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Within the framework of FREYA event-by-event fission simulations, we study the sensitivity of
various neutron observables to the input yield function Y (A,Z,TKE) on which the fission event
sampling is based. We first perform a statistical analysis of the available fission data in order to
determine the distribution of possible yield functions Y (A,Z,TKE) and we then construct a sam-
ple of 15 000 such yield functions. For each of these, FREYA is used to generate one million fission
events, leading to a corresponding ensemble of fission observables, including the neutron multiplic-
ity distribution and its factorial moments, the neutron energy spectrum, and the neutron-neutron
angular correlation. This procedure allows us to study the sensitivity of those neutron observables
to the uncertainty in the experimental data. Particular attention is given to the pronounced an-
ticorrelation between the mean neutron multiplicity ν and the mean total fragment kinetic energy
TKE. Because the former observable is very well determined experimentally, it is possible to exploit
that inherent anticorrelation to derive a significantly stricter tolerance on TKE. In addition, we
study the sensitivity to the various FREYA parameters and we introduce a method for determining a
A-dependent x parameter, x(A), based on the measured A-dependent neutron multiplicity, ν(A).

I. INTRODUCTION

Nuclear fission is a rich field of physics. A typical bi-
nary fission event produces two excited fragment nuclei
that promptly de-excite by the emission of neutrons and
photons. The resulting product nuclei and the neutron
and photon ejectiles may be detected individually or in
coincidence, thus presenting a wide range of possible fis-
sion observables.

The ensuing need for addressing arbitrary types of cor-
related fission data has led to the development of Monte-
Carlo simulation models that generate complete fission
events [1–7]. These models typically require as input the
primary fission fragment yields as a function of their mass
and charge numbers as well as their total kinetic energy,
denoted as Y (A,Z,TKE). The specification of the yield
function enables the code to select, event by event, the
identity of the two primary fragments, their linear and
angular momenta, and their excitation energies; the sub-
sequent de-excitation processes can then be simulated.
The resulting prompt neutron and photon observables
are thus sensitive to the specific yield function employed.

A number of fission applications, from energy produc-
tion to nonproliferation, depend strongly on the average
neutron multiplicity, ν, as well as on the associated en-
ergy spectrum. For the cases most important to those
applications, the value of ν is tightly constrained, in fact
more so than any other fission-related observable. In-
deed, although the corresponding fission fragment yields
have been measured by many groups and are in relatively
good mutual agreement for 252Cf(sf), their differences are
significant enough to render them less tightly constrained
than ν.

We investigate here the sensitivity of ν and other neu-
tron observables to the input yield function, focussing on
252Cf(sf), one of the best measured fission cases. By use
of a generalized least-squares fit to the available fission
yield data, we construct a distribution of yield functions
consistent with the reported experimental uncertainties
and we then study how the neutron observables are af-
fected by the use of a variery of yield functions sampled
from that distribution.
We particularly seek to quantify the degree to which

the measured yields can constrain ν. This is an espe-
cially interesting time to undertake such an investigation
because the nuclear fission community is in the process of
making a new assessment of the fission fragment yields,
making use of a very similar model to calculate the de-
excitation of the fission fragments [8]. It is important
to understand whether the resulting consensus will be of
high enough fidelity to provide bounds on ν that meet
the required accuracy. However, while the primary focus
is thus on the constraints on ν placed by the measured
fission fragment yields, we will also study how the uncer-
tainty in the input yield function affects other neutron
observables of interest.
It should be noted that because we consider sponta-

neous fission, there will be no pre-equilibrium neutron
emission, nor any other emission prior to scission. Fur-
thermore, at this point, FREYA does not consider the pos-
sibility of scission neutrons, so that all neutrons in an
event have been evaporated from the fully accelerated
fragments.
While we employ one particular model in our investiga-

tion, namely FREYA [2], we expect our conclusions to have
general validity as to whether experimentally determined
yields can place sufficiently strong constraints on ν. Be-
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cause the fission model depends on certain adjustable
input parameters, we will also discuss the sensitivity of
our results to those parameters.
We first, in Sect. II, discuss how a χ2 analysis of the

combined experimental data on fragment mass, charge,
and kinetic energy, including the associated reported un-
certainties, can provide a probability distribution of pos-
sible yield functions, P(Y (A,Z,TKE)).
In Sect. III we describe how the standard FREYA code

has been modified so it can accept an ensemble of sam-
pled yield functions as input. In Sect. IV we then study
how sensitive the calculated neutron observables are to
the uncertainty in the input information reflected in the
ensemble of yield functions. We particularly consider the
neutron multiplicity distribution Pn(ν), the energy spec-
trum χn(E) of the evaporated neutrons, and the neutron-
neutron angular correlation Cnn(θ12). A preliminary ac-
count of this study was reported previously [10].
Section V focusses on the strong correlation between

the mean neutron multiplicity ν and the mean total frag-
ment kinetic energy TKE [10, 11]. Because ν is so well
determined experimentally, this inherent correlation can
be exploited to reduce the uncertainty in TKE. (We ob-
tain a reduction by nearly a factor of six.) We also dis-
cuss the sensitivity of the calculated neutron observables
to the FREYA model parameters (Sect. VI). Particular
attention is given to the parameter x governing the di-
vision of the available excitation energy between the two
fragments and we introduce a method for determining a
mass-dependent x parameter, x(A), based on the mea-
sured mass-dependent mean neutron multiplicity, ν(A).
The study is then summarized and concluded (Sect.

VII). Several technical derivations are relegated to the
appendices to facilitate the flow of the main presentation.

II. THE ENSEMBLE OF YIELD FUNCTIONS

We have performed a least-square statistical analysis
of available experimental data on TKE(A) and Y (A) for
primary fission fragments. The data sets considered are
listed in Table I. Unfortunately, most experimental data
sets were reported with only very limited information on
the associated uncertainties. Furthermore, no covariance
information was ever provided. The present work is fo-
cussed on the influence of the uncertainties of the input
yields on the results of event-by-event simulations. For
this limited purpose, we may make somewhat simplified
assumptions regarding the correlations and the uncer-
tainties. A true evaluation would require a more thor-
ough analysis, but the main conclusions of this study are
unlikely to change with a more careful experimental data
analysis.
The simulation of the de-excitation of the fission frag-

ments by sequential emission of neutrons and photons
requires the knowledge of the primary fission-fragment
yields with respect to mass, charge, and total kinetic en-
ergy, Y (A,Z,TKE). No experimental data set provides

such a complete three-dimensional yield function. There-
fore, we must rely on partial information to construct
the full yield function. In the present case, we first con-
struct the two-dimensional distribution Y (A,TKE) as-
suming that TKE has a Gaussian distribution for each A
value,

Y (TKE|A) ∝ exp

[

−TKE− TKE(A)

2σ2
TKE(A)

]

, (1)

where TKE ranges from zero up the maximum Q value
for the specified mass division; the normalization is
∫

Y (TKE|A) dTKE = Y (A). The functions Y (A),

TKE(AH), and σTKE(AH) are obtained from a least-
square fit to experimental data, as explained below. The
charge distribution for a given fragment mass number,
Y (Z|A) (with

∫

Y (Z|A) dZ = 1), is taken from Wahl’s
systematics [12], which includes odd-even factors. The
full yield function is then given by

Y (A,Z,TKE) = Y (TKE|A)Y (Z|A) . (2)

First Author Year EXFOR # Ref.

Y (A):

Budtz-Jørgensen 1988 23175-002 [13]

Hambsch 1997 22780-002 [14]

Kozulin 2008 41581-003 [15]

Romano 2010 14259-008 [16]

Zeynalov 2011 23118-002 [17]

Göök 2014 – [18]

TKE(AH):

Whetstone 1963 14101-003 [19]

Mehta 1973 23213-008 [20]

Budtz-Jørgensen 1988 23175-003 [13]

Hambsch 1997 22780-003 [14]

Kozulin 2008 41581-004 [15]

Göök 2014 – [18]

σTKE(AH):

Budtz-Jørgensen 1988 23175-003 [13]

Hambsch 1997 22780-003 [14]

Göök 2014 – [18]

TABLE I. The various experimental data used in this work,
ordered by the publication year for each of the three data
types: Y (A), TKE(A), and σTKE(A). The EXFOR entry
can be used to directly access the numerical data kept at the
National Nuclear Data Center [21].
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A. Fission fragment mass yields

The experimental data on fission fragment mass yields
used in this work are listed in Table I. The documenta-
tion available on those experimental data sets is rather
poor, and crude estimates and corrections were made. As
shown in Fig. 1, the experimental data are relatively con-
sistent, although the reported experimental uncertainties
had to be scaled up somewhat arbitrarily.
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FIG. 1 (color online). Our least-square fit (open circles with
error bars) to the measured mass distribution of the primary
fission fragments, Y (A). The experimental data shown are
from Budtz-Jørgensen et al. [13], Hambsch et al. [14], Kozulin
et al. [15], Romano et al. [16], Zeynalov et al. [17], and Göök
et al. [18].

The Göök data [18] are the most recent measurement
and possibly the most accurate. We have added a 0.5%
uncorrelated uncertainty for each data point, as well as a
5% fully-correlated uncertainty on the overall normaliza-
tion. Because most measurements cover a similar range
of fragment masses, this normalization uncertainty van-
ishes during the least-square fit procedure. The Zeynalov
data [17] were reported in the ND2010 conference pro-
ceedings and only statistical uncertainties of about 1%
were discussed. We have added a 5% uncertainty at each
energy point. The reported uncertainties on the Romano
data [16] are only statistical, we added a 2% uncorrelated
uncertainty. Similarly, we added a 3% uncorrelated un-
certainty to the Kozulin data [15], the Hambsch data [14],
and the Budtz-Jørgensen data [13]. While all of those
numbers are somewhat artificial, they are likely on the
conservative side and are not expected to influence the
main conclusion of this work.

B. Average total fragment kinetic energy

The average total fragment kinetic energy as a func-
tion of the heavy fragment mass number, TKE(AH), is
used in conjunction with the corresponding dispersion,

σTKE(AH), to construct the conditional probability dis-
tribution Y (TKE|A) as shown in Eq. (1). The experi-
mental data sets used for those two quantities are listed
in Table I.
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FIG. 2 (color online). Our least-square fit (open circles with
error bars) to the measured average total fragment kinetic en-
ergy as a function of the mass number of the heavy fragment,
TKE(AH). The experimental data shown are from Budtz-
Jørgensen et al. [13], Hambsch et al. [14], Kozulin et al. [15],
Göök et al. [18], Whetstone et al. [19], and Mehta et al. [20].

Most of those data come from the same set of exper-
iments already discussed above for the mass yields. We
have added a 1% fully-correlated (normalization) uncer-
tainty and a 0.5% additional statistical uncertainty to
all data sets. These are reasonable estimates based on
the rather small spread of the data reported across the
different experiments. (A 1% uncertainty on TKE cor-
responds to a 1.5 to 2 MeV absolute uncertainty.) Near
symmetry and for very asymmetric divisions, we included
additional uncertainties to account for the larger spread
of the data resulting from the small number of fragments
measured in those regions,

δyi = 0.002× yi exp ((132−Ai)/2) , Ai < 132 , (3)

δyi = 0.001× yi exp ((Ai − 160)/4) , Ai > 160 , (4)

where yi denotes TKE(Ai) here.
Experimental data on the standard deviation of TKE

as a function of the heavy fission fragment mass are
shown in Fig. 3. Significant differences exist between
those three data sets, originating from the same exper-
imental group at different times. The most recent set
by Göök et al. [18] is presumably the most accurate one,
given the reported accuracy in mass and energy r eso-
lutions obtained in that experiment. The oldest data
set [13] did not provide any uncertainties and the plotted
error bars are statistical only.
We have added a 4% normalization uncertainty and

an additional 1% statistical uncertainty for all data sets.
The “floating” normalization allowed the least-square
fit to find a reasonable solution. As for TKE(AH),



4

130 140 150 160 170 180

Heavy fission fragment mass number A
H

6

7

8

9

10

11

12

13

14
T

K
E

 d
is

p
e

rs
io

n
 (

M
e

V
) Budtz-Jørgensen

Hambsch

Göök

χ2
 fit

252
Cf(sf)

FIG. 3 (color online). Our least-square fit (open circles with
error bars) to the measured width of the TKE distribution
as a function of the mass number of the heavy fragment,
σTKE(AH) [13, 14, 18].

σTKE(AH) grows less reliable as we move toward sym-
metric or very asymmetric divisions and we have simi-
larly included additional uncertainties in those regions,

δyi = 0.002× yi exp ((140−Ai)/2) , Ai < 140 , (5)

δyi = 0.001× yi exp ((Ai − 165)/4) , Ai > 165 , (6)

where yi denotes σTKE(Ai) here.

C. Generalized least-square fit to the data

The result of the least-square fit to these experimen-
tal data is a best mean value as well as a covariance
matrix that contains uncertainties and correlations for a
range of fission fragment masses. In order to study the
influence of different input yields on the results of the
fission event simulations, we perform FREYA simulations
for ensembles of (1 000 – 15 000) yield functions sampled
from the distribution of yield functions determined as
described above. The sampling of the correlated yield
functios was performed by using the method described
in Appendix A.
As an illustration, Fig. 4 shows one particular (ran-

domly selected) yield function Y (A,Z,TKE) in the form
of a contour plot of its projection onto the A − TKE
plane.

III. EVENT SELECTION DETAILS

For the purpose of the present study, the fission event
generator FREYA [2] has been modified so it takes the
combined yield function Y (A,Z,TKE) as input.
The initial nucleus has mass number A0 and charge

number Z0. For each particular yield function,

FIG. 4 (color online). Contour plot of the A−TKE projection,
Y (A,TKE), of one particular yield function Y (A,Z,TKE)
that was sampled randomly from the distribution of yield
functions determined from our least-square analysis of the
experimental data, as described in the text.

Y (A,Z,TKE), the selection of the associated fission
events is made as follows.
We assume that the joint yield function is normalized,

∑

A

∑

Z

∫

dTKE Y (A,Z,TKE) = 1 . (7)

First the fragment mass A is selected from the probability
distribution,

PA(A) =
∑

Z

∫

dTKE Y (A,Z,TKE) , (8)

which is normalized to unity,
∑

A PA(A) = 1. Then the
fragment charge Z is selected from the following condi-
tional probability distribution,

PZ(Z;A) =

∫

dTKE Y (A,Z,TKE)/PA(A) , (9)

which is normalized to unity as well,
∑

Z PZ(Z;A) = 1.
Finally, the total kinetic energy TKE is selected from the
conditional probability distribution,

PTKE(TKE;A,Z) = Y (A,Z,TKE)/PZ(Z;A) , (10)

which is also normalized,
∫

dTKEPTKE(TKE;A,Z)=1.
After the selection of (A,Z,TKE) has been made, the

mass and charge numbers of the complementary frag-
ment are obtained as A′ = A0 − A and Z ′ = Z0 − Z,
respectively, and the total excitation energy is given by

E∗(A,Z,TKE) = Q(A,Z)− TKE , (11)

where Q(A,Z) = M(A0, Z0) − M(A,Z) − M(A′, Z ′) is
the Q-value for this particular division.
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The quantity E∗ plays a key role in determining the
resulting neutron multiplicity. Because the mean neu-
tron multiplicity is rather well measured experimentally,
ν0 ≡ νexp = 3.756 ± 0.4% [22], and many applications
require its calculated value to be fairly accurate, FREYA
performs an adjustable TKE shift, dTKE, to ensure that
the calculated ν is satisfactory. In the present study, we
use dTKE = 1.15 MeV which ensures that the overall
mean neutron multiplicity reproduces the experimental
value, ≺ ν ≻= ν0.
The dinuclear rotational modes can then be populated

by the usual FREYA procedure [23]. Finally, the remain-
ing excitation energy E∗

stat should be divided between the
two fragments. As in the standard FREYA, this is done in
two steps: First a tentative partitioning of E∗

stat is made
statistically, yielding E′

L and E′
H . Subsequently, the light

fragment is favored to a degree controlled by the FREYA

parameter x, E∗
L = xE′

L (implying E∗
H = E∗

stat − E∗
L).

However, the standard FREYA procedure samples E′
L and

E′
H . from the canonical (i. e., thermal) distribution in

each fragment separately and then restores energy con-
servation by adjusting TKE as needed. But that pro-
cedure is not possible in the present study because the
value of TKE is specified. The combined fragment exci-
tation must be equal to the total amount available, E∗

stat,
so the sampling of E′

L and E′
H is made microcanonically,

as described in Appendix B.

IV. NEUTRON OBSERVABLES

We consider an ensemble of N yield functions,
{Y (i)(A,Z,TKE)}, i = 1, . . . , N , sampled on the basis of
the experimental data as described above, and we wish
to extract the ensemble average of various neutron ob-
servables and the associated ensemble dispersions. As
we will explain below, we may generally wish to give an
individual weight to each particular yield function, Wi

(with
∑

i Wi = 1), rather than always using Wi = 1/N .
The use of several thousand sampled yield functions

ensures that the extracted quantities are well determined.
Furthermore, the number of events generated for each
yield function, K (usually K = 106), is sufficiently large
to ensure that the associated statistical fluctuations of
the considered observables are small in comparison with
those reflecting the fact that we consider an entire en-
semble of N different yield functions.

A. Neutron multiplicity

For a given yield function Y (i)(A,Z,TKE), the distri-
bution function for the neutron multiplicity ν is denoted

by P
(i)
n (ν), with

∑

ν P
(i)
n (ν) = 1. The ensemble-averaged

multiplicity distribution is then given by

≺ Pn(ν) ≻ =

N
∑

i=1

WiP
(i)
n (ν) , (12)

and it is also normalized,
∑

ν ≺ Pn(ν) ≻= 1. This quan-
tity is shown in Fig. 5 (top) with error bars indicating the
associated ensemble fluctuations σν (see Eq. (14) below).
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FIG. 5 (color online). The neutron multiplicity distribution
Pn(ν) (top) and the elements of the neutron multiplicity co-
variance matrix Cnn(ν, ν

′) shown as functions of ν for the
various values of ν′ (bottom), calculated for the ensemble of
yield functions described in the text. The curves show the
overall ensemble average values, while the error bars on Pn(ν)
reflect the associated ensemble dispersions (see Eq. 14).

The covariance matrix Cnn = {Cnn(ν, ν
′)} for the

multiplicity distribution can also be extracted from the

ensemble of multiplicity distributions {P (i)
n (ν)},

Cnn(ν, ν
′) =≺Pn(ν)Pn(ν

′)≻ − ≺Pn(ν)≻≺Pn(ν
′)≻

=

N
∑

i=1

WiP
(i)
n (ν)P (i)

n (ν′)− ≺Pn(ν)≻≺Pn(ν
′)≻ . (13)

The elements Cnn(ν, ν
′) are plotted in Fig. 5 (bottom) as

functions of ν′ for each value of ν. The pronounced anti-
correlation between high and low multiplicity reflects the
elementary fact that each multiplicity distribution is nor-
malized to unity, so those that are above average for
higher ν values must be below average for low ν values
and vice versa.
The diagonal elements of Cnn(ν, ν

′) are the variances
of Pn(ν) (i. e., the variance of the ν values obtained with
the different yield functions),

σ2
ν = Cnn(ν, ν) =

N
∑

i=1

Wi

(

P (i)
n (ν)

)2

− (≺ Pn(ν) ≻)
2
.

(14)
The associated ensemble dispersions σν are shown as
the error bars in Fig. 5 (top). Because of the above-
mentioned anti-correlation, the different curves in Fig. 5
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(bottom) all cross through zero near ν =≺ ν ≻. As a
result, σν=4 is particularly small.

The factorial moments of the neutron multiplicity dis-

tribution P
(i)
n (ν) are given by

M(i)
m ≡

∑

ν

ν(ν − 1) · · · (ν −m+ 1)P (i)
n (ν) , (15)

so M(i)
0 is unity and M(i)

1 is the mean multiplicity ν̄(i).
These are shown in Fig. 6 for ordersm = 0, 1, 2, 3, 4, with
the ensemble fluctuations indicated by the error bars. To
illustrate the negligible magnitude of the statistical un-
certainties arising from the finite number of events gen-
erated for each yield function, we also show the result
of reusing the same (namely the average) yield function
in which case there are no ensemble fluctuations so all
fluctuations are statistical. These are seen to indeed be
negligible in comparison with those arising from the use
of an ensemble of different yield functions.
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FIG. 6 (color online). Factorial moments of the neutron mul-
tiplicity distribution (see Eq. 15)), as obtained either from the

sample of yield functions {Y (i)(A,Z,TKE)}, with 106 events
generated for each one (solid curve), or from reusing the aver-
age yield function Y (A,Z,TKE) equally many times (dashed
curve). Each factorial moment Mm has been divided by m!
to compensate for the rapid growth with the order m.

As already discussed in Sect. III, the neutron mul-
tiplicity is tightly correlated with the available excita-
tion energy E∗ which in turn is reated to the total frag-
ment kinetic energy TKE by energy conservation. Con-
sequently, the average neutron multiplicity ν is strongly
(anti)correlated with TKE, as illustrated in Fig. 7. This
important feature will be further explored in Sect. V.

B. Neutron spectrum

For each particular (non-vanishing) neutron multiplic-
ity ν, the associated spectral distribution is denoted by

χ
(ν)
n (ε); it is normalized to unity,

∫

χ
(ν)
n (ε) dε = 1. The

energy distribution of those neutrons may be written as

(

dν

dε

)(ν)

= ν χ(ν)
n (ε) , (16)

and is normalized to ν. The overall neutron energy dis-
tribution dν/dε, which is normalized to the mean multi-
plicity ν̄, is then given by

dν

dε
=
∑

ν>0

(

dν

dε

)(ν)

Pn(ν) = ν̄ χn(ε) , (17)

where χn(ε) is the overall spectral distribution of the
emitted neutrons.
In the present study, we concentrate on the over-

all spectral distribution. For a given yield function
Y (i)(A,Z,TKE), the resulting neutron energy distribu-

tion is denoted by χ
(i)
n (ε) and the ensemble-averaged neu-

tron energy distributions is given by

≺ χn(ε) ≻ =
N
∑

i=1

Wi χ
(i)
n (ε) , (18)

and it is normalized to unity.
The spectral distribution of the evaporated neutrons,

χn(ε), is approximately of Maxwellian form (with T ≈
1.42MeV). With one million events, χ(E) can be sam-
pled to a reasonable degree of accuracy out to ≈ 15MeV.
The effect of the uncertainty of the input yield function
Y (A,Z,TKE) on the spectral distribution of the evap-
orated neutrons is illustrated in Fig. 8. The magnified
view for ε = 7 − 8 MeV shows the unimportance of the
statistical uncertainties arising from the finite number of
events generated for each yield function.
The energy-energy correlation function can also readily

be extracted,

Cnn(ε, ε
′) = (19)
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FIG. 7 (color online). The dependence of the mean neutron
multiplicity ν on TKE, the total kinetic energy of the fission
fragments. Also shown is the overall distribution of TKE over
the ensemble of yield functions (dashed curve).
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FIG. 8 (color online). The spectral distribution up to 15 MeV
(logarithmic scale). The magnified (linear) view for ε = 7− 8
MeV (insert) also shows the significantly smaller statistical
uncertainties (wider error bars) arising from the 106 events
generated for each yield function.

N
∑

i=1

Wi χ
(i)
n (ε)χ(i)

n (ε′) − ≺ χn(ε) ≻≺ χn(ε
′) ≻ .

It is shown in Fig. 9 with the diagonal part subtracted
to better bring out how two different energies are cor-
related. There is a significant positive correlation when
both energies are below 2 MeV or so. This is the typi-
cal energy range of the evaporated neutrons and if one
neutron is emitted with an energy in this range, there is
a good chance that one or more additional neutrons are
also emitted and that these are not very energetic. By
contrast, the correlation is negative when one energy is
low and the other is high, probably because the emis-
sion of an energetic neutron increases the likelihood that
any additional neutron will not be energetic. When both
energies are high there is hardly any correlation at all.

C. Neutron-neutron angular correlations

A given event produces ν neutrons having the mo-
menta pj = pj p̂j , j = 1, . . . , ν, where the emis-
sion directions are given by the unit vectors p̂j =
(sinϑj cosϕj , sinϑj sinϕj , cosϑj). The directional distri-
bution of the neutrons is given by Pn(p̂) which is nor-
malized to ν, the event multiplicity,
∫

d2p̂Pn(p̂) =

∫ +1

−1

d cosϑ

∫ 2π

0

dϕPn(p̂(ϑ, ϕ)) = ν .

(20)
while the joint probability for neutron emission into the
two directions p̂ and p̂

′ is denoted by Pnn(p̂, p̂
′) which

is normalized to ν(ν − 1), twice the number of neutron
pairs in the event.

For a sample of K events, each event k has directional

distributions, P
(k)
n (p̂) and P

(k)
nn (p̂, p̂′). The overall angu-

lar distribution is then given by

P n(p̂) =
1

K

K
∑

k=1

P (k)
n (p̂), (21)

being normalized to the mean neutron multiplicity ν.
Furthermore, the overall two-neutron directional distri-
bution is

Pnn(p̂, p̂
′) =

1

K

K
∑

k=1

P (k)
nn (p̂, p̂′) . (22)

It is normalized to twice the mean number of neutron
pairs in an event, 〈ν(ν− 1)〉. Obviously, only events that
produce at least one neutron can contribute to P n(p̂)
and only events producing at least two neutrons can con-
tribute to Pnn(p̂, p̂

′).
The cosine of the opening angle between the directions

of two emitted neutrons 1 and 2 is determined by

cos θ(p̂1, p̂2) = p̂1 · p̂2 = sinϑ1 sinϑ2 cos(ϕ1−ϕ2) . (23)

Consequently, the distribution of this quantity can be
obtained as

Pnn(cos θ12) = (24)
∫

d2p̂

∫

d2p̂′ Pnn(p̂, p̂
′) δ(cos θ(p̂, p̂′)− cos θ12) ,

with the normalization
∫

d cos θ Pnn(cos θ) = 〈ν(ν − 1)〉.
Because the above discussion pertains to a particular

given yield function Y (i)(A,Z,TKE) it may be labeled by

the index i, P̄
(i)
nn (cos θ12). If we repeat the procedure for

an ensemble of N yield functions, the resulting ensemble
average directional distribution function is

≺ Pnn(cos θ12) ≻ =

N
∑

i=1

Wi P
(i)

nn(cos θ12) . (25)
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FIG. 9 (color online). The neutron energy-energy correlation
function Cnn(ε, ε

′) given in Eq. (19), with the diagonal term
subtracted, shown as a function of ε′ for specified values of ε
as indicated (in MeV) for each curve.
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FIG. 10 (color online). The distribution Pnn(cos θ12), where
θ12 is the specified opening angle between the directions of
two neutrons in an event. The main panel covers the entire
angular range, 0◦ ≤ θ12 ≤ 180◦, while the insert shows the
central region, θ12 ≈ 90◦, and also displays the significantly
smaller statistical uncertainties (wider error bars) obtained
from always using the same yield function (see text).

The associated ensemble variance is

≺ Pnn(cos θ12)
2 ≻ − (≺ Pnn(cos θ12) ≻)2 = (26)

N
∑

i=1

Wi

[

P
(i)

nn(cos θ12)
]2

−
[

N
∑

i=1

Wi P
(i)

nn(cos θ12)

]2

.

The distribution (25) of cos θ12 is shown in Fig. 10 over
both the entire range of the opening angle cos θ12 and for
a limited region around θ12 = 90◦, with the dispersions
from Eq. (26) shown as error bars.

V. RELATION BETWEEN ν AND TKE

In the preceding section, we have examined how
the experimental uncertainty in the yield function
Y (A,Z,TKE) affects a variety of neutron observables.
We start this section by considering the distribution of
the mean neutron multiplicities {νi} resulting from the
ensemble of yield functions, {Y (i)(A,Z,TKE)}. As il-
lustrated in Fig. 11, ν has an approximately Gaussian
distribution with a mean value very close to the exper-
imentally observed value, ν0 = 3.756, and a dispersion
given by σ0 = 0.093.
As noted above (see Fig. 7), there is a pronounced anti-

correlation between the neutron multiplicity and the to-
tal fragment kinetic energy. This relationship is brought
out visually in Fig. 12 which displays a scatter plot of

the values of (ν(i),TKE
(i)
) obtained for the ensemble

of 15 000 yield functions sampled from the distribution
P(Y (A,Z,TKE)) constructed from our χ2 analysis of the
experimental data (see Sect. II). Clearly, yield functions
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10 000 events each
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 = 0.093

FIG. 11 (color online). The distribution of the deviation δν of
the resulting mean neutron multiplicity, ν, from the observed
value, ν0 (circles), together with the corresponding Gaussian
function having the same mean and dispersion.

that lead to large/small mean neutron multiplicities also
lead to small/large mean fragment kinetic energies.
Figure 13 shows a similar scatter plot of the corre-

sponding ensemble dispersions in ν and TKE. It is seen
that large/small fluctuations in neutron multiplicity is
associated with large/small dispersions in TKE.
It is possible to quantify the correlation between ν̄ and

TKE by assuming that the joint distribution of these
two observables has a Gaussian form characterized by
the 2× 2 covariance tensor σ,

σ =

(

σνν σνK

σνK σKK ,

)

. (27)

Its elements are given by

σνν = σ2
ν = ≺ δν2 ≻ , (28)

σνK = ≺ δν δK ≻ , (29)

σKK = σ2
K = ≺ δK2 ≻ , (30)
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FIG. 12 (color online). A scatter plot of the the mean neutron
multiplicity, ν, and the mean total fragment kinetic energy,
TKE, obtained for each of the 15 000 sampled yield functions.
The overall average is indicated by the central dot.
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FIG. 13 (color online). A scatter plot of the dispersion of
the neutron multiplicity, σν , and the dispersion of the total
fragment kinetic energy, σTKE, obtained for each of the 15 000
sampled yield functions. The overall average is indicated by
the central dot.

where we have introduced the deviations δν ≡ ν − ≺ ν ≻
and δK ≡ TKE − ≺ TKE ≻ for notational convenience.
The determinant of σ is given by D = σ2

νσ
2
K − σ2

νK

and its inverse tensor m has the following elements,

mνν = m2
ν = σ2

K/D , (31)

mνK = −σνK/D , (32)

mKK = m2
K = σ2

ν/D . (33)

We thus assume that the (normalized) joint distribution
is given by

P (ν,TKE) =
1

2π
√
D

e−
1
2 [m

2

ν
δν2+2mνKδνδK+m2

K
δK2].

(34)
From the joint distribution we can recover the individual
distributions by projection,

Pn(ν) =

∫

P (ν,TKE) dTKE =
1√

2π σν

e−δ2
ν
/2σ2

ν , (35)

P (TKE) =

∫

P (ν,TKE) dν =
1√

2π σK

e−δ2
K
/2σ2

K . (36)

The ν distribution, Pn(ν), was displayed in Fig. 11.
The spread in the calculated ν̄ values, σν = 0.093, is
about 2.5 percent of the mean multiplicity, ν0 = 3.756.
This is more than a factor of six larger than the approxi-
mately 4 per mille uncertainty on the measured multiplic-
ity, namely σ0 = 0.015 [22]. We therefore wish to intro-
duce a bias on each sampled yield function so that those
yield functions that produce mean multiplicities close to
the observed value are given more credibility than those
leading to significant deviations, even though all the yield
functions have been sampled in accordance with the ex-
perimental uncertainties reported on the measured A, Z,
and TKE.
Thus, for a given yield function Y (i)(A,Z,TKE), we

employ a ν-dependent weight,

Wi ∼ exp[−(ν(i) − ν0)
2/2σ2

0 ] , (37)

rather than the constant weight Wi = 1/N used above.
With the Gaussian approximation introduced in Eq.

(34), it is straightforward to determine the effect of such
a weighting. The resulting biased distribution is given by

P̃ (ν,TKE) = W (δν)P (ν,TKE) , (38)

where P (ν,TKE) is the unbiased distribution given in
Eq. (34) and the bias factor is the weight in Eq. (37),
W (δν) ∼ exp(−δν2/2σ2

0).
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σ
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FIG. 14 (color online). The width of the TKE distribu-
tion as a function of the specified bias width σ0 in the
weight W ∼ exp(−δν2/2σ2

0) of the individual yield functions
Y (A,Z,TKE), as extracted for specific values of σ0 (dots) or
as given by the analytical expression (39) (curve). The maxi-
mum value (indicated by “max”) is obtained for σ0 → ∞ and
results when all yield functions are weighted equally, while the
minimum value (indicated by “min”) is obtained for σ0 → 0
and is the width of the distribution resulting from making
a cut at δν = 0, i. e., P̃ (δK) ∼ P (δν = 0, δK). The value
obtained when using the experimental uncertainty on ν̄ is
indicated (circle). The calculations sampled 100 000 fission
events from each of 15 000 yield functions for 252Cf(sf).

The resulting biased TKE distribution can then be ob-
tained by integrating P̃ (ν,TKE) over ν. This can be
accomplished by elementary means (see Appendix C),

yielding P̃ (TKE) ∼ exp(−δK2/2σ̃2
K) where the biased

variance is given by

σ̃2
K = σ2

K − σ2
νK

σ2
ν + σ2

0

. (39)

The limit of a large bias width, σ0 → ∞, corresponds to
not imposing any bias at all (all weights are the same)
and, accordingly, it yields σ̃2

K → σ2
K . In the opposite

limit of a very narrow bias, σ0 → 0, only values of ν very
close to ν0 are accepted, which corresponds to cutting
the two-dimensional distribution (see Fig. 12) along the
line δν = 0, yielding σ̃2

K → D/σ2
ν = 1/m2

K . Thus the
largest possible value of σ̃K(σ0) is the unbiased width σK ,
while the smallest achievable value of σ̃K(σ0) is σ̃K(0) =
1/mK . This behavior is illustrated in Fig. 14 from which
it is apparent that the Gaussian approximation provides
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a very accurate representation of the actual numerical
results.
In the present investigation, we wish to use a bias

width that is equal to the experimental rms uncertainty
on ν which is about 15.4% of the width obtained for the
unbiased ensemble of yield functions, as shown in Fig.
11. This leads to a reduction of the width of TKE from
about 780 keV to about 135 keV. Thus σTKE is reduced to
about 17.2% of its unbiased value when the multiplicity-
dependent bias is applied. The fact that σν and σTKE are
reduced by approximately the same factor is a reflection
of the high degree of correlation between the two observ-
ables (see Fig. 12), as is signalled by the very small value
of the determinant D = |σ|.

VI. SENSITIVITY TO FREYA PARAMETERS

The studies in this Section are carried out with the
current standard version of FREYA. The code contains a
number of parameters that have been adjusted to repro-
duce various aspects of the experimental data for each
particular case of interest, presently 252Cf(sf). As a re-
sult, the calculated neutron-related observables tend to
be in quite good agreement with the experimenal data. A
notable exception is the mass dependence of the average
neutron multiplicity, ν(A), shown in Fig. 15.

A. Excitation energy partitioning

The function ν(A) is sensitive to the FREYA parameter
x which controls the division of the available excitation
energy between the two nacscent fragments. With only
a single parameter, the overall appearance of ν(A) can
be reasonably reproduced, but not its detailed behav-
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FIG. 15 (color online). The mean neutron multiplicity as a
function of the mass number of the primary fragment, ν(A),
as obtained with FREYA when using either the standard con-
stant value x = 1.3 or the mass-dependent value x(A) shown
in Fig. 16. Also shown is the least-square fit to five sets of
experimental data [17, 24–27] used to determine x(A).
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FIG. 16 (color online). The extracted mass-dependent energy
sharing parameter x(AL) obtained by matching the calculated
light-to-heavy neutron multiplicity ratio ν̄L/ν̄H to the data for
each mass split. Also shown is the standard (constant) value
x = 1.3 (dashed line).

ior which is sensitive to specific structure effects in the
fragments. In order to elucidate the importance of this
shortcoming, we have introduced a mass-dependent x pa-
rameter, x(A), determined as follows.

First we make a series of FREYA runs with successively
increasing values of x and tabulate the resulting multi-
plicity ratios r(AL;x) ≡ ν̄(AL;x)/ν̄(AH;x). Then, for
each light-fragment mass number AL, we determine (by
interpolation) the x value that would give a multiplicity
ratio equaling the experimental one, thus obtaining x for
that fragmentation, x(AL). When FREYA is run with this
x(AL) rather than a single constant x value, the result-
ing ν̄(A) reproduces the data well. The relatively small
local deviations are due to the fact that matching the
multiplicity ratio ν̄L/ν̄L does not ensure a perfect match
of the two multiplicities ν̄L and ν̄R separately. The ex-
tracted function x(A) is displayed in Fig. 16.

We note that the fission codes CGMF [3] and FIFRELIN

[4] were developed with a mass-dependent energy shar-
ing prescription, equivalent to the use of x(A) in FREYA.
If those codes were to use a mass-independent energy
sharing prescriptiuon, then their results for the fragment
yields [30, 31] would be quite similar to those obtained
with the standard FREYA.

In order to illustrate the effect of replacing a constant
x by x(A), in Fig. 17 we show the average kinetic energy
of the evaporated neutrons as a function of the primary
fragment mass number, E(A). The deviations of the
constant-x results from the variable-x results for E(A)
resemble those for ν(A) because a fragment that is given
more excitation energy tends to not only evaporate more
neutrons but also make them more energetic. But a con-
stant x leads to too high neutron energies for the lightest
fragments (and, correspondingly, too low neutron ener-
gies for the heaviest fragments) and the sawtooth drop
before the doubly-closed shell at A = 132 is both too
abrupt and too small.
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FIG. 17 (color online). The mean energy of the evaporated
neutrons (in the frame of the emitting nucleus) as a function
of the primary fragment mass number, ε(A), as obtained with
the standard FREYA version that uses a constant value, x =
1.3, and with the modified version using the A-dependent
value x(A) shown in Fig. 16.

Nevertheless, even though E(A) changes significantly
when going from a constant x to x(A), the correspond-
ing neutron spectra are almost identical within statistics.
That is because most of the differences in E(A) and ν(A)
occur where the yields are small, either the tails or in the
dip at symmetry, while the average neutron energies are
similar near the average light and heavy fragment masses,
AL ≈ 110 and AH ≈ 140. However, the spectra would
also differ if only a limited A range were considered, for
example A < 110.
Furthermore, we consider how the introduction of x(A)

affects the angular correlation between the neutrons. Fig-
ure 18 shows the distribution of the relative emission an-
gle for two different minimum neutron energies: 0.4 MeV
and 1.2 MeV. While the shapes appear quite similar at
first glance, there is a small tilt toward large angular
separations when a fixed x is replaced by x(A), with a
corresponding enhancement for neutrons emitted in sim-
ilar directions. The difference between the two can be
quantified by the ratio of the values at 180◦ and 0◦. For
fixed x, this ratio is 1.46 for E > 0.4 MeV and 1.44 for
E > 1.2 MeV, while using x(A) yields 1.37 and 1.31, re-
spectively. Thus the effect on the angular correlation is
more pronounced for higher-energy neutrons.
The sensitivity of the nucleon-nucleon angular corre-

lation to other FREYA parameters was discussed in Ref.
[23].

B. Other FREYA parameters

There are three other FREYA parameters relevant to
the present study and we discuss them in turn below.
For a discussion of parameter optimization in FREYA for
spontaneous fission, see Ref. [28].
The parameter c adjusts the width of the variance of
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FIG. 18 (color online). The effect of x(A) on the angular cor-
relation between the neutrons. The distribution Pnn(cos θ12)
(see Eq. (25)) as obtained with the standard FREYA version
that uses a constant value x = 1.3 and with the modified ver-
sion using the A-dependent value x(A) shown in Fig. 16, for
two different values of the minimum neutron energy accepted,
either 0.4 Mev (top) or 1.2 MeV (bottom).

the statistical fragment excitation energy, because the
idealized Gaussian form of the energy distribution is of-
ten truncated due to the limited energy available, oth-
erwise the resulting energy distribution would become
too narrow. The optimized value of c varies significantly
from case to case; for the present case, 252Cf(sf), it is
c = 1.19 ± 0.36 [28]. The neutron multiplicity distribu-
tion Pn(ν) is the only neutron observable having a no-
ticeable sensitivity to c. For example, increasing c from
1 to 1.5 decreases ν by 1.5%. But, if a good reproduction
of the measured multiplicity distribution is to be main-
tained, other parameter adjustments would have to also
be made, resulting in a very small net effect on Pn(ν)
and its factorial moments Mm (including in particular
ν = M1 whose range is dictated by experiment to be
rather tight).

The FREYA parameter cS controls the typical magni-
tude of the fragment angular momenta and it therefore
affects the balance between neutron and photon emis-
sion. If cS is increased, then the fragments will rotate
more and, consequently, more photons will eventually be
emitted (for a discussion of how cS affects the photon ob-
servables, see Ref. [29]). At the same time, the increased
rotational energy will leave less energy for statistical ex-
citation of the primary fragments and thus there will be
fewer neutrons evaporated and they will tend to be less
energetic. For example, as discussed in Ref. [29], if all
other parameters are kept unchanged, the average neu-
tron multiplicity can decrease by as much as 12% if cS
is increased from 0.2 to 2.0. But such a wide range is
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unrealistic, as the the range of reasonable cS values is
constrained by the measured photon multiplicity. The
optimized parameter value does not depend much on the
specific case and it is cS = 0.875 ± 0.020 for 252Cf(sf)
[28]. If cS is varied within the resulting 1-σ range, then
ν changes by 0.34%.
Finally, the neutron multiplicity can depend on the

parameter e0 which scales the Fermi-gas nuclear level
density parameter, aA = A/e0. For a given fragment
excitation energy, an increase of e0 increases the frag-
ment temperature. Consequently, the neutron spectrum
hardens and the neutron multiplicity decreases. While
the dependence of ν on e0 alone is effectively linear, e0 is
constrained by other parameter values that are optimized
to data, including the prompt fission neutron spectrum.
As a result, while the neutron spectrum and multiplicity
depend on all the parameters, including e0, the other neu-
tron observables are not sensitive to e0. The optimized
value is e0 = 10.43 ± 1.09/MeV [28]. Within this rela-
tively large tolerance, the value of e0 can be regarded as
being universal, i. e., it has the same value for all fission
fragments considered. Although changing e0 within its
range of uncertainty can change ν by up to 2.7% and the
average neutron energy by 7%, the constraints placed on
the allowed range of ν through optimization of the other
parameters preclude such large changes.
Thus, while independent variations of a single parame-

ter can produce somewhat significant changes in the neu-
tron observables, including ν, such parameter modifica-
tions are not realistic due to the significant couplings
between the different parameters resulting from the op-
timization procedure.

VII. CONCLUDING REMARKS

In this investigation, we have explored the sensitivity
of important neutron observables produced by the fission
simulation code FREYA for 252Cf(sf) to various model in-
puts, primarily the specified yield function Y (A,Z,TKE)
but also the intrinsic model parameters.
First, we compiled the available experimental data

on the mass-dependent fragment yields, Y (A), the
mass-dependent average total fragment kinetic en-
ergy, TKE(AH), and the associated TKE dispersion,
σTKE(AH). Assuming that the TKE distribution has a
Gaussian form for each A and invoking also the Wahl sys-
tematics for the charge distributions, we performed a χ2

fit to obtain the most probably three-dimensional yield
function Ȳ (A,Z,TKE). This procedure also yielded the
associated covariance tensor for the probability distribu-
tion of possible yield functions, P(Y (A,Z,TKE)), which
in turn allowed us to generate an entire ensemble of pos-
sible yield functions. The application of FREYA for each
such possible yield function then produces corresponding
ensembles of observables whose variations reflect their
sensitivity to the uncertainty in the experimental data.
We found that the neutron multiplicity distribution,

Pn(ν), the neutron spectral shape, χn(E), and the
neutron-neutron directional distribution, Pnn(cos θ12),
exhibited almost negligible sensitivity to the uncertainty
in the specified yield function Y (A,Z,TKE).
Furthermore, we particularly studied the pronounced

anti-correlation between the average total kinetic energy
TKE and the average neutron multiplicity ν which can be
used to predict or reduce the uncertainty on one observ-
able if the other one is known with sufficient accuracy.
Under ideal circumstances, when the model is perfect and
its parameters fixed, we have estimated that the evalu-
ated uncertainty of ν of 0.4% implies a standard devi-
ation of 135 keV for TKE, a significant reduction com-
pared to the current experimental uncertainty of nearly
1 MeV. Uncertainties in the model parameters, although
constrained by complementary fission data, e. g., photon
multiplicity, will increase this estimate somewhat. Var-
ious approximations in the model itself and its implicit
input, e.g., level density, also contribute to a higher es-
timate for the uncertainty on TKE. It is difficult to
quantify the final uncertainty precisely without further
extending the present work to encompass all the input
parameters entering in such calculations. However, it is
clear that ν imposes the most severe constraint on TKE
and that other variations would have reltivelhy minor ef-
fects.
Finally, we determined the sensitivity of the neutron

observables to variations in the intrinsic FREYA parame-
ters. We have particularly studied the effect of replac-
ing the default mass-independent division of the avail-
able excitation energy, governed by the parameter x, by
a mass-dependent division governed by the function x(A)
determined from the measured ν(A), similar to the pre-
scriptions used in other codes [3, 4]. While such a re-
finement has a significant effect on the mass-dependence
of the average neutron multiplicity and the average neu-
tron energy, the effect on the neutron-neutron angular
correlations is small.
The present study shows the importance of developing

a consistent theoretical model of nuclear fission that can
predict a large variety of observables simultaneously. The
intrinsic correlations that exist among those observables
provide a powerful tool for constraining the fission models
and their input parameters, leading to a more realistic
and consistent description than what can be obtained
with observable-specific models that aim to describe only
parts of the fission data, such as the average neutron
spectrum alone. Importantly, this type of analysis can
be extended to other observables as well, such as those
involving the fragment directions or the photons.
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Appendix A: Sampling of yield functions

Each of the observables Y (A), TKE(A), and σTKE(A)
can be regarded as an N -dimensional vector function
q = {qi}, where i = 1, . . . , N represents the N possi-
ble values of the fragment mass number A. The analysis
of the experimental data provides the mean value of the
observable, q = {q̄i} = {〈qi〉}, as well as the associated
covariance matrix, C = {Cij} = {〈(qi−q̄i)(qj−q̄j)〉}. We
assume that the distribution P [q] of the actual function q

is given by the corresponding multivariateN -dimensional
Gaussian distribution,

P [q] = (2π)−
N
2 |C|− 1

2 e−
1

2
(q−q)·C−1

·(q−q) , (A1)

where |C| denotes the determinant of C.
In order to sample q, we first diagonalize the covari-

ance matrix, U † · C · U = {λiδij}, where λi are the
N eigenvalues of C. (These are all positive because
C is positive definite.) The corresponding eigenvectors,
ui = (u1i, u2i, . . . , uNi), are the elements of the rotation
matrix U = {uij}. A sampled function q can then be
obtained as

q = q +U · ǫ : qi = q̄i +

N
∑

j=1

uijǫj , (A2)

where the elements in the vector ǫ = {ǫi} have been
sampled from the following probability distributions,

Pi(ǫi) =
1√
2πλi

e−ǫ2
i
/2λi , (A3)

respectively, so 〈ǫi〉 = 0 and 〈ǫiǫj〉 = λiδij .
It is elementary to show that an ensemble of functions

q = {qi} sampled according to the above procedure in-
deed has the desired first and second moments, 〈qi〉 = q̄i
and 〈(qi − q̄i)(qj − q̄j)〉 = Cij .

Appendix B: Microcanonical energy division

The total statistical excitation energy ε is partitioned
between the two fragments, ε = εL + εH, in accordance
with the appropriate microcanonical distribution. Thus
the probability for the light fragment to acquire the ex-
citation energy εL is given by

PL(εL) ∼ ρL(εL) ρH(ε− εH) , (B1)

where ρf(εf) is the density of states in fragment f =
L,H. The most probable energy division occurs when

the derivative vanishes, dPL(εL)/dεL = 0, leading to
the condition βL(εL) = βH(ε − εL), where βf(εf) ≡
d ln ρf(εf)/dεf = 1/Tf(εf) is the inverse of the temper-
ature of fragment f. Thus the most probable division
occurs when the two fragment temperatures are equal,
TL = TH.
Using the simple macroscopic Fermi-gas level density,

ρf(εf) ∼ exp(2
√
afεf), where af = Af/e0 is the level-

density parameter for fragment f, we have ln ρf(εf) =

2
√
afεf , hence Tf =

√

εf/af . The most probable exci-
tations, εf , are then proportional to the respective level-

density parameters, εf = afT
2, where T =

√

ε/(aL + aH)
is the common temperature.
The variance of P (εL) is equal to the variance of P (εH)

(because εL + εH remains constant) and it is given (ap-
proximately) by

σ2
f ≈ −

[

d2 lnP (εf)

dε2f

]−1

εf=ε
f

=
2Tε aLaH
(aL + aH)2

= 2T
εLεH
ε

.

(B2)
The canonical variances used previously in FREYA are
given by σ̃2

f ≈ 2Tεf , so the effect of the microcanonical
constraint is to replace the actual mean fragment exci-
tation εf by the reduced value εLεH/ε. Thus the micro-
canonical variance is smaller than either of the individual
canonical variances. As one would expect, the canonical
variance is approached, σ2

L ≈ σ̃2
L, when aH ≫ aL.

In FREYA, the excitation energy εL is sampled from a
Gaussian distribution with mean value εL and variance
σ2
g = σ2

L. However, because only positive values of εL are
acceptable, the selection is iterated until |εL − εL| < εL.
This procedure ensures that the selected value of εL is
smaller than ε and that its mean equals εL. But the
resulting dispersion of εL is generally somewhat smaller
than σL. For that reason, FREYA contains the parameter
c with which one may increase the value of σg in order
to compensate for this effect, σg = c σL. In the present
study, we ignore this refinement and use c = 1.

Appendix C: Biased TKE distribution

The biased distribution (38) can be written as

P̃ (δν, δK) ∼ e−
1
2 [(m

2

0
+m2

ν
)δν2+2mνKδνδK+m2

K
δK2] , (C1)

wherem0 ≡ 1/σ0. The corresponding biased distribution
of δK is obtained by integrating over δν which can easily
be done after completing the square in the exponent,

(m2
0 +m2

ν)δν
2 + 2mνKδν δK +m2

KδK2 = (C2)

(m2
0 +m2

ν)[δν +
mνKδK

m2
0 +m2

ν

]2 − (
m2

νK

m2
0 +m2

ν

−m2
K)δK2 .

The integral over δν can then be carried out, leaving
P̃ (δK) ∼ exp(−δK2/2σ̃2

K) with the biased variance be-
ing given as stated in Eq. (39),

σ̃2
K =

[

m2
K − m2

νK

m2
0 +m2

ν

]−1

= σ2
K − σ2

νK

σ2
ν + σ2

0

, (C3)
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where we have used m2
ν = σ2

K/D, mνK = −σνK/D, and
σ2
K = σ2

ν/D, with D = |σ| = σ2
νσ

2
K − σ2

ν .
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