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1Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
2National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

3Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
4Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA

(Dated: April 18, 2019)

Background: Selenium and germanium nuclei are associated with both triaxiality and shape co-
existence. The relative influence of these deformation effects on the low-lying nuclear structure
remains the subject of much discussion, with additional attention drawn to 76Se and 76Ge due to
the potential for the observation of neutrinoless double-beta decay.

Purpose: Experimental observables related to the deformation of 76Se are lacking in precision.
The purpose of the present work is to provide electric quadrupole matrix elements with improved
precision in order to determine the deformation of low-lying states in a model-independent manner.

Methods: Sub-barrier Coulomb excitation was employed at the reaccelerated beam facility of the
National Superconducting Cyclotron Laboratory using the JANUS setup. Using this method nine-
teen E2 matrix elements were extracted.

Results: Extracted matrix elements agree within uncertainties with those in the literature but with
improved precision. Through both a comparison with geometric models and a model-independent
evaluation of E2 matrix elements using rotational invariants the ground state of 76Se is best described
as having a significant triaxial component, while not being maximally triaxially deformed.

Conclusions: Selenium-76 exhibits a significant degree of triaxiality in its ground state. A detailed
comparison with configuration interaction calculations indicates that this can be well reproduced
theoretically.

I. INTRODUCTION

Atomic nuclei exhibit the bulk property of deforma-
tion, commonly assuming non-spherical shapes far from
nuclear magic numbers. It is becoming increasingly clear
that axially symmetric prolate and oblate extremes of
quadrupole deformation are not sufficient to describe
many nuclei, with triaxial components to the deforma-
tion often found to be significant. One area of the nu-
clear landscape where the role of axially asymmetric de-
formation has long been inferred to be important is the
selenium-germanium region. The low-lying γ band in
these isotopes - associated with a triaxial vibrational
mode - is indicative of this, while the staggering of the
band members has been used to infer the rigidity of this
triaxial deformation (see e.g. Ref. [1]). More recently,
comprehensive Coulomb excitation analyses using state-
of-the-art γ-ray detection arrays have cemented this pic-
ture of triaxial deformation in, for example, 72Ge [2].

Understanding the role of deformation in these isotopes
is made a more pressing issue by its influence on the cal-
culation of the nuclear matrix element for the hypothe-
sised neutrinoless double-beta decay process, with 76Ge
being an excellent candidate for observation [3, 4]. Differ-
ing ground-state deformations in the parent (76Ge) and
daughter (76Se) nuclei result in a reduced spatial overlap
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between the initial and final state configurations. Any
reduction in overlap will inhibit the process, as inferred
more explicitly through theoretical calculations (see e.g.
Ref. [5]).

Reproducing the germanium-selenium region micro-
scopically provides a challenge for nuclear theory. The
fpg shell itself is large, while small-amplitude excitations
into the 2d5/2 orbital are known to play an important
role in driving quadrupole deformation but are typically
too computationally expensive to include in calculations.
Over the last decade, however, Hamiltonians have been
developed to tackle this region of the nuclear landscape
with examples pertinent to this work being the JUN45 [6]
and the jj44b (see appendix A in Ref. [7]) interactions.

In order to provide a clearer picture of the role of defor-
mation in the selenium isotopes, more extensive and pre-
cise experimental data are required. In particular, tran-
sition matrix elements connecting low-lying states are
known to be sensitive to deformation effects and might
be reproduced theoretically by, for example, shell-model
calculations with the aforementioned interactions. Here,
we present results from a sub-barrier Coulomb excitation
measurement of 76Se performed on a high-Z target to al-
low for multi-step excitation. This methodology allows
us access to multiple E2 matrix elements connecting low-
lying states, improving precision over literature values.
The new, more precise results are then used to construct
a series of rotationally invariant quantities related to the
quadrupole deformation parameters of the nucleus, both
with respect to the absolute magnitude of the ground-
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FIG. 1. Pixel energy in the downstream JANUS silicon detec-
tor plotted against ring number, with smaller ring numbers
corresponding to shallower angles. The data shown were ac-
quired at a beam energy of 4.07 MeV/u. Dominant in the
spectrum are the kinematic lines originating from the scat-
ter of 76Se and 208Pb. Also seen is a lighter contaminant at
approximately a 1% level. Note that bins with two or fewer
counts are excluded from this figure to aid clarity.

FIG. 2. Level scheme indicating the observed transitions.
Note that the experiment is sensitive to unobserved transi-
tions by including data from the literature such as branching
ratios. Arrow widths correspond to relative branching ra-
tios [8].

state deformation and its degree of triaxiality.

II. EXPERIMENTAL DETAILS

The present measurements were performed at the reac-
celerated beam facility (ReA3 [9]) of the National Super-
conducting Cyclotron Laboratory (NSCL [10]). Stable
76Se ions were injected into the NSCL’s electron beam
ion trap [11] and charge-bred prior to injection into the
ReA accelerator chain. To enhance sensitivity to the
nuclear matrix elements, 76Se was delivered at two en-
ergies: 4.07 MeV/u and 3.55 MeV/u, maintained for
24 hours and 72 hours, respectively and impinged upon

an enriched, 0.92-mg/cm2 thick, 208Pb target. Mean
on-target intensities were maintained at approximately
2×105 pps for the duration of the experiment. The beam
energies corresponded to minimum impact parameters of
5 fm and 7.5 fm, 72% and 62% of the Coulomb bar-
rier for the higher and lower energies respectively. Scat-
tered beam- and target-like nuclei were detected in the
JANUS setup for Coulomb excitation [12], consisting of a
pair of S3-type annular silicon detectors located upstream
and downstream of the target. The downstream and up-
stream target-silicon detector separations were measured
to be 26 ± 1 mm and 34 ± 1 mm, respectively. Emitted
γ rays were detected in the Segmented Germanium Ar-
ray (SeGA) [13], consisting of sixteen 32-fold segmented
HPGe detectors. Data were extracted using a digital
data-acquisition system, made up of 33 100-MHz (SeGA)
and 8 250-MHz (silicon detectors) XIA Pixie-16 modules
in a triggerless, continuous-running mode. Events were
constructed on the basis of the master clock and ana-
lyzed using the GRUTinizer [14] software package, built
in a ROOT framework [15]. The experimental setup was
identical to that described in Ref. [16].

III. ANALYSIS

Silicon pixels were constructed from time- and energy-
coincident ring and segment hits in the S3 detectors.
Beam-like (76Se) and target-like (208Pb) recoil loci were
identifiable in the observed kinematics. Gamma rays de-
tected in SeGA were Doppler corrected for 76Se veloci-
ties event-by-event on the basis of the reaction kinemat-
ics and the beam- or target-like nature of the detected
particle. At both beam energies, target-like events were
excluded from the analysis at angles greater than 40◦

(rings 13 and above) to avoid biasing of the data due
to dead-layer effects in the silicon detectors. Detections
in the upstream detector were entirely excluded for the
lower beam energy for the same reason. The observed
particle energies are shown in Fig. 1 plotted against the
downstream ring number. Clearly, beam- and target-like
loci are well separated. Low-level contamination from a
lighter ion is seen at roughly the 1% level. This contam-
ination does not impact the analysis of the experimental
data presented below.

The beam-like locus in the downstream S3 detector was
subdivided into six angular bins, each composed of four
annular rings. In the case of the 208Pb-gated kinematics,
the data were subdivided into two angular bins contain-
ing six rings, corresponding to the twelve shallowest an-
gle rings. Wider angle target-like events were excluded
because of the dead-layer effects discussed previously.
The upstream detector was considered as a whole in the
higher-energy experimental setting. Doppler-corrected
γ-ray spectra were constructed from SeGA coincidences
with these angular bins for both the high- and low-energy
portions of the experiment. The experimental data were
thereby separated into seventeen groups for Coulomb-
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FIG. 3. Doppler-corrected γ rays coincident with the de-
tection of a beam-like (top) and target-like (bottom) par-
ticle in the downstream silicon detector at a beam energy
of 4.07 MeV/u with the strongest transitions highlighted.
The non-Gaussian shapes in coincidence with the detection
of target-like particles arise from the wide scattering angles
of the beam-like particles in coincidence, resulting in them
traversing a larger distance in the target material and induc-
ing a line-shape.

excitation analysis. Example Doppler-corrected γ-ray
spectra, corresponding to beam- and target-like detec-
tion at the higher beam energy are shown in Fig. 3. The
Doppler correction is superior for beam-like particle de-
tection. In the case of target-like detection, the beam-
like particle is scattered at angles approaching 90◦ and
therefore travels further in the target material, causing
a broadening of the lineshape. Figure 4 shows example
Doppler-corrected γ-rays detected in coincidence with a
particle in the upstream detector. This detection con-
dition corresponds to a best-case scenario for Doppler
correction. In the general case, multiplets such as those
shown in the bottom two panels of Fig. 4 were unresolv-
able.
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FIG. 4. (Color online) Doppler-corrected γ rays coincident
with the detection of a beam-like particle in the upstream sil-
icon detector. Shown are three cases in which multiplets were
observed and fitted, with the total fit shown in red (light
gray), individual peaks in blue (dark gray) and the back-
ground by a dashed black line.

The 0+2 → 2+1 and 2+1 → 0+1 transitions (bottom panel,
Fig. 4) are separated by only 4 keV and, as such, can-
not be resolved in coincidence with downstream detection
due to the larger velocities. In order to enhance sensi-
tivity both to the multi-step excitation: 0+1 → 2+1 → 0+2 ,
and to the quadrupole moment of the 2+1 state it is de-
sirable to quantify the relative contributions to the com-
bined peak around 560 keV. Utilizing the high efficiency
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of the SeGA array this was achieved using γ − γ coin-
cidences. In order to use γ − γ coincidences it is neces-
sary to account for changes in detection efficiency as a
result of the γ − γ angular distribution. This efficiency
correction was determined empirically through compari-
son to cascades both following the β decay of 152Eu and
through comparison with the γ-ray spectrum at back-
ward angles where the components could be extracted
through a combined fit of the spectrum at a statistically
significant level. The resultant fit is shown in the bottom
panel of Fig. 4. The correction factor was then taken as
a weighted average of that determined from the two em-
pirical methods. The uncertainty on the values extracted
in this method remain dominated by the statistical com-
ponent.

Coulomb-excitation yields were evaluated using
the GOSIA code [17] to determine transition matrix
elements. Literature experimental values pertaining
to the transitions observed in the present work were
additionally used to constrain the fit and are summa-
rized in Table I. The E0 decay of the 0+2 state was
incorporated through decay to a fictional 1+ state via an
M1 decay, constrained by the measured branching ratio.
Consistency between the high- and low-energy data
was confirmed by performing an independent GOSIA
analysis for each. The final results presented below
are from a simultaneous GOSIA analysis, with matrix
elements minimized to best reproduce both the high-
and low-energy data.

TABLE I. Experimental values as constraints for the GOSIA
calculations presented here. Values taken from Ref. [8] except
where indicated. Note that the values from Ref. [18] have been
symmetrized for input into GOSIA.

State Lifetime [ps] Transition Mixing ratio (δ)

2+1 17.75(29) 2+2 → 2+1 5.2(2)
2+2 4.91(29) 2+3 → 2+2 0.80(55)†

4+1 2.19(8) 2+3 → 2+1 -0.51(5)
2+3 1.86(46)† 4+2 → 4+1 1.7(4)
6+1 0.89(10)

Initial (i) Final (f1) Final (f2) BR [ I(i→f1)I(i→f2) ]

0+2 0+1 2+1 2.3(4)× 10−4

2+2 0+1 2+1 0.59(3)
2+3 2+1 0+1 4.00(23)
2+3 2+1 0+2 3.13(23)
2+3 2+1 2+2 10(2)
2+3 2+1 4+1 33(3)
4+2 2+2 4+1 2.04(23)
4+2 2+2 2+1 20(12)

† - from Ref. [18]

IV. DISCUSSION

The matrix elements resulting from the present anal-
ysis are given in Table II. Note that as previously men-
tioned, literature data were used to constrain a num-
ber of matrix elements and so the present values should
not be considered as independent of those presented in
Table I. E2 matrix elements and transition strengths
can be used to infer the collective behaviour of the
nucleus through a number of relations. 76Se has the
largest B(E2; 2+1 → 0+1 ) value, indicating a maximum
of collectivity, along with the lowest 2+1 excitation en-
ergy, another indicator of a large degree of collectivity.
This is also borne out by the systematics of the spec-
troscopic quadrupole moments, Qs(2

+
1 ), with maximum

absolute values approximately centered on 76Se,however
this picture is far from complete. Under the assump-
tion of a rigid axial rotor, one can relate

∣∣Qs(2+1 )
∣∣ to the

B(E2; 2+1 → 0+1 ) by:

∣∣Qs(2+1 )
∣∣ =

2

7

√
16π ×B(E2; 2+1 → 0+1 ). (1)

The value of
∣∣Qs(2+1 )

∣∣ determined in the present work
is only approximately 60% of that determined from the
above relation. Coupled with the existence of a low-lying
2+2 state which can be best described as the band-head
of the so-called γ-band, this indicates that a simple sym-
metric axial rotor description is insufficient to explain the
low-lying structure and triaxiality likely plays a signifi-
cant role in 76Se.

One can compare the level energies and transition
strengths of the low-lying states to, for example, the
Davydov-Filippov model [22] to estimate the degree of
triaxiality in the nuclear system from the assumption of
an axially asymmetric rotor. Such an analysis is pre-
sented in Fig. 5 for 76Se. Clearly, the level energies
and transition strengths are best described by a nu-
cleus approaching maximum triaxiality (γ ∼ 25 → 30◦).
Note that the behaviour of level energies and transition
strengths in the model is symmetric about γ = 30◦. Us-
ing the triaxial rotor model presented in Ref. [23], in
which the inertia tensor is treated independently of the
electric quadrupole tensor, one can calculate a value for
the triaxiality parameter, γ ≈ 25◦ - in good qualitative
agreement with the value expected from Fig. 5.

While comparison with geometric models therefore in-
dicates that triaxiality plays a role in the low-lying struc-
ture of 76Se, the quality of the present data combined
with that in the literature allows for a more rigorous
analysis with the presented set of E2 matrix elements in
Table II sufficient to perform a model-independent anal-
ysis of the nuclear shape.

The electric multipole transition operator is a spherical
tensor allowing for rotationally invariant, zero-coupled
products to be constructed which can themselves be
linked to the intrinsic deformation of the nucleus [24, 25].
The two invariant products discussed here relate to the
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TABLE II. Reduced matrix elements, reduced transition strengths and quadrupole moments determined in the present work.
Where available literature values are provided for comparison. Note that due to the use of experimental observables in the
GOSIA minimization the present results cannot be considered as independent of the literature. Note that B(E2) ↑ and B(M1) ↑
values are given.

This Work Literature

〈Jπi |E2 |Jπf 〉 [eb] B(E2; Jπi → Jπf ) [e2fm4] 〈Jπi |E2 |Jπf 〉 [eb] B(E2; Jπi → Jπf ) [e2fm4] Reference

0+
1 → 2+

1 0.647 (5) 4190
(
60
70

)
0.649 (7) 4210 (68) [8]

0+
1 → 2+

2 0.110 (2) 119 (5) 0.108
(
4
5

)
116 (10) [8]

0+
1 → 2+

3 0.040 (1) 16 (1) 0.044
(
10
14

)
19 (10) [18]

2+
1 → 0+

2 0.285
(
26
27

)
163

(
30
29

)
0.300

(
64
81

)
180 (84) [8]

0.47
(
11
10

)
440

(
230
168

)
[19]

2+
1 → 2+

2 0.640 (11) 820 (30) 0.641
(
22
23

)
822 (57) [8]

2+
1 → 4+

1 1.108
(
12
11

)
2450 (50) 1.105

(
15
16

)
2444 (69) [8]

2+
1 → 2+

3 −0.093
(
7
6

)
17 (2)

∣∣0.102
(
14
16

)∣∣ 21 (6) [18]

2+
1 → 4+

2 0.039
(
35
7

)
3
(
8
1

)
0.04 (1) 2.4 (17) [8]

0+
2 → 2+

2 0.182
(
33
47

)
330

(
130
150

)
0.15

(
8
18

)
225

(
304
225

)
[19]

0+
2 → 2+

3 0.532
(
21
18

)
2830

(
220
190

)
0.595

(
70
90

)
3540

(
1910
960

)
[18]

0.59
(
30
74

)
3481

(
4440
3481

)
[19]

2+
2 → 4+

1 0.047
(
44
29

)
4.5

(
122
38

)
0.12

(
16
12

)
31

(
131
31

)
[19]

2+
2 → 2+

3 0.262
(
67
43

)
140

(
80
40

)
0.19

(
6
4

)
73

(
57
27

)
[18]

0.30
(
10
6

)
880

(
650
325

)
[19]

< 0.022 < 4.8 [8]

2+
2 → 4+

2 0.768
(
36
37

)
1180 (110) 0.706

(
81
91

)
998 (241) [8]

4+
1 → 2+

3 0.418
(
18
15

)
190

(
20
10

)
0.489

(
6
7

)
266 (74) [18]

4+
1 → 4+

2 0.733
(
51
38

)
600

(
90
60

)
0.62

(
9
11

)
421 (134) [8]

4+
1 → 6+

1 1.390
(
64
58

)
2050

(
200
180

)
1.3

(
8
7

)
1880 (220) [8]

〈Jπi |M1 |Jπf 〉 [µn] B(M1; Jπi → Jπf ) [µ2
N ] 〈Jπi |M1 |Jπf 〉 [µn] B(M1; Jπi → Jπf ) [µ2

N ] Reference

2+
1 → 2+

2 0.067 (3) 9.1
(
0.8
0.7

)
× 10−4 0.068 (3) 9.2 (9)× 10−4 [8]

2+
1 → 2+

3 0.186
(
4
5

)
7.0 (3)× 10−3 0.16 (2) 5 (1)× 10−3 [18]

2+
2 → 2+

3 0.168
(
4
2

)
6
(
3
1

)
× 10−3 0.14

(
4
3

)
4 (2)× 10−3 [18]

4+
1 → 4+

2 0.158
(
5
3

)
3
(
2
1

)
× 10−3 0.13

(
4
3

)
2 (1)× 10−3 [18]

〈Jπi |E2 |Jπi 〉 [eb] Qs(J
π) [eb] 〈Jπi |E2 |Jπi 〉 [eb] Qs(J

π) [eb] Reference

2+
1 → 2+

1 −0.463
(
52
53

)
−0.35 (4) −0.449 (92) −0.34 (7) [20]

−0.396 (106) −0.30 (5) [21] via [8]

−0.45 (7) −0.34 (5) [19]

2+
2 → 2+

2 0.245
(
57
60

)
0.19 (4) 0.24

(
6
8

)
0.18

(
5
6

)
[19]

4+
1 → 4+

1 −0.387
(
55
53

)
−0.29 (4) −0.36

(
24
14

)
−0.27

(
18
11

)
[19]

quadrupole deformation parameters of the nucleus. The
first quadrupole invariant to be constructed, Q, corre-
sponds to the overall deformation of the nucleus, in anal-
ogy to the β parameter of the Bohr Hamiltonian, but re-
lating to the distribution of charge rather than mass. By
expanding over all intermediate states using the Wigner
6j symbol, one can write:

〈
Q2
〉

√
5

=
(−1)2Ii√
(2Ii + 1)

∑
t

〈i||E2||t〉 〈t||E2||i〉
{

2 2 0
Ii Ii It

}
.

(2)
The second invariant to be considered, δ, relates to

the degree of triaxiality in the intrinsic frame, in analogy
to Bohr’s γ parameter, but again relating to the charge
distribution. This is a higher-order invariant which, ex-
panding again over all intermediate states, yields:

√
2

35

〈
Q3 cos (3δ)

〉
= ∓ (−1)2Ii

(2Ii + 1)∑
t,u

〈i||E2||u〉 〈u||E2||t〉 〈t||E2||i〉
{

2 2 2
Ii It Iu

}
. (3)

Where a negative sign corresponds to integer spins and
a positive sign to half-integer. Here, we further assume
that:

〈cos (3δ)〉 ≈
〈
Q3 cos (3δ)

〉
(〈Q2〉)3/2

. (4)

Invariants were thereby determined for stable selenium
isotopes and the 〈δ〉 and

〈
Q2
〉

parameters are presented
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FIG. 5. (Color online) Level energies (left) and transition
strengths (right) expected for the asymmetric rotor, Davydov-
Filippov model as a function of the triaxiality parameter, γ
(solid lines). Experimental values (dashed lines) for 76Se are
shown, with shaded regions indicating the uncertainties. The
experimental data are best described by a triaxiality param-
eter, γ ≈ 25◦. Note that the behaviour of both energies and
transition strengths is symmetric about γ = 30◦. Level en-
ergies and transition strengths were normalized to reproduce
the experimental 2+

1 excitation energy and 2+
1 → 0+

1 transi-
tion strength, respectively.

in Fig. 6 in (
〈
Q2
〉
, 〈δ〉) space, in analogy to the (β, γ)

space often used to represent the Bohr deformation pa-
rameters. The use of the present data to determine the
shape invariants rather than that available in the litera-
ture results in a 30% reduced uncertainty in the deter-
mination of 〈cos (3δ)〉 for the 0+1 state. For the 0+2 state,
a better than 60% improvement in precision is found
for both

〈
Q2
〉

and 〈cos (3δ)〉. Note that 〈2+3 |E2 |2+3 〉
has not been determined in any stable selenium isotope.
The contribution of this matrix element to the ground-
state 〈cos (3δ)〉 values is expected to be small, due to
〈0+1 |E2 |2+3 〉 being small in all cases where it has been
measured. In the case of the 0+2 state however, the con-
tribution can be significant due to the larger magnitude
of the 〈0+2 |E2 |2+3 〉 matrix element. The 〈δ〉 values for
the 0+2 states presented in Fig. 6 (open symbols) might
therefore not be converged.

The 〈cos (3δ)〉 parameter, as previously stated, relates
to the degree of triaxiality of the state in question - in
this case the 0+1 and 0+2 states. A value of δ = 60◦

(〈cos(3δ)〉 = −1) corresponds to an axially symmetric
oblate shape, and a value of δ = 0◦ (〈cos(3δ)〉 = 1) to
an axially symmetric prolate shape. The 〈Q〉 parameter,

FIG. 6. (Color online)
〈
Q2

〉
and 〈δ〉 calculated using the

invariant values described in equations 2 and 3 for the 0+
1

(solid symbols) and 0+
2 (open symbols) states in stable se-

lenium isotopes. 76Se values were deduced from the matrix
elements determined in the present work, while 74,78,80,82Se
were determined from data presented in Refs. [8, 19, 26–28].
Note that, as discussed in the text, uncertainties correspond
to matrix-element uncertainties only and do not incorporate
any uncertainties in convergence.

meanwhile, relates to the absolute magnitude of defor-
mation. From Fig. 6, therefore, it is clear that while
the absolute degree of deformation in selenium isotopes
increases from A = 82 → 74, the nuclear shapes never
stabilize into an axially symmetric rotor. Instead, the
nuclei exhibit a significant - albeit not maximal - degree
of triaxiality. Note that the presented invariant values
are only sensitive to the average degree of triaxiality and
not to the degree of rigidity of the triaxial deformation.
Higher order invariant quantities than those expressed
in Eq. 2 and 3 can also be constructed to quantify the
rigidity of the Q and δ values, but require an even larger
collection of matrix elements than presented here.

A. Shell-Model Calculations

A microscopic comparison to the present data can
be made through comparison with configuration interac-
tion (CI) calculations in the so-called jj44 model space,
which is made up of the 0f5/2, 1p3/2, 1p1/2 and 0g9/2 or-
bitals for both protons and neutrons. Calculations were
performed using the shell-model code NuShellX [29] us-
ing both the JUN45 [6] and jj44b (see appendix A in
Ref. [7]) Hamiltonians with an isoscalar effective charge
of eπ + eν = 2.6. These calculations were previously pre-
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TABLE III. Experimental B(E2) transition strengths and
spectroscopic quadrupole moments for 76Se compared to those
calculated using the configuration interaction in the jj44
model space with two different interactions using an isoscalar
effective charge: eπ = 1.8, eν = 0.8. Experimental values
from this work (see Table. II). See text for details.

B(E2; I → F ) [e2fm4] Expt. jj44b JUN45

2+
1 → 0+

1 838 (14) 788 678

2+
2 → 0+

1 23.8 (10) 2.4 44.2

2+
2 → 2+

1 820 (30) 1073 273

Qs(I) [eb]

2+
1 -0.35 (4) +0.08 +0.49

2+
2 +0.19 (4) -0.09 -0.42

4+
1 -0.29 (4) +0.27 +0.27

FIG. 7. (Color online)
〈
Q2

〉
and 〈δ〉 calculated using the

invariant values described in equations 2 and 3. Present ex-
perimental results for 76Se (black points) along with values
determined from shell-model calculations performed using the
jj44b and JUN45 interactions. Numbered points indicate the
energy ordering of the 0+ states (i.e. 1 corresponds to 0+

1 , 2
to 0+

2 , etc.). Uncertainties correspond to matrix-element un-
certainties only and do not incorporate any uncertainties in
convergence. See text for details.

sented more broadly for low-lying states in 76Se [18] and
76Ge [7], with a detailed description of the calculations
presented in Appendix A of the latter reference. Here,
we will focus on the transition strengths most pertinent
to the present results.

Table III shows transition strengths for the lowest lying
2+ states and quadrupole moments for the 2+1 , 2+2 and 4+1
states determined both experimentally and in the CI cal-
culations. The 2+1 → 0+1 transition strength is relatively

well reproduced, with the jj44b Hamiltonian providing
the best agreement. Similarly, the jj44b interaction pro-
vides the best reproduction of the 2+2 → 2+1 transition
strength, albeit overestimating the relative strength as
compared to the 2+1 → 0+1 transition. The 2+2 → 0+1
strength is underpredicted by the jj44b interaction, how-
ever, with the JUN45 providing the better agreement. If
one were to interpret these results in the context of the
Davydov-Filippov model (Fig. 5), the jj44b calculations
would appear to predict near maximal triaxiality, while
the calculations using the JUN45 Hamiltonian predict a
rather less triaxial structure - albeit not axially symmet-
ric as evidenced by non-negligible 2+2 → 2+1 strength.
This interpretation is strengthened by comparison of the
quadrupole moments, with the JUN45 calculations re-
sulting in larger absolute values, while the jj44b values
are considerably smaller. Investigation of the quadrupole
moments appears to indicate a discrepancy between ex-
periment and both calculations however, with predictions
of a positive quadrupole moment - indicative of an oblate
deformation - being in conflict with the experimentally
determined negative value (prolate).

To investigate further, the rotational invariants in
equations 2 and 3 were constructed from the calculated
matrix elements. 2+ states up to 2+5 were included in the
determination of the invariants, increasing confidence in
convergence. As before, we present these calculated val-
ues in Fig. 7 in (

〈
Q2
〉
, 〈δ〉) space.

〈
Q2
〉

and 〈δ〉 values

were calculated for 0+1−4 and are compared to those cal-
culated from experimentally determined matrix elements
for the 0+1 and 0+2 states in 76Se. The jj44b calculations
appear to provide the best description of the two lowest-
lying 0+ states, albeit with the ground state exhibiting a
modest dominance by oblate deformation as compared to
prolate deformation in the experimental data. Nonethe-
less, the agreement is considerably better than might be
assumed if one were to merely compare the signs and
magnitudes of the Qs(2

+
1 ) values. Due to the more com-

prehensive collection of E2 matrix elements determined
from the CI calculations, higher order invariants can be
constructed to assess the degree of rigidity in

〈
Q2
〉

and
cos (3δ). It is found that the jj44b calculations corre-
spond to a very δ-soft structure, while the JUN45 calcu-
lations result in a more rigid configuration.

V. CONCLUSIONS

A low-energy Coulomb excitation measurement of 76Se
was performed using the JANUS setup at the ReA3 fa-
cility of the NSCL. A number of electric quadrupole ma-
trix elements were extracted using the GOSIA code, with
good agreement between the present results and those
in the literature, where available. The spectroscopic
quadrupole moment of the first 2+ state was measured at
improved precision, remaining consistent with a prolate
deformation. An analysis of rotational invariants with
the new higher-precision data was performed to probe the
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intrinsic structure of the bands built upon the 0+1 and 0+2
states. The ground-state is found to exhibit significant
triaxiality, albeit with a dominant prolate component.
The 0+2 state is also found to be consistent with a triaxial
deformation; however the present measurement was un-
able to determine the diagonal matrix element of the 2+3
state which, due to the large magnitude of 〈0+2 |E2 |2+3 〉,
will likely contribute significantly to the triaxial invariant
of the 0+2 state.

Comparison with configuration interaction calcula-
tions were performed. The present result highlights the
need for a detailed analysis of theoretical results be-
fore comparison with experiment. A first-order analysis
might imply that the CI calculations failed dramatically
to reproduce the experimental data, due to the differ-
ing signs of the spectroscopic quadrupole moments. The
construction of invariants using the calculated E2 matrix
elements, however, demonstrate that the calculations in
fact reproduce the structure relatively well, as shown in
Table III. A more comprehensive set of E2 matrix ele-
ments for the even-even selenium isotopes might allow
further investigation of the role of triaxiality in the ex-
cited 0+ states, which cannot be conclusively determined
in the present work.

Previous studies into the effects of deformation on
0ν2β matrix elements have focussed on axial shapes (e.g.
[5]). The present result, coupled to the low-lying struc-
ture of 76Ge which also points towards triaxiality in-
dicates that future investigations should take non-axial
shapes into account.
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