting procedure for obtaining resonance param-
eters consisted of a two-step process. The first step was
to determine single-energy partial-wave amplitudes in-
dependent of any resonance structure by fitting observ-
ables data in specified energy bins. The single-energy
amplitudes for a given partial wave (e.g., S11 or Pi1)
were then fitted as real and imaginary parts with our
energy-dependent parametrization to update the reso-
nance parameters and determine corresponding energy-
dependent amplitudes. This procedure was iterated until
the energy-dependent solution provided a good descrip-
tion of the observables data. The procedure used for
fitting was the standard y? minimization technique.

To gain confidence in both model stability and reach-
ing a global x? minimum, two techniques were used. The
first was to start from a number of distinct solutions and
test for convergence in the solution. For this procedure,
a local minimum for each starting point was found us-
ing the two-step convergence procedure. Each minimum
could then be compared to other local minima previously
obtained for both a single reaction as well as for all com-
bined reactions. An optimal solution is then one that is
sufficiently close to a global minimum for each individual
reaction as well as for all reactions combined. The second
technique was a randomization process that was devised
as follows. A group of resonance parameters were se-
lected to be randomly varied, with each parameter’s ran-
dom variation independently determined and small. (For
instance, the parameters might be all couplings to all Py
resonances.) The random change for the parameters was
kept small, usually less than 20% of their starting val-
ues. By performing these techniques hundreds of times
on different subsets of parameters over the course of the
analysis, a large region of parameter space was analyzed
and checked. This technique also led to confidence that
the determined error bars were reasonable.

To determine final error bars for the single-energy am-
plitudes, the moduli for each of the partial-wave am-
plitudes over all newly added photoproduction reactions
were treated as free parameters and allowed to vary one
final time while the phases were kept fixed in a “zero-
iteration” fit. This is described in greater detail in the



papers describing the single-energy analysis [13, 14]. The
next step was to put these single-energy amplitudes with
their final error bars into the energy-dependent code to
generate final error bars for all resonance parameters. In
this fit, parameter values were not actually varied and
the only purpose of the “fit” was to calculate error bars
taking into account all the various correlations between
free parameters. The single-energy points that generated
a large contribution to x? had their error bars scaled
up until the x? contribution from those points equaled
four. This scaling was done to keep individual points
from dominating the results for the fits. Then a full
error matrix was calculated with a zero-iteration fit to
give the final error bars with all parameters treated as
free parameters, but not actually varied. Lastly, the un-
certainties in the resonance parameters were scaled by
V/X2/v, where v was the number of degrees of freedom
for the fit.

IV. RESULTS

This section is laid out as follows. Section IV A con-
tains information about each of the isospin-1/2 ampli-
tudes and tables of their respective resonance parameters
and helicity couplings. Section IV B contains information
about the isospin-3/2 amplitudes and tables of their re-
spective resonance parameters and helicity couplings.

A. Results for Isospin-1/2 Amplitudes

The following section discusses results for the isospin-
1/2 amplitudes. Tables I and IT list the Breit-Wigner
masses (M) and total widths (I'(M)) of each isospin-1/2
resonance with errors on the last reported significant fig-
ure shown in parentheses. These tables also list pole posi-
tions that were calculated numerically with the procedure
discussed in Ref. [18] using the actual energy dependence
of the Breit-Wigner widths, which is discussed in Ap-
pendix A. Only masses are quoted for resonances above
2300 MeV because their widths and couplings are not re-
liable at this stage of analysis. Tables III and IV show
helicity couplings to the isospin-1/2 resonances. Com-
parisons are made in each table with [19], [20], and
[21]. Additional comparisons can be found in the Review
of Particle Physics (RPP) [22]. Partial widths, branch-
ing fractions, and resonant amplitudes (y/zz;) are listed
in Tables VII and VIII of Appendix B. For a given reso-
nance, the partial widths and quantities directly derived
from them (e.g., total widths and branching fractions) in
Appendix B were all calculated from energy-dependent
partial widths evaluated at the Breit-Wigner mass of the
resonance. Finally, the energy-dependent fits for each
reaction and resonance are shown in Figs. 1 - 26 of Ap-
pendix B.

Sll

This amplitude required four resonances within the fit-
ting region. The first two are the well known S11(1535)
and S11(1650) and are clearly seen in 7N, KA, and
1N photoproduction. The properties of the third state,
S11(1895), especially its mass, were primarily constrained
by the tN — 7N and the 71N — nN reactions and it was
the TN — nN reaction that required the resonance. The
S11(1895) was listed as a 2-star resonance in the 2016
edition of the RPP [22], but it was promoted to a 4-star
resonance in the 2018 edition [23]. A fourth resonance
at 2400 MeV was used to constrain the high-energy be-
havior of the KA channels and remains inconclusive. At
this stage of the analysis, its parameters are not reliable
and are not quoted.

In general, our parameter values for the S11(1535) and
S11(1650) are in agreement with results from other works.
The primary exception is the S11(1535) helicity-1/2 cou-
pling found in this work, which is larger than the re-
sult by Shrestha et al. [12] but is now in agreement
with other more recent results. However, results for the
S511(1895) are still not in good agreement between the
different groups. For instance, a few groups find a width
less than 150 MeV, which is quite narrow, while this and
other works find a width in excess of 400 MeV, which is
quite large. While the helicity-1/2 couplings show differ-
ent signs, early indications suggest the resonance has a
weak photocoupling. Our fit of the S1; amplitudes con-
tained no dummy channels, meaning that S1; inelasticity
can be explained by the measured reactions.

Py

P11 required four resonances, including the well-known
Roper resonance Pp1(1440). The Roper resonance shows
up in this analysis with a lower mass and width than most
current groups seem to find, as well as a larger helicity-
1/2 coupling about twice as large. The results for the
P11(1710) are also quite different from other groups be-
cause it was never clearly seen in any reaction. In this
work it shows up as a clear resonance bump in the re-
action yp — np with a well-determined mass and width.
Its mass in this work is smaller than that found by other
works, while its width is similar to more recent results.
Only BnGa finds a large helicity coupling to the reso-
nance (both to the proton and neutron). The agreement
between groups for the P;1(1880) resonance is also poor.
The P;1(1880) was listed as a 2-star resonance in the
2016 edition of the RPP [22], but it was promoted to
a 3-star resonance in the 2018 edition [23]. This work
finds a strong helicity-1/2 coupling to the proton for the
P11(1880), which disagrees with other results. The large
resonance coupling was a stable feature of our analysis
and was suggested in both the vp — np and yp — KA
reactions. Evidence for a strong coupling is strengthened
by the fact that even when the amplitude was started



Mass

Width Re Pole

—2 Im Pole

Mass

Width

Re Pole —2 Im Pole

(MeV)  (MeV)  (Mev)  (Mey) ~rmabysis (MeV)  (MeV)  (MeV)  (Mey) “malysis
S11(1535)*H** S11(1650)*H**
1525(2)  147(5) 1496 119 This Work 1666(3)  133(7) 1656 130 This Work
1499 104 Rénchen 15B 1672 137 Ronchen 15B
1547 188(14) Workman 12 1635 115(14) Workman 12
1519(5)  128(14)  1501(4)  134(11)  Anisovich 12 1651(6)  104(10)  1647(6) 103(8)  Anisovich 12
S11(1895)H*** Py1(1440)%***
2000(29)  466(72) 1956 449 This Work 1417(4)  257(11) 1360 186 This Work
- - - - Ronchen 15B - - 1355 215 Ronchen 15B
- - - - Workman 12 1485(1)  284(4) - - Workman 12
1895(15) 90732 1900(15)  90*3  Anisovich 12 1430(8) 365(35)  1370(4)  190(7)  Anisovich 12
Py (1710)%*** Pp1(1880)%**
1648(16)  195(46) 1615 169 This Work 1967(20)  500(77) 1880 429 This Work
- - 1651 121 Rénchen 15B - - 1747 323 Rénchen 15B
- - - - Workman 12 - - - - Workman 12
1710(20)  200(18)  1687(17)  200(25)  Anisovich 12 1870(35) 235(65) 1860(35)  250(70)  Anisovich 12
P11(2100)*** Pi3(1720)%***
2221(92) 545(170) 2217 545 This Work 1711(4)  229(22) 1654 100 This Work
- - - - Ronchen 15B - - 1710 219 Ronchen 15B
- - - - Workman 12 1764 210 - - Workman 12
- - - - Anisovich 12 16907752 420(100) 1660(30)  450(100) Anisovich 12
Py3(1900)%*** Py3(2040)*
1911(6)  292(16) 1856 241 This Work 2244(30)  530(89) 2231 529  This Work
- - - - Roénchen 15B - - - - Ronchen 15B
- - — - Workman 12 - - - - Workman 12
1905(30)  250712°  1900(30)  2001E°  Anisovich 12 1525(2)  147(5) 1496 119  Ronchen 15B
D13(1520)**** D13(1700)***
1512.0(1.5) 121(3) 1500 117 This Work 1653(5)  81(13) 1647 79 This Work
- - 1512 89 Roénchen 15B - - - - Ronchen 15B
1515 104 - - Workman 12 - - - - Workman 12
1517(3)  114(5)  1507(3) 111(5)  Anisovich 12 1790(40) 390(140) 1770(40)  420(180) Anisovich 12
Dq3(1875)*** Dy3(2120)***
2005(12)  321(21) 1993 319 This Work 2353(29) 503(62) 2357 503  This Work
- - - - Ronchen 15B - - - - Ronchen 15B
- - - - Workman 12 - - - — Workman 12
1880(20)  200(25) 1860(25)  200(20)  Anisovich 12 2150(60) 330(45) 2110(50)  340(45)  Anisovich 12

TABLE I. Comparison of S11, P11, P13, and D13 resonance masses, widths, and pole positions for isospin-1/2 amplitudes. The
widths listed are the energy-dependent Breit-Wigner total widths evaluated at the resonance masses. Uncertainties in the pole
positions should be similar to those in the corresponding Breit-Wigner parameters. Star rating is that found in the RPP [23].
Comparisons are made with works by Ronchen 15b [19], Anisovich 12 [20], and SAID [21].

small and then varied, plots of the modulus showed a
distinct bump, which is a signature of a resonance. A
fourth P;; resonance at 2200 MeV was included to help
explain the high-energy behavior, but nothing conclusive
can be said about its properties. This state is listed in

the tables as P11(2100). The P;1(2100) was listed as a
1-star resonance in the 2016 edition of the RPP [22], but
it was promoted to a 3-star resonance in the 2018 edition
[23]. Our fit of the P;; amplitudes used two pA dummy

channels.



Mass Width Re Pole —2 Im Pole

Mass Width Re Pole —2 Im Pole

(MeV)  (MeV)  (Mev)  (Mey) ‘rmabysis (MeV)  (MeV)  (MeV)  (Mey) “rnalysis
Dy5(1675)%%%* D15(2060) %%
1669(2) 161(8) 1646 146 This Work 2111(17) 499(70) 2010 395 This Work
- - 1646 125 Ronchen 15B - - - - Ronchen 15B
1674(1) 147 - - Workman 12 - - - - Workman 12
1519(5)  128(14) 1501(4) 134(11)  Anisovich 12 2060(15) 375(25) 2040(15) 390(25)  Anisovich 12
Fis5(1680) %% F5(1860)%*
1681.0(1)  123(3) 1668 118 This Work 1928(21) 376(58) 1871 337 This Work
- - 1669 100 Ronchen 15B - - - - Ronchen 15B
1680 128 - - Workman 12 - - - - Workman 12
1689(6)  118(6)  1676(6) 113(4)  Anisovich 12 18601430 27071°  1830753°  250713°  Anisovich 12
Fi7(1990)%* F17(2200) new
2028(19) 490(110) 1913 163 This Work 2219(16) 519(94) 2106 385 This Work
- - 1738 188 Rénchen 15B - - - - Ronchen 15B
- - - - Workman 12 - - - - Workman 12
2060(65) 240(50)  2030(65) 240(60)  Anisovich 12 - - - - Anisovich 12
G17(2190)%*% Gg(2250)% 5%
2222(15)  442(40) 2162 407 This Work 2200(10) 343(51) 2127 262 This Work
- - 2074 327 Ronchen 15B - - 2062 403 Ronchen 15B
- - - - Workman 12 - - - - Workman 12
2180(20) 335(40) 2150(25) 330(30)  Anisovich 12 2280(40) 520(50)  2195(45) 470(50)  Anisovich 12

TABLE II. Comparison of D15, Fi5, Fi7, Gi7, and G19 resonance masses, widths, and pole positions for isospin-1/2 amplitudes.
The widths listed are the energy-dependent Breit-Wigner total widths evaluated at the resonance masses. Uncertainties in
the pole positions should be similar to those in the corresponding Breit-Wigner parameters. Star rating is that found in the
RPP [22]. Comparisons are made with works by Rénchen 15b [19], Anisovich 12 [20], and SAID [21].

Py3

Py3 required three resonances. It is also the dominant
amplitude above the S71(1650) resonance for the reac-
tions yp — K+TA and 7~p — K°A. The mass and width
of the P13(1720) were determined by both vp — np and
~vp — KTA. This is in stark contrast to other analyses
that find little or no need for P;3 in the reactions in-
volving nN. For the P;3(1720), the helicity-3/2 coupling
to the proton is still in poor agreement between differ-
ent groups as some works find a small negative value
while others (including this work) find a small positive
value. Also, BnGa found a large negative helicity-3/2
coupling to the neutron, while other groups (including
this work) find a small negative value. The P;3(1900)
was first seen in the 77N channels [18], but its proper-
ties are constrained by yp — KA. The P;3(1900) was
listed as a 3-star resonance in the 2016 edition of the
RPP [22], but it was promoted to a 4-star resonance in
the 2018 edition [23]. Its mass and helicity parameters
are now in good agreement between groups, but its width
shows disagreement between this work and others such

s [12]. A third P;3 resonance at 2244 MeV was used to

fit the data above 2000 MeV for the reaction YN — 7wNN.
The dummy channels for our fit of the P;3 amplitudes
were pA, wN, and K.

D3

D3 required four resonances. The D;3(1520) is clearly
seen in the mwN elastic and photoproduction reactions.
For this reason, groups generally agree on its param-
eters. The D;3(1700) resonance was initially seen in
mN — 7wwN, but this work also finds evidence in the
reactions yp — np and yn — nn. Due to its lack of a
strong coupling to a single channel, the resonance has a
poorly determined mass and width. The D;3(1875) reso-
nance is hinted at in n photoproduction but with poorly
determined properties due to lack of data near 1875 MeV.
Its mass in this work is higher than that found in other
works except Hohler [24] and its width and helicity cou-
plings are in poor agreement among most groups with a
width ranging from 180 to 900 MeV. A fourth D3 res-
onance at 2353 MeV, listed in the tables as D;3(2120),
was included due to some indication of its existence in
the reaction vp — KA. The D13(2120) was listed as a



A7 ay AL ay . AL ay AL Ay .
(QeV-12)  (GeV-1/2) (Gev-12) (Gev-1/2) MTAYSS (GeV-1/2) (GeV-1/2) (Gev-1/2) (Gev-1/2) MRS
Spp (1535) ks Spp(1650) %k
+0.107(3)  —0.055(6) This Work +0.048(3) +0.001(6) This Work
Not included Ronchen 15B Not included Ronchen 15B
+0.128(4) Workman 12 +0.055(30) Workman 12
+0.105(10) —0.093(11) Anisovich +0.033(7) +0.025(20) Anisovich
Sp1(1895) ks Pp1(1440) %5
+0.017(5)  +0.002(13) This Work —0.091(7) +0.013(12) This Work
- - - - Ronchen 15B - - - - Ronchen 15B
- - - - Workman 12 —0.056(1) Workman 12
—0.011(6)  +0.013(6) Anisovich —0.061(8) +0.043(12) Anisovich
Py (1710)%*** Py (1880)***
+0.014(8)  +0.0053(3) This Work +0.119(15) +0.016(10) This Work
- - - - Ronchen 15B - - - - Ronchen 15B
- - - - Workman 12 - - - - Workman 12
+0.052(15)  —0.40(20) Anisovich —0.013(3) +0.034(11) Anisovich 12a,b
Pr1(2100)%%%* Pr3(1720) %%
+0.032(14) +0.026(13) This Work +0.068(4) —0.064(6) +0.028(3) —0.004(6) This Work
- - - - Roénchen 15B - - - - Roénchen 15B
- - - - Workman 12 +0.095(2) —0.048(2) Workman 12
- - - - Anisovich 12 +0.110(45) —0.080(50) +0.150(30) —0.140(65) Anisovich
P13(1900)**** P13(2040)*
+0.040(4) 40.007(14) —0.094(7) +40.007(11) This Work +0.038(7) +0.025(21) +0.078(10) —0.091(20) This Work
- - - - Ronchen 15B - - - - Ronchen 158B
- - - - Workman 12 - - - - Workman 12
+0.026(15) +0.000(30) —0.065(30) —0.060(45) Anisovich - - - - Anisovich
Dy3(1520)% %% D15(1700) %%
—0.034(3) —0.072(3) +0.142(3) —0.123(6) This Work +0.032(5) +0.005(11) +0.034(6) —0.094(17) This Work
- - - - Ronchen 158 - - - - Ronchen 158
—0.019(2) +0.141(2) Workman 12 - - - - Workman 12
—0.022(4)  —0.049(8) +0.131(10) —0.113(12) Anisovich +0.041(17) 40.025(10) —0.034(13) —0.032(18) Anisovich
D15 (1875)%** D13(2120)%%%*
—0.013(8)  +0.050(9) —0.093(9) +0.141(22) This Work +0.047(9) —0.020(13) +0.001(7) —0.00(2) This Work
- - - - Ronchen 158 - - - - Ronchen 158
- - - - Workman 12 - - - - Workman 12
+0.018(10)  4+0.010(6) —0.009(5) —0.020(15) Anisovich -+0.110(45) -+0.040(30) Anisovich 13b

TABLE III. Comparison of Si1, Pi1, Pis, and D13 helicity-1/2 and 3/2 amplitudes for both the proton and neutron. Star
rating is that found in the RPP [23]. Comparisons are made with works by Rénchen 15b [19], Anisovich 12 [20], and SAID [21].

2-star resonance in the 2016 edition of the RPP [22], but
it was promoted to a 3-star resonance in the 2018 edition
[23]. No dummy channels were used in our fit of the D;3

amplitudes.

D5

This partial wave required two resonances, the
D15(1675) and the D15(2060) The D15(1675) has well-
defined parameters due to the resonance having a strong
coupling to both the 7N channel and 77N channels. It



Al At AY A Al At Al A’
2 2 2 2 Analysis 2 2 2 2 Analysis
(GeV™'/%) (GeV™'%) (GeV™'/?) (GeV™'/?) (GeV™'/%) (GeV™'/?) (GeV™'/?) (GeV™'/?)
Dy5(1675) %% D15(2060)***
+0.026(2) —0.069(5) +0.005(2) —0.031(5) This Work —0.019(5) +0.069(17) +0.039(5) —0.023(20) This Work
- - - - Ronchen 15B - - - - Ronchen 15B
+0.013(1) - +0.016(1) - Workman 12 - - - - Workman 12
+0.024(3) —0.060(7) +0.025(7) —0.088(10) Anisovich -+0.067(15) +0.025(11) +0.055(20) —0.037(17) Anisovich
Fi5(1680)%*** F15(1860)**
—0.026(4) +0.005(4) +0.112(5) —0.061(4) This Work —0.022(20) +0.021(29) —0.032(34) +0.070(35) This Work
- - - - Ronchen 15B - - - - Roénchen 15B
—0.007(2) - +0.140(2) - Workman 12 - - - - Workman 12
—0.013(3) +0.034(6) +40.135(6) +0.044(9) Anisovich —0.019(11) +0.021(13) +0.048(18) +0.034(17) Anisovich
F17(1990)** F17(2200) new
+0.006(3) —0.027(24) —0.055(8) +0.051(20) This Work —0.000(5) +0.035(36) —0.128(13) +0.031(31) This Work
- - - - Ronchen 15B - - - - Ronchen 15B
- - - - Workman 12 - - - - Workman 12
+0.040(12) —0.045(20) +0.057(12) —0.052(27) Anisovich - - - - Anisovich 12
G17(2190) %% Ghg(2250) %%
+0.001(2) —0.01(2) +0.015(3) —0.023(22) This Work +0.0006(37) +0.013(4) This Work
- - - - Ronchen 158 - - - - Ronchen 15B
- - - - Workman 12 - - - - Workman 12
—0.065(8) —0.015(13) +0.035(17) —0.052(27) Anisovich - - - - Anisovich 12

TABLE IV. Comparison of Dis, Fis, Fi7, G17, and G1g helicity-1/2 and 3/2 amplitudes for both the proton and neutron. Star

rating is that found in the RPP [23]. Comparisons are made with works by Rénchen 15b [19], Anisovich 12 [20], and SAID [21].

also contains very little background contributions in most
reactions. The main exceptions are the photoproduction
reactions on the proton. This is due to the Moorhouse
selection rule [25], which states that the first Dy5 res-
onance should not couple to yp. The D15(2060) is seen
in the data for the reaction vp — K+A and was neces-
sary to obtain a good fit to differential cross-section data
above 2000 MeV. The D15(2060) was listed as a 2-star
resonance in the 2016 edition of the RPP [22], but it was
promoted to a 3-star resonance in the 2018 edition [23].
The only dummy channel for our fit of the D5 ampli-
tudes was a pA channel.

Fis

Fi5 needed three resonances, including the Fi5(1680)
and F15(1860). The F15(1680) is well determined from
pion reactions and groups agree on its parameters. The
F15(1860) is less clear but necessary to fit the high-energy
behavior of 1 photoproduction. There is also a hint of
a resonance in 1IN — wIN where a small bump does ap-
pear. However, a good fit of the bump proved difficult as
improvements in the fit to the imaginary part degraded
fits to the real part. This may be one reason groups tend

to agree on its mass but not its width. A third resonance
at 2320 MeV was clear in the magnetic amplitude for the
reaction yp — K+A. No dummy channels were used in
our fit of the F}5 amplitudes.

Fir

Fy7 needed two resonances, namely the F17(1990) and
F17(2200). The F17(1990) has poorly determined param-
eters and was not conclusively seen in any reaction, al-
though there are hints that it is necessary in yp — np,
vp — KTA, and perhaps 1N — wN. The F;7(2200)
is a new state that was added to fit the indication of a
higher-lying resonance in 7N — wINN where the imagi-
nary part starts increasing above 2000 MeV. Based on
the single-energy solution, it appears it will peak just
above 2300 MeV. This work also finds the Fj7(2200)
has a strong coupling to KA. This is in agreement
with quark-model predictions from [26]. A reliable de-
termination of its parameters would most likely require
data up to 2400 MeV in a number of reactions, in-
cluding 7N — wN. This amplitude was also critical
for describing the forward-angle shape of the differential
cross section at energies above 1800 MeV for the reaction



7~ p — nn. The dummy channels in our fit of the Fi7
amplitudes were KX, wN, and pA.

G17 and Gy

The G17(2190) and G19(2250) resonances were used
in the higher amplitudes and are seen primarily in
mN — wN. Both resonances had negligible helicity cou-
pling and are not seen in any photoproduction reaction.
Groups generally agree on the resonance parameters for
(G17(2190) because it clearly appears in 7N — 7w N; how-
ever, the properties of G19(2250) show significant dis-
agreement between groups. The only agreement is that
its mass is most likely above 2200 MeV. An wN dummy
channel was used in our fit of the G17 amplitudes while
a pN dummy channel was used in our fit of the G19 am-
plitudes.

B. Results for Isospin-3/2 Amplitudes

The following section discusses results for the isospin-
3/2 amplitudes. Table V lists the Breit-Wigner masses
(M) and total widths (I'(M)) for each isospin-3/2 reso-
nance with uncertainties on the last reported significant
figure shown in parentheses. The tables also list pole
positions that were calculated numerically with the pro-
cedure discussed in Ref. [18] using the actual energy de-
pendence of the Breit-Wigner widths, which is discussed
in Appendix A. Table VI shows helicity-3/2 couplings
for each resonance. Table IX of Appendix B shows the
partial widths (T';), branching fractions (B;), and reso-
nant amplitudes (\/zz;) for each amplitude’s included
channels. For a given resonance, the partial widths and
quantities directly derived from them (e.g., total widths
and branching fractions) in Appendix B were all calcu-
lated from energy-dependent partial widths evaluated at
the Breit-Wigner mass of the resonance.

Ss1

For this partial wave, two resonances were used. Our
results for the S31(1620) are in good agreement with
those of other groups despite the large repulsive back-
ground that appears at low energies in the 1N — 7N
amplitude, which could potentially distort its properties.
The S51(1900) was listed as a 2-star resonance in the
2016 edition of the RPP [22], but it was promoted to a
3-star resonance in the 2018 edition [23]. The S31(1900)
mass and width found in this work are significantly larger
than values found by other groups. The helicity couplings
found in this work for both resonances now agree with
other recent results except Shrestha et al. [12]. One sur-
prise in the results from this work is the strength of the
S31(1900) helicity-1/2 coupling. While the size of the
coupling is large, there is no significant indication in the

single-energy solution for pion photoproduction that it
should be significantly smaller and an overall coupling
was important to fit the differential cross-section data in
the reaction YN — 7N, which other groups are unable
to fit [16]. No dummy channels were needed to fit the
S31 amplitudes.

Ps;

P51 needed two resonances, the P3;(1910) and a new
high-mass state. This partial wave shows significant re-
pulsive background in the 7N — 7N amplitude. The
mass of the P3;(1910) resonance was lower than that
found by other recent analyses but in agreement with re-
sults by older analyses. One concern with this amplitude
is the size of the helicity-1/2 coupling. The single-energy
solution suggests that perhaps the overall coupling is too
large, but the existence of a few points above the energy-
dependent fit that also have smaller error bars makes
it difficult to obtain any definitive conclusion. The 7N
coupling to the resonance is in very good agreement with
results by other groups [22], which implies that there is
no obvious reason to increase its value while decreasing
the helicity coupling. A new resonance, Ps;(2250), was
used to fit the 7N — 7N amplitude at energies above
2000 MeV and was also used to fit the real part of the
pion photoproduction amplitude. A pA dummy channel
was used for our fit of the P3; amplitudes.

P33

P33 needed three resonances, including the P33(1232)
and the P33(1600). Our results for the P33(1232) are in
good agreement with other groups, which is to be ex-
pected due to its dominance in the elastic and pion pho-
toproduction reactions. The Ps;(1600) was listed as a
3-star resonance in the 2016 edition of the RPP [22], but
it was promoted to a 4-star resonance in the 2018 edition
[23]. The P33(1600) was needed for the 7w N reactions
and various groups disagree about its properties. A few
groups such as BnGa and Hohler [24] find masses near
1510 MeV, while other works, including this one, find
a mass above 1600 MeV. The positive helicity couplings
found in this work agree with results by Shrestha [12] in
sign and magnitude, while other groups find negative val-
ues. A third resonance at 2250 MeV has parameter val-
ues that differ significantly between groups, which shows
that its properties are still poorly determined. Figure
22 in Appendix B for the 7V elastic channel shows that
the reaction saturates the unitary bound nearly up to
1500 MeV where 7w N channels become important. We
included pA and K3 as dummy channels for our fit of
the P33 amplitudes.



Mass Width Pole Pole

Mass Width Pole Pole

(MeV)  (MeV)  (Re)  (20m) ‘rmalysis (MeV)  (MeV)  (MeV) (Mey) “rmalysis
S1 (1620) %k 1 (1900) %
1589(3) 107(7) 1577 101 This Work 1989(22) 457(60) 1957 447 This Work
1600 65 Ronchen 15B — — - - Roénchen 15B
1615 147 Workman 12 - - - - Workman 12
1600(8) 130(11) 1597(4) 130(9) Anisovich 12 1840(30) 300(45) 1845(25) 300(45) Anisovich 12
Py (1910) %55 P51(2250) new
1846(18)  260(57) 1801 224 This Work 2250(30) 320(120) 2250 320 This Work
1799 648 Ronchen 15B - - - - Ronchen 15B
- - — - Workman 12 - - - - Workman 12
1860(40)  350(55) 1850(40) 350(45) Anisovich 12 — — — - Anisovich 12
Pys(1232)%% %% Py3(1600)%% %%
1230.8(4) 110.9(8) 1212.4 96.8 This Work 1664(16) 322(46) 1619 295 This Work
- - 1218 92 Ronchen 15B - - 1552 350 Ronchen 15B
1233 119 - - Workman 12 - - - - Workman 12
1228(2) 110(3) 1210.5(10)  99(2)  Anisovich 12 1510(20) 220(45) 1498(25) 230(50) Anisovich 12
Py3(1920) %% D33 (1700)%%%*
1976.0(49) 509(170) 1910 472 This Work 1720(5) 226(14) 1693 213 This Work
- - 1715 882 Ronchen 15B — - 1677 305 Ronchen 15B
- - - - Workman 12 1695 376 - - Workman 12
1900(30)  310(60)  1890(30) 300(60) Anisovich 12 1715t§’§ 310#;2 1680(10) 305(15) Anisovich 12
D33(1940)%* D35(1930)%**
2137(13)  400(43) 2139 400 This Work 1988(32) 500(160) 1863 260 This Work
- - - - Ronchen 15B - - 1836 724 Ronchen 15B
- - - - Workman 12 - - - - Workman 12
1995%40°  450(100)  1990710°  450(90) Anisovich 12 - - - ~  Anisovich 12
Fys(1905) %% Fyr(1950) %%
1866(9) 289(20) 1819 253 This Work 1913(4) 241(10) 1871 206 This Work
- — 1795 247 Ronchen 15B — — — - Ronchen 15B
1858 321 - - Workman 12 - - - - Workman 12
1861(6) 335(18)  1805(10) 300(15) Anisovich 12 1915(6) 246(10) 1890(4)  243(8) Anisovich 12

TABLE V. Comparison of resonance masses, widths, and pole positions for isospin-3/2 amplitudes. The widths listed are the
energy-dependent Breit-Wigner total widths evaluated at the resonance masses. Uncertainties in the pole positions should be

similar to those in the corresponding Breit-Wigner parameters.

D33

D33 needed two resonances. The D33(1700) is well
known and our values for its mass and width agree well
with prior analyses. In addition, our value for its helicity-
1/2 coupling is in agreement with more recent results.
This work found a second D33 resonance at 2137 MeV.
Its parameters in general differ from those of other works,
and some groups, including SAID [11], do not include a
second resonance in their fits, despite this work having
found significant evidence for its existence in YN — 7wIN.
Interestingly, the helicity-1/2 coupling found in this work

agrees with the work by Sokhoyan [27], but the helicity-
3/2 coupling differs in sign. No dummy channels were
needed for our fit of the D33 amplitudes.

D35

This partial wave needed only the D35(1930) reso-
nance. Its mass is similar to that found by other works
except Arndt [10], while its width varies significantly
among the different analyses. The helicity couplings also
show differing signs and strengths among the different



analyses. This work found a significant negative helicity-
1/2 coupling to the resonance, while other groups have
found a small coupling. A pA dummy channel was used
for our fit of the D35 amplitudes.

F35

This partial wave needed the F35(1905) resonance and
a higher-mass state. The mass, width, and helicity cou-
plings of F35(1905) are in good agreement among the
different analyses, in part, because there is a clear indi-
cation for its existence in #N — wN. A second Fj35 state
was needed at 2340 MeV to fit the high-energy behav-
ior of the 7N — wN amplitude and the suggestion of a
structure appearing in pion photoproduction. No dummy
channels were needed in our fit of the F35 amplitudes.

F37

F37 needed two resonances, the F57(1950) and
F37(2390). The F37(1950) has mass, width, and helicity
couplings that are in good agreement among the different
analyses and clearly appears in the 1N — 7N amplitude.
The second resonance is located at 2390 MeV and was
used to constrain the amplitudes at high energies, but
there currently is only weak evidence for its existence.
This state is listed as a 1-star resonance in the 2018 edi-
tion of the RPP [23]. We included pA and K'Y as dummy
channels in our fit of the F3; amplitudes.

10
G37 and G3g

Our fits of the G37 and G39 amplitudes included only a
single resonance with masses of 2330 MeV and 2300 MeV,
respectively. Due to their high masses, their individual
parameters are poorly determined and are not quoted.

V. SUMMARY AND CONCLUSIONS

An updated multichannel, partial-wave analysis was
performed by including newly determined single-energy
amplitudes for the reactions vp — np, yp — KA, and
vyn — mn in our energy-dependent fits of the various par-
tial waves. The proton helicity coupling to the S11(1535)
is now in agreement with results from other works. Also,
a new Fj7; resonance near 2200 MeV was needed to fit
the TN — 7N, YN — 7N, and vp — KA reactions.
This is consistent with quark-model predictions from [5]
that an Fj7 resonance couples to KA. Additional data
at energies above 2200 MeV are needed to both confirm
its existence and determine its properties. In addition
to our updated determination of resonance parameters,
our fits yield a new energy-dependent solution for all
the various partial-wave and multipole amplitudes. This
energy-dependent solution provides an excellent descrip-
tion [13, 14] of the observables data used to determine
the final single-energy amplitudes.
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Appendix A: KSU Model

As noted in Sec. II, the KSU model parametrizes the
partial-wave S-matrix by

S = BTRB, (A1)
where R represents the resonant part of the S-matrix
and B represents background contributions. The matrix
R is a phenomenological representation of scattering con-
tributions from s-channel exchange processes while B is
a phenomenological representation of contributions from
t- and u-channel exchange processes. The matrix R is
constructed by writing

R =1+2iTg = (I+iK)(I—iK)™*, (A2)
where K is a symmetric Hermitian K-matrix, K = K.
It follows that the resonant T-matrix is

Tr = K+iTgrK, (A3)
so that the matrix elements are related by
Tri; = Kij +1 Z TriKig, (A4)

k=1

where n is the number of reaction channels.
It is convenient to introduce functions T, defined as

tan O,

T, =sin©,e®% = —— ¢
o o 1—itan©,

(A5)

where we write

tan©, = Ta (A6)

M, —-W’

where W is the total c.m. energy and M, and ~,, are func-
tions of W. In the KSU model, we use the parametriza-
tion

N
K;; = Z tan ©,7' 77, (A7)
a=1

where IV is the number of resonances in the energy range
of the fit. The energy dependence of ©, is determined
in a nontrivial way to facilitate the determination of pole
positions in the corresponding R matrix. Each resonance
corresponds to a simple pole in R and, therefore, also
in the full S-matrix. The factors x§* are constructed to
satisfy the condition

D (@) =1 (A8)
i=1
We also define
€af = €8a = fo‘xf (A9)
i=1
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If we drop the resonance superscript («), we identify x; =
€in/Ti/Tiota, where T'; is the energy-dependent partial
width for the resonance to decay into the i-th channel,
Tiotal = Z?:l I'; is the energy-dependent total width,
and €; = +£1 is the sign of the coupling of the resonance to
the i-th channel. By using these properties, it is possible
to determine an explicit expression for Tr;; in terms of
the functions tan ©, and the x§.

1. One-Resonance Case

For the simple case of a single resonance, the matrix
Tgr has elements

71
Try = Dialal = — b 41y1

A10
1] Ml*W*l’yl 1] ( )

where here, M; is identified as the Breit-Wigner mass
parameter and y; = I'1 /2, where I'y is the Breit-Wigner
energy-dependent total width of the resonance.

2. Two-Resonance Case

For the case of two resonances, the matrix Tgr has
elements

TRij = 'DQ_I[Tll’ll(t; + TQZL’ZQLE? -+ i€12T1T2(Xi1Xj2 + X?le)],

(A11)
where Dy = 1 + €3,11T>. The poles of Tr occur at
complex energies where Dy = 0. When this equation is
written in terms of the set of functions (M;,Ma;y1,72), &
quadratic equation in W results. This equation may be
rewritten in factorized form as (W — Wo)(W — W;) = 0,
where W, = M, — iy, and W, = M, — iy, with the
Breit-Wigner parameters being the set (Mg, My;I',,I),
where v, = T,/2 and v, = T3/2. The relation-
ship between the energy-dependent K-matrix parameters
(M1,Ma3;71,72) and the Breit-Wigner Tr-matrix param-
eters (Mg, My;7ya,7) is given by the following set of cou-
pled equations:

My + My = M, + My,
Y1+ Y2 = Ya + W,
Miyva + May1 = Moy + MpYa,
MMy — (1= €5)m72 = MaMy — Ya7.

(A12)



When e?j = e?L < 1 (i # j), it is possible to reach the
approximate analytic solution:

My ~ M, + talal (M, — M,)
C My = Mp)?+ (Yo — )2 ’
2
€217bVa
My ~ M, M, — M,),
2= M G T (e M)
2
€127ab
Y1 = Ya — Ya = Vb),
7 A 7 R A AL
2
— €2176Va _
T M, ML G )
(A13)

3. Arbitrary Number of Resonances

A detailed discussion of the cases for three and
four resonances can be found in Ref. [28]. For an
arbitrary number N of resonances, the relationship
between the energy-dependent K-matrix parameters

(My,Ms, -+ ;71,72, - - ) and the Breit-Wigner Tr-matrix
parameters (Mg, ,Ma,, ** VaysVas, -+ ) 18 approximately
given by
N 2
€Y, Va,
M; ~ M, + Yt M, — M,),
D Y v oy e E
al € Va: Y
iy lai la;
Yi = Ya; — Ya; — Va;
' ¢ ; ( a; — Maj)Q + (’Yai - Vaj)Q( ¢ a])7

(A14)

fori=1,---,N. We have determined that this approxi-
mation gives excellent agreement with a direct numerical
solution of the coupled nonlinear equations that relate
the K-matrix parameters and the Tgr-matrix parame-
ters.

4. Parametrization of Energy-Dependent Partial
Widths

In the KSU model, the energy-dependent Breit-Wigner
partial width for the r-th resonance to decay into the i-th
channel was parametrized as I';, (W) = A\.0;(W), where
Ar is a constant and §;(W) is a phase-space factor that is
defined below. If M, is the Breit-Wigner mass (a fitting
parameter) of the resonance and if §;(M,) # 0, then the
partial width of the r-th resonance to decay into the i-th
channel can be rewritten as

6:(W)

Fzr(W) = F’LT‘(MT) mv

(A15)
where T';.(M,) is the partial width for the decay of
the r-th resonance into the i-th channel, evaluated at
W = M,. The actual fitting parameters are the Breit-
Wigner masses M, and the signed couplings /T (M),
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where signs were determined relative to the 7N channel.
Our fitted values of the Breit-Wigner masses M,. and the
partial widths I';.(M,.) are tabulated in Appendix B.

For the two-body decay of a resonance into an i-th
channel with two “stable” particles (e.g., YN, 7N, nN,
or KA), the phase-space factor is parametrized as

_ 4
w

where ¢; is the linear momentum of the two parti-
cles in their center-of-momentum frame, By, is a Blatt-
Weisskopf barrier penetration factor [29], and ¢; is the or-
bital angular momentum of the two particles. The range
parameter R was fixed at 1 fm. If the masses of the two
particles in the i-th channel are m and M, then the c.m.
energy is

6:(W) B (a:R), (A16)

W:\/q§+m2+\/q$+M2, (A17)

which gives
W2 — (m — M)2ZITW2 — M2
o VI WP G
2W
The first few Blatt-Weisskopf factors are given by [29]

Bg(x) =1,
2
2 - X
Bl (l‘) - 1+ 72’
4
2 - X
Ba(w) = 9+ 322 + zt’ (A19)
2 0
B =
3(Y) = S T ime? 1 6 1
2 ¥
B2(z) = .
1(%) = 11095 T 157502 1 13501 1+ 1028 1 28
As ¢; —» 0, By, ~ (qiR)l and §;(W) ~ qf“‘l. As ¢q; —

00, By, approaches unity and 6;(W) becomes constant.
These properties ensure that the energy-dependent par-
tial widths have the proper analytic threshold behavior
and also remain finite at large energies.

Resonances do not always decay into channels with
two stable particles. Sometimes they decay instead into
a stable particle and an isobar, or into two isobars. For a
quasi-two-body decay of a resonance into an i-th channel
consisting of a stable particle of mass m and an isobar
(e.g., TA or pN) of mass M, the phase-space factor d;(W)
is calculated by averaging the ordinary two-body phase-
space factor over the mass of the isobar, which is assumed
to decay into stable particles with masses m; and mso,

W—m )
W)= [ o) B (R

(A20)
mi+mo w

Note that ¢; is now a function of M. For simplicity, the
distribution function o(M) is parametrized by a Breit-
Wigner lineshape,

o1 = | r/2

BTSN e A G



where here My and I' are the nominal mass and width
of the isobar. In establishing the integration limits, we
consider the expression for the mass of the isobar M as
a function of the masses of its decay products, m; and
ma, and their relative c.m. momentum ¢5:

M:\/Q%2+m%+\/‘ﬁ2+m%- (A22)
To get the lower limit, observe that the minimum value of
M coincides with the value q12 = 0. This yields the lower
integration limit of My, = mi + ms. The maximum
value of M must coincide with the maximum value of
g12. Now (gq12)max occurs when ¢; = 0 in Eq. (A17),
giving the upper integration limit My,.x = W — m. The
integration was carried out numerically using Simpson’s
rule.

For a quasi-two-body decay of a resonance into an i-th
channel consisting of two isobars (e.g., pA), 6;(W) is cal-
culated by averaging the ordinary two-body phase-space
factor over the masses M; and My of each of the isobars
assumed to decay into stable particles with masses mq,
mo and mg, my, respectively. This leads to the double
integral,

W7m37m4 W*Ml q
§;(W) = / / o(My)o(Ms) <= B7 (qiR)dMadM; .

mi+ma m3+my w
(A23)
Here, ¢, is a function of M; and M,. Again, such integrals

were calculated numerically using Simpson’s rule.

5. Background Parametrization

Background contributions may either arise from at-
tractive or repulsive interactions. In the KSU model,
the background matrix B is constructed as the prod-
uct of a small number of symmetric, unitary matrices:
B = B;B; --By,. Each matrix B; may be used to
construct a contribution to the background S-matrix by
writing

S; = (B;)? =1+ 2iTy, (A24)
where T; is the i-th background T-matrix. Elements of
T; are parametrized as

3V TiTk

(Ti)jx = M LW —iT)2 =z sinae’®,  (A25)
where
A= at= (A26)
and here « is defined such that
tan o = i%. (A27)
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The “partial widths” I'; and Iy are parametrized
with the same energy dependence as the resonant par-
tial widths discussed in the preceding subsection and
I = Zj I'; is the corresponding energy-dependent to-
tal width. The positive (negative) sign in Eq. (A27)
ensures attractive (repulsive) background, where attrac-
tive (repulsive) background is characterized by counter-
clockwise (clockwise) motion of T; on an Argand dia-
gram. Values of the background “mass” terms, M in
Eq. (A27) were typically kept large (M > 10* MeV),
which corresponds to a “distant poles” approximation for
the background. If we define XX as the matrix having
elements XX, = x;xy, then we can write

T; = XX sin ae'®, (A28)

so that the corresponding background S-matrix is

S;i = I+ 2iXX sinae® = I+ XX (e — 1) = eZloXX,

(A29)
The unitarity of S; is ensured by the properties of the
basis matrix XX. Note that (XX)? = XX. It follow
that the original background matrix contribution B; can
be written as

B; = XX — T4 XX(el* - 1). (A30)

Appendix B: Resonance Parameters and Argand
Diagrams

Tables VII, VIII, and IX of Appendix B list the par-
tial widths (I';), branching fractions (B;), and resonant
amplitudes (\/zz;) for the isospin-1/2 and isospin-3/2
amplitudes. Figures 1 - 27 show Argand diagrams of the
dimensionless energy-dependent amplitudes (solid black
curves) fitted to the final single-energy results (data
points). Small filled black circles mark the c.m. ener-
gies in which resonances were found. The diagrams show
the real and imaginary parts of the amplitudes as well
as a polar plot of the amplitude from threshold up to
2100 MeV or 2300 MeV. The bottom right corner shows
the reaction, the name of the amplitude, and for the pho-
toproduction amplitudes whether it is an electric (E) or
magnetic (M) multiple. Note that for I = 1/2 ampli-
tudes, S11(F) = Eoy, Pu(M) = My_, Pi3s(E) = Eq4,
Pi3(M) = My, Di3(E) = Ea, Di3(M) = M,
Di5(E) = Eay, Dis(M) = My, Fis(E) = Es,
Fi5(M) = Ms_, G17(E) = E3y, G17(M) = M3y, and
similarly for I = 3/2 amplitudes. For small amplitudes,
the amplitude is shown after scaling. The scaling factor
is shown after the amplitude name. Dummy channels
for reactions without data or single-energy fits were in-
cluded to satisfy S-matrix unitarity. Numerical data for
the dimensionless single-energy vp — np, yn — nn, and
vp — K+ A amplitudes, and for the updated 7~p — nn
and 7~ p — KC°A amplitudes are available in the supple-
mental data file [30].
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Channel

Channel

Fi (MBV) Bz XX Fz (MeV) Bl XX
S11(1535)*H** S11(1650)%%**
N 62(3) 42(2) +0.42(2) N 86(6) 64(4) 10.64(4)
nN 63(5) 43(3) 40.43(1) nN 1.0(8) 0.8(6) +0.07(3)
KA KA 5(3) 3.5(2) —0.15(4)
(7A)p < 1.7 <11 —0.043(35) (7A)p <0.3 <0.2 —0.01(8)
(psN)p <0.5 <03 +.025(15) (psN)p 20(5) 15(3) +0.31(3)
1N 20(3) 14(2) —0.24(2) 1N <5 1.8(1.7) +0.11(5)
eN <15 <1 —0.04(4) eN 16(5) 12(4) +0.28(4)
TN* <0.01 < 0.01 +0.003(2) TN* 3(2) 2(1) +0.12(3)
S11(1895)**** Py (1440)%*%*
N 39(18) 8(4) 10.08(4) N 153(10) 59(2) +0.59(2)
nN 174(52) 37(9) —0.18(5) nN
KA 31(21) 7(4) 40.07(2) KA
(mA)p < 49 <10 +0.05(5) (7A)p 56(9) 22(4) +0.36(3)
(psN)p 105(45) 23(9) +0.14(4) piN < 0.003 0.00(0) —0.00(2)
p1N < 85 <18 +0.08(5) eN 41(9) 16(3) +0.31(3)
eN < 59 <13 —0.08(4)
TN* 34(24) 7(5) —0.08(4)
Pyy (1710) %5 Py (1880)%**
TN 23(13) 12(6) +0.12(6) TN 125(42) 25(6) +0.25(6)
nN 33(19) 17(8) —0.14(4) nN 11(6) 2(1) —0.07(2)
KA 3.5(3) 1.8(1.5) +0.05(2) KA 11(5) 2(1) —0.075(20)
(mA)p 55(21) 28(9) +0.19(4) (mA)p 57(31) 11(6) —0.17(5)
1N 34(17) 17(9) —0.14(5) 1N 160(62) 32(13) +0.29(4)
eN <33 <16 —0.10(5) eN < 45 <9 —0.09(7)
Pyy (2100)*** Py3(1720)%***
TN 117(58) 21(11) +0.21(11) TN 41(4) 18(2) +0.178(16)
nN <25 <4.7 —0.06(5) nN 8.7(1.6) 3.8(5) +0.082(7)
KA < 5.4 <1.0 40.024(3) KA 37(7) 16(3) —0.17(1)
(mA)p < 40 <175 —0.06(11)
p1N 284(140) 52(19) —0.33(8)
eN <190 <35 —0.17(12)
Py3(1900) %% Py5(2040)*
TN 5.7(2.9) 1.9(1) +0.019(10) TN 89(25) 16.7(1) +0.17(4)
nN 3.8(1.4) 1.3(5) —0.016(3) nN 73(27) 14 —0.15(4)
KA 40(8) 13.7(3)  —0.052(16) KA <0.7 < .04 +0.004(29)
1N 94(20) 32(7) +0.079(19) ;N 52(40) 10(1) +0.127(4)

TABLE VII. Below each resonance name are listed coupling partial widths (I';), branching fractions (5;), and resonant ampli-
tudes (y/xx;) for the channels listed in columns one and five. For a given resonance, the partial widths and quantities directly
derived from them (e.g., branching fractions and resonant amplitudes) were all calculated from energy-dependent partial widths
evaluated at the Breit-Wigner mass of the resonance. Star rating is that found in the Review of Particle Physics (RPP) [23].
Table contains couplings to Si1, P11, P13 resonances included in the fits.



16

Channel

Fi (MeV) Bz

Channel

XX I (MeV) B; XX
D13(1520)%*** D13(1700)***
TN 71(2) 58.3(1.5) +0.58(2) TN 3.0(1) 3.7(1) +0.037(10)
nN 0.041(8) 0.03(1) +0.014(2) nN 0.9(5) 1.1(6) +0.020(6)
KA KA 1.1(5) 1.3(7) —0.022(6)
(A)s 25(3) 21(2) —0.35(2) (mA)s 9(6) 11(8) +0.06(2)
(7A)p 7.2(1.2) 6(1) —0.19(1) (rA)p 10.4(6.5) 13(5) +0.07(2)
(p3N)s 17.1(1.9) 14.1(1.5) —0.29(2) (p3N)s 6(3) 7.5(3.6) —0.05(2)
eN <0.9 <0.7 —0.04(3) eN 50(10) 62(9) +0.15(2)
Dy3(1875)%** D13(2120)%%*
TN 24(5) 7.5(1) +0.075(14) TN 97(14) 19(2) +0.19(2)
nN 10.6(2.6) 3.3(8) +0.050(8) nN 16(12) 3.1(2.4) —0.08(3)
KA 3.6(1.4) 1.1(4) +0.029(5) KA 43(14) 8.5(2.5) —0.13(2)
(rA)s <6 <2 +0.017(34) (tA)s 125(59) 25(11) —0.22(4)
(7A)p 54(21) 17(6) —0.11(2) (rA)p 171(62) 34(11) +0.26(5)
(psN)s 147(36) 46(10) +0.19(2) (psN)s <16 <3 40.044(48)
eN 78(27) 24.3(8.6) —0.135(30) eN 46(26) 9(5) —0.13(4)
D15(1675) %% D15(2060)%**
TN 53(3) 33(1) +0.33(1) TN 26(6) 5.3(1.4) +0.05(1)
nN 3.3(5) 2.0(3) —0.082(7) TN 26(6) 5.3(1.4) +0.05(1)
KA < 0.06 < 0.04 —0.007(5) KA 76(29) 15(5) +0.09(1)
(rA)p 94(6) 58.3(2) +0.437(5) (rA)p 74(30) 15(6) +0.09(2)
N <0.3 < 0.2 —0.017(11) N 21(31) <10 40.047(36)
(psN)p 0.6(4) 0.4(3) —0.036(13) (psN)p 70(43) 14(9) —0.09(3)
Fi5(1680)%*** F15(1860)**
TN 84(2) 68.0(1) +0.680(9) TN 30(5) 8.0(1) +0.08(1)
nN 0.11(3) 0.09(2) +0.025(3) nN 0.4(3) 0.11(9) +0.009(4)
KA 0.00(0) 0.00(0) —0.0008(12) KA <0.03 0.00(1) —0.0015(15)
(tA)p 16(2) 13(1) —0.300(15) (rA)p 39(24) 10(6) +0.09(3)
(TA)Fp <04 <0.3 —0.03(2) (rA) 102(50) 27(11) +0.15(3)
(psN)p 9.1(1.5) 7(1) —0.22(2) (p3N)p < 32 <85 +0.05(4)
(psN)r 3.0(5) 2.4(4) —0.128(10) (psN)F <04 <0.1 +0.00(3)
eN 11(2) 8.7(1.5) +0.24(2) eN 192(41) 51(10) 40.20(2)
F17(1990)** F17(2200) new
TN 9.4(3) 1.9(4) +0.019(4) TN 45(6) 8.6(8) +0.086(7)
nN 8.3(4.5) 1.7(9) —0.018(5) nN 22(11) 4.2(2.3) +0.06(2)
KA 29(8) 6.0(1) —0.034(5) KA 36(9) 7.0(1) —0.078(6)
G17(2190)**** G19(2250)****
TN 101(10) 22.9(6) +0.229(6) TN 29(4) 8.5(4) +0.085(4)
nN 12(9) 2.7(2.2) +0.08(3) nN <17 0.07(5.0) —0.01(27)
KA 2.5(5) 0.6(1) —0.036(4) KA 7(2) 2.0(6) +0.042(6)
(p3sN)p <49 <11 —0.11(6)

TABLE VIII. Below each resonance name are listed partial widths (I';), branching fractions (B;), and resonant amplitudes
(v/xxi) for the channels listed in columns one and five. For a given resonance, the partial widths and quantities directly
derived from them (e.g., branching fractions and resonant amplitudes) were all calculated from energy-dependent partial widths
evaluated at the Breit-Wigner mass of the resonance. Star rating is that found in the Review of Particle Physics (RPP) [22].
Table contains couplings to D13, Dis, Fis, Fi7, Gi7, and G19 resonances included in the fits.
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Channel

Channel

I (MeV) B XX
Sy1(1620) % ¥ S51(1900) %%

TN 26(2) 24(2) TN 17(4) 3.7(8) +0.037(8)
(mA)p 52(6) 48(4) (mA)p 192(41) 42(8) +0.12(2)
(psN)p < 0.05 < 0.04 (p3N)p 83(38) 18(7) —0.08(2)

N 29(4) 27(4) N 104(54) 23(12) +0.09(2)

mN* < 0.02 < 0.02 TN* 56(41) 12(9) +0.067(25)

P31(19]_0)**** P31 (2250) new
TN 34(14) 13(3) TN 45(15) 14(4) +0.14(4)
TN* 87(36) 33(12) TN* 150(58) 47(13) —0.26(6)
Py3(1232)% 5% Ps3(1600)%%**

©N 110.2(8) 99.39(1) ©N 34(8) 10.7(1.9) +0.107(19)

(rA)p 0.0(0) 0.0(0) (mA)p 206(28) 64(6) +0.26(2)
TN* 0.0(0) 0.0(0) TN* 70(18) 22(5) +0.15(2)
Py3(1920)%%% Da3(1700)%%%*
mN 53(25) 10.5(3.0) TN 34(4) 15(2) +0.15(2)
(rA)p <8 < 1.6 (rA)s 112(13) 49(5) +0.27(2)
TN* 392(94) 77(9) (rA)p 17(7) 7.6(3) —0.11(2)
(psN)s 62(14) 27(5) +0.20(2)
D33(1940)** D35(1930)%**

N 62(14) 16(4) TN 47(13) 9.5(1) +0.095(10)
(rA)s < 3.6 < 0.9
(rA)p <25 <6.3
(psN)s 321(47) 80(5)

Fy5(1905)%*%% Fi7(1950)% %%

mN 50(5) 17(1) TN 92(6) 38(2) +0.383(15)
(rA)p 24(15) 8.4(5)

(TA)p 140(27) 49(9)
(psN)p 74(27) 26(9)

TABLE IX. Below each resonance name are listed partial widths (I';), branching fractions (B;), and resonant amplitudes (y/xx;)
for the channels listed in columns one and five. For a given resonance, the partial widths and quantities directly derived from
them (e.g., branching fractions and resonant amplitudes) were all calculated from energy-dependent partial widths evaluated
at the Breit-Wigner mass of the resonance. Star rating is that found in the Review of Particle Physics (RPP) [22]. Table
contains couplings to S31, P31, P33, D33, Dss, F35, F37 resonances included in the fits.
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FIG. 20. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 21. Argand diagrams for the I = 1/2 amplitudes.
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FIG. 22. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 23. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 24. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 25. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 26. Argand diagrams for the I = 3/2 amplitudes.
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FIG. 27. Argand diagrams for the I = 3/2 amplitudes.



