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Background: Calculating microscopic optical potentials for elastic nucleon-nucleus scattering has already led
to large body of work in the past. For folding first-order calculations the nucleon-nucleon (NN) interaction and
the one-body density of the nucleus were taken as input to rigorous calculations in a spectator expansion of the

multiple scattering series.

Purpose: Based on the Watson expansion of the multiple scattering series we employ a nonlocal translationally
invariant nuclear density derived from a chiral next-to-next-to-leading order (NNLO) and the very same interaction
for consistent full-folding calculation of the effective (optical) potential for nucleon-nucleus scattering for light

nuclei.

Methods: The first order effective (optical) folding potential is computed by integrating over the nonlocal,
translationally invariant NCSM one-body density and the off-shell Wolfenstein amplitudes A and C. The resulting
nonlocal potential serves as input for a momentum-space Lippmann-Schwinger equation, whose solutions are

summed to obtain the nucleon-nucleus scattering observables.

Results: We calculate scattering observables, such as total, reaction, and differential cross sections as well as the
analyzing power and the spin-rotation parameter, for elastic scattering of protons and neutrons from “He, SHe,
12¢, and %0, in the energy regime between 100 and 200 MeV projectile kinetic energy, and compare to available

data.

Conclusions: Our calculations show that the effective nucleon-nucleus potential obtained from the first-order
term in the spectator expansion of the multiple scattering expansion describes experiments very well to about
60 degrees in the center-of-mass frame, which coincides roughly with the validity of the NNLO chiral interaction

used to calculate both the NN amplitudes and the one-body nuclear density.

PACS numbers: 24.10.-1,24.10.Ht,25.40.-h,25.40.Cm



I. INTRODUCTION AND MOTIVATION

Traditionally differential cross sections and spin observables played an important role in either determining the
parameters in phenomenological optical models for proton or neutron scattering from nuclei or in testing accuracy
and validity of microscopic models thereof. Specifically, elastic scattering of protons and neutrons from stable nuclei
has led in the 1990s to a large body of work on microscopic optical potentials in which the nucleon-nucleon interaction
and the density of the nucleus were taken as input to rigorous calculations of first-order potentials, in either a Kerman-
McManus-Thaler (KMT) or a Watson expansion of the multiple scattering series (see e.g. [1-6]), for which a primary
goal was a deeper understanding of the reaction mechanism. However, a main disadvantage of that work was the lack
of sophisticated nuclear structure input compared to what is available today.

Recent developments of the nucleon-nucleon (NN) and three-nucleon (3N) interactions, derived from chiral effective
field theory, have yielded major progress [7—14]. These, together with the utilization of massively parallel computing
resources (e.g., see [15-18]), have placed ab initio large-scale simulations at the frontier of nuclear structure and reaction
explorations. Among other successful many-body theories, the ab initio no-core shell-model (NCSM) approach, which
has considerably advanced our understanding and capability of achieving first-principles descriptions of low-lying
states in light nuclear systems (e.g., see [19-23]), has over the last decade taken center stage in the development of
microscopic tools for studying the structure of atomic nuclei. The NCSM concept combined with a symmetry-adapted
(SA) basis in the ab initio SA-NCSM [24] has further expanded the reach to the structure of intermediate-mass nuclei
[25].

Following these developments in nuclear structure theory, it is worthwhile to again consider rigorous calculations
of effective folding nucleon-nucleus (NA) potentials, since now the one-body densities required for the folding with
NN scattering amplitudes can be based on the same NN interaction, and thus can be considered ab initio. This is
complementary to recent developments, where effective NA potentials are extracted from ab initio structure calcula-
tions via Green’s function methods [26]. Our approach to elastic scattering is based on the spectator expansion of
multiple scattering theory [27-30]. Here the first-order term involves two-body interactions between the projectile
and one of the target nucleons which requires a convolution of the fully off-shell NN scattering amplitude with the
nuclear wave functions of the target represented by a nonlocal one-body density (OBD). Thus, in its most general
form, the first-order single scattering optical potential within the framework of the spectator expansion is given by the
triangle graph shown in Fig. 1. A specific scope of this work is to consistently obtain the NN scattering amplitudes
and the nuclear one-body densities from a chiral NN interaction up to next-to-next-leading order. We neglect the
three-nucleon forces (3NFs) in this work since they are known to only give small contributions to densities and do
not contribute to the Watson expansion in the first order of the optical interaction. Similar work in this direction is
carried out in Ref. [31], however using a different chiral NN interaction [14] for the NN scattering amplitudes, which
is augmented by 3N interaction and is renormalized in calculations of the nuclear density. It is interesting to compare
the results of this work to those in Ref. [31].

The structure of the paper is as follows: In Sec. II we review the formalism for the single-scattering folding potential
and introduce the full-folding procedure as used in our calculations. Though in principle this can be found in the
literature, for clarity and the convenience of the reader we give the most important steps here. In Sec. III we present
results for elastic scattering of protons as well as neutrons from the “closed shell” nuclei “He and 60 in the energy
regime between 100 and 200 MeV. Then we apply the formulation to the “open shell” nuclei 2C and ®He. Our
conclusions are presented in Sec. IV.

II. THE FIRST-ORDER FOLDING POTENTIAL

The standard approach to elastic scattering of a strongly interacting projectile from a target of A particles is the
separation of the Lippmann-Schwinger (LS) equation for the transition amplitude

T =V +VGy(E)T (1)
into two parts, namely an integral equation for T
T=U+UGy(E)PT, (2)
where U is the effective (optical) potential operator and defined by a second integral equation
U=V +VGyE)QU. (3)

In the above equations the operator V' represents the external interactions between the projectile and the target
nucleons, and the projection operators P and ) are defined below. The Hamiltonian for the (A + 1)-particle system



is given by
H=Hy+V. (4)

The potential operator V = Zle vp; consists of the NN potential vg; acting between the projectile, denoted by “0”,
and the i-th target nucleon. The free propagator for the projectile-+target system is given by Go(E) = (E— Hy+ig) ™!,
where Hy = hg + Ha, with hg being the kinetic energy operator for the projectile and H4 denoting the target
Hamiltonian. Defining |®4) as the ground state of the target, we have Hy|®4) = E4|®4). The operators P and @
in Egs. (2) and (3) are projection operators, P+ @ = 1, and P is defined such that Eq. (2) is solvable. In this case, P

is conventionally taken to project onto the elastic channel, such that [Go, P] = 0, and is given as P = %. With
these definitions the transition operator for elastic scattering can be defined as T,; = PTP, in which case Eq. (2)

becomes
T., = PUP + PUPGy(E)T,;. (5)

The fundamental idea of the spectator expansion for the optical potential is an ordering of the scattering process
according to the number of active target nucleons interacting directly with the projectile. The first-order term involves

two-body interactions between the projectile and one of the target nucleons, i.e. U = Zf‘:l 7;, where the operator 7;
is derived to be

7 = voi + v0:Go(E)QT;
= Vo; -+ ’Uol'Go(E)Ti — UOiGo(E)PTi (6)
= 7:1' — fZGo(E)PTZ

Here 7; is the NN t-matrix and is defined as the solution of
’7:1' = Vo; + ’UOZG()(E)fZ (7)

It should be noted that all of the above equations follow in a straightforward derivation and correspond to the first-
order Watson scattering expansion [32, 33]. In the lowest order the operator 7; & to;, which corresponds to the
conventional impulse approximation. Here the operator ty; stands for the standard solution of a LS equation with the
NN interaction as driving term. It should be pointed out that the implicit treatment of the operator @ in Eq. (6) is
especially important for scattering from light nuclei as shown in Ref. [34].

For elastic scattering only P7; P (from Eq. (6)) needs to be considered, or equivalently

(Pal7i|®a) = (Pal7i|Pa) — (Pal7i|Pa) : —(@al7i[®a), (8)

(E—EA)—h0+Z

and this matrix element represents the full-folding effective (optical) potential

(K[UTk) = (K®a| > 7ilka), 9)

Since (k’|U|k) is the solution of the sum of one-body integral equations represented by Eq. (8), it is sufficient to
consider the driving term

(K[Ulk) = (KD Zﬁ'|k‘1’A>, (10)

where 7; & tg; in the impulse approximation. Inserting a complete set of momenta for the struck target nucleon before
and after the collision and representing the sum over target protons and neutrons by « leads to

. X K’ k
UK k=> /d3p’d3p (X'p' | 7a(€) | kP) pa <p’ + Pt A) sk +p —k—p), (11)

a=p,n

where the momenta k' and k are the final and initial momenta of the projectile in the frame of zero total nucleon-
nucleus momentum. The structure of Eq. (11) is represented graphically by Fig. 1, which also illustrates the momenta
p’ and p. The proton and neutron densities are given by p,. Evaluating the é-function, introducing the variables
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q=k -k, K=1(k+k)and p = J(p'+p), and finally changing the integration variable from p to P = p + %,
accounting for the recoil of the nucleus [35], leads to the final expression for the full-folding effective potential

UqK)= > /d3P n(P,q,K) 74 (q,; (Ale - P) ;e)

a=p,n
A-1q Alq)

J(p-Alap Al
XP< A 2 A

(12)
Here n(P,q,K) is the Mgller factor for the frame transformation [36] relating the NN zero-momentum frame to
the NA zero-momentum frame. Further details can be found in Refs. [3, 35, 37]. The free NN amplitude 7, is
calculated from the free NN t-matrix according to Eq. (7) at an appropriate energy €. In principle this energy should
be the beam energy minus the kinetic energy of the center-of-mass (c.m.) of the interacting particle less the binding
energy of the struck particle. Following this argument, ¢ should be coupled to the integration variable P. The
full-folding calculations of Refs. [38, 39] are carried out along this vein, and found only small effects for scattering
energies above 100 MeV. For our calculation we take a different approach, we fix ¢ at the two-body c.m. energy
corresponding to the free NN scattering at the beam energy so that the same laboratory energy applies to the two-
body and nuclear scattering. This approach has also been applied in earlier work [3, 4, 34, 40]. The quantity p,, with
a = p(n), represents a nonlocal OBD for the proton (neutron) distribution. Since U (q,K) is computed in the NA
c.m. frame, it is mandatory that the OBD must be given in a translationally invariant fashion. The treatment of Pauli
antisymmetry effects follows the philosophy growing out of the early work of Watson [41, 42| and developed via the
spectator expansion in [43]. In the lowest order the two-body antisymmetry is achieved through the use of two-body
t-matrices which are themselves antisymmetric in the two “active” variables (corresponding to the weak binding limit
in [42]). For the next order, requiring two-body densities, three “active” variables need to be antisymmetrized. The
effect of the Pauli principle in the next order of this expansion has been estimated in ref. [1] and found it to be very
small in the energy regime under consideration here.

An important product of this work is that the NN t-matrix and OBD now use the same underlying NN interaction.
For this we choose the optimized chiral NN interaction at the next-to-next-to-leading order NNLOgp¢ from Ref. [44].
This interaction is fitted with x2 ~ 1 per degree of freedom for laboratory energies up to about 125 MeV. In the
A = 3, 4 nucleon systems the contributions of the 3NFs are smaller than in most other parameterizations of chiral
interactions. As a consequence, nuclear quantities like root-mean-square radii and electromagnetic transitions in light
and intermediate-mass nuclei can be calculated reasonably well without invoking 3NFs [45, 46]. From this point of
view, the NNLO,p¢ NN interaction is very well suited for our calculations, since the first-order folding potential does
not contain any explicit 3SNF contributions.

The full-folding effective potential of Eq. (12) requires as input a nonlocal translationally invariant OBD. The
procedure for computing this quantity from ab initio NCSM calculations has been described in detail in Ref. [47],
and the derivation will not be repeated here. The convolution of the nonlocal OBD with the fully off-shell NN t-
matrix and the Mgller frame transformation factor is carried out in momentum space in three dimensions without
partial wave decomposition, and the integration is performed using Monte Carlo integration techniques. It is also
to be understood that all spin summations are performed in obtaining U(q,K). For a strictly spin-zero nucleus,
this reduces the required NN t-matrix elements to a spin-independent component (corresponding to the Wolfenstein
amplitude A) and a spin-orbit component (corresponding to Wolfenstein amplitude C), whereas the components of
the NN t-matrix depending on the spin of the struck nucleon vanish. For the proton nucleus scattering calculations
the Coulomb interaction between the projectile and the target is included using the exact formulation from Ref. [48].

Since our calculations for NA scattering concentrate on the energy regime between 100 and 200 MeV, we first want
to consider how well the Wolfenstein amplitudes A and C are described by the chiral NN interaction NNLOgp¢. This
comparison is shown in Fig. 2 for 100 MeV and Fig. 3 for 200 MeV for the np Wolfenstein amplitudes. All figures
show A and C obtained from NNLO,y,, together with the experimental extraction from the GW-INS analysis [49].
As comparison we also show A and C obtained from the Charge-Dependent Bonn potential (CD-Bonn) [50], which is
fitted to the NN data up to 300 MeV with x? =~ 1. As expected at 100 MeV NN laboratory kinetic energy differences
between NNLO,p, CD-Bonn, and the experimental extraction from the GW-INS analysis are minimal. The imaginary
part of Wolfenstein C' determines the real part of the NA spin-orbit interaction. The NNLO,p interaction will result
in a slightly stronger spin-obit term (related to Im C') above 100 MeV. Likewise the real part of A (the central depth)
in the forward direction is slightly under-predicted by NNLO,p, at 100 MeV and becomes strongly under-predicted
by 200 MeV. The differences exhibited by NNLO,¢ changes the ratio between the central depth, and the spin-orbit
force, an important factor in the spin observables in NA scattering. This disparity may be a consequence of the
interaction having a small x? below 125 MeV NN laboratory kinetic energy, while by 200 MeV the x? is about 6 in
the np channel, with the largest disagreement being in the P-waves.



III. RESULTS AND DISCUSSION
A. Elastic scattering observables for *He and O

The first-order folding potential for NA scattering, as described in the previous section, is exact for nuclear states
with total intrinsic spin zero, so we first concentrate on “closed shell” nuclei, such as *He and 0, with a ground state
that is largely dominated by zero intrinsic spin. For example, converged cross section results for *He, discussed below,
use NCSM calculations of the “He ground state that has a spin-zero contribution of about 95%. The “closed shell”
nuclei within the reach of NCSM calculations are “He and '°0. After computing the first-order folding potential using
as input a nonlocal translationally invariant OBD based on the NNLO, chiral potential [44] obtained as outlined
in Ref. [47] and the Wolfenstein amplitudes A and C based on the same interaction, we compute total, reaction, and
differential cross sections for elastic scattering as well as the analyzing power A, and the spin-rotation parameter
Q. Our choice of energies for which we show observables is dictated by the availability of experimental data, and we
concentrate on the energy regime between 100 and 200 MeV projectile laboratory kinetic energy since we expect that
the first-order term governs the scattering process at those energies.

The nonlocal translationally invariant densities are calculated from one-body density matrix elements computed in
the NCSM framework. The latter uses a harmonic-oscillator basis characterized by two parameters, Ny .y, defined
as the maximum number of oscillator quanta above the valence shell for that nucleus as well as the oscillator length
hw. A converging trend of nuclear structure observables, including binding energies and radii, with respect to these
model parameters has been ensured but this does not necessarily ensure convergence of the scattering observables
under consideration, details of which we present herein. It is well known that different observables exhibit a different
convergence behavior with respect to the two parameters. While the scattering observables presented here for *He are
well converged already at Nyax = 8 and practically independent of hiw over the range of 16-24 MeV (further discussed
below for Npax = 18), in Fig. 4 we show results for °O as an illustrative example, and we investigate the convergence
of the ratio of the differential cross section to the Rutherford cross section at 200 MeV with respect to Npyax for three
values of iw = 16, 20, and 24 MeV. Here Ny .x = 6, 8, and 10 results are shown to indicate that the calculations in
the hw range of 16-20 MeV are almost converged at Nyax = 10, with the results for iw = 16 MeV and hw = 20 MeV
slowly approaching each other. The results in Fig. 4 show that the dependence on a selected hw range dominates
variations in the calculated observables, which is why in the following calculations of scattering observables we only
show results across various fuw values, while keeping Ny, at a fixed, reasonably large value.

The differential cross section divided by the Rutherford cross section is shown for scattering of protons off *He in
Fig. 5 for three projectile laboratory kinetic energies, 100, 150, and 200 MeV as function of the momentum transfer
as well as of the c.m. scattering angle. Dividing by the Rutherford cross section allows for a clearer view of the
forward angles, which should be well described by the first-order folding potential. This is indeed the case, Fig. 5
shows that in the energy regime between 100 and 200 MeV the differential cross section is very well described by the
calculations up to about 60°. At larger angles multiple scattering effects, which are not included, are likely to become
more important. This is a well known phenomenon in, e.g., three-body scattering, where higher-order Faddeev terms
are needed to build up the backward angles in neutron-deuteron scattering [51, 52]. The vertical dashed line marks
the momentum transfer ¢ = 2.45 fm~! which corresponds to the laboratory kinetic energy of 125 MeV in the np
system, up to which the chiral NNLO,p interaction was fitted. The cross sections are shown at Ny,x = 18 for three
different oscillator parameters hiw = 16, 20, and 24 MeV, indicating no dependence on the model parameters for this
hw range. Indeed, for Ny = 18 the variation in the calculated cross sections with different Aw values for *He is
smaller than the curve widths.

The corresponding analyzing power A, of elastic proton scattering off 4He at 100, 150, and 200 MeV laboratory
kinetic energy are shown in Fig. 6. For 150 and 200 MeV, the analyzing power has a reasonably good agreement up
to 60° and at the line marker. Varying oscillator parameters fiw at Nya.x = 18 produces a very small difference in
the calculated cross section, that is smaller than the curve widths shown. This is quite different from the calculations
presented in Ref.[31], where the analyzing power of “He at 200 MeV misses most data by a considerable amount.
In part, our better agreement may be due to our treatment of the projection operator @ as outlined in Eqgs. (6-8),
which is important for scattering from light nuclei [26]. Another possibility may be the choice of the underlying NN
interaction leading to a very different spin-orbit force. This will need to be further explored.

The calculations of the differential cross section divided by the Rutherford cross section for proton elastic scattering
off 0 is shown in Fig. 7. The analyzing power for laboratory kinetic energies 100, 135, and 200 MeV are shown in
Fig. 8. Similar to the calculations for *He, the value of Npax is kept constant, in this case at Nyax = 10, which is
the largest Ny ax achievable in the NCSM with current resources, while hw is varied between 16 and 24 MeV. The
agreement between the calculated differential cross section and the data is reasonable at forward angles (up to 40°)
and low momentum transfer with deviations beginning at around 1.5 to 2 fm~! at all energies. The dependence
of the differential cross section on the basis hiw values indicates that the calculations are not yet fully converged



at Npax = 10. However, at small angles corresponding to low values of the momentum transfer g, where we agree
reasonably well with the data, this dependence is relatively small.

The experimental data for the analyzing power for 160 are quite well described for proton energies 135 and 200 MeV
for momentum transfers ¢ < 2.45 fm~! (Fig. 8). Here again, the analyzing power shows a weak dependence on fiw
at small angles (low momentum transfer), but this dependence increases with the scattering angle. In fact, A, is
better described than the differential cross section, indicating that the ratio between central and spin-orbit force is
still captured by the calculation while the absolute magnitude starts to deviate with increasing angles or momentum
transfers. The comparison to experimental data at 100 MeV shows the same general shape but the agreement is not
quite the same as the one observed at higher energies. This is most likely an indication that higher-order terms in
the spectator expansion may become more important at lower energies. Included in Fig. 8 is also the spin rotation
parameter at 200 MeV. Like the analyzing power at the same energy, good agreement between the experimental
data and the calculation is obtained. A comparison to earlier calculations of the full-folding microscopic potential
[30] shows improvement in both the differential cross section and the analyzing power for a larger range of angles.
Note that the region below ¢ = 2.45 fm~! is the region where NNLO,, was fitted, and this is the region where we
have reasonably good convergence and agreement with the data. Again, comparing with Ref.[31] reveals that our
calculations describe the experimental values much better, indicating that the spin-orbit force of Ref.[31] is quite
different from our calculations.

B. Elastic scattering observables for ?C and °He

Strictly speaking the full-folding implementation of the first-order term in the multiple scattering expansion is exact
only for nuclear states with a zero intrinsic spin, since — by definition — spin-dependent terms in the first-order folding
potential that involve a spin flip of the struck target nucleon naturally vanish for a spin-zero state of the target. We
note, however, that besides omitting these spin-dependent terms, the present formalism is valid for a general nuclear
state with a mixture of any intrinsic spins. To investigate the quality of describing scattering observables using this
formalism, we want to consider “open shell” even-even nuclei. These nuclei have a ground state that is dominated by
spin zero and often the spin-zero component is found to be in excess of 80% of the total wave function (e.g., see Table
3 in Ref. [25] for calculations using NNLO,p and another realistic interaction). For example, for “He, calculations at
Npax = 12 show that the zero-spin contribution to the ground state is about 80-85%. An interesting case is 2C, for
which the ground state has a comparatively large non-zero spin component, namely, about 40%.

The results for proton elastic scattering off 2C are shown in Figs. 9 and 10 for laboratory kinetic energies 122,
160, and 200 MeV. The differential cross section divided by the Rutherford cross section is shown in Fig. 9 while the
analyzing power is shown in Fig. 10. Here Ny is kept fixed at Nyax = 10 (as for 10) while hw is varied between
16 and 24 MeV. The agreement among the differential cross section experimental data and the calculations is good
in the forward direction, and reasonable for 160 and 200 MeV even past the 2.45 fm~! marker to about 3.5 fm™!
while for 122 MeV, the cross section begins to deviate at the diffraction minima near 2 fm~!. The analyzing power
calculations in Fig. 10 reasonably agree with the data for proton energies 160 and 200 MeV for ¢ values that are below
the corresponding energy to which the NNLO,p was fitted, while the results at lower energies 122 MeV deviate more
from the data, but retain the same general shape as for 0. Overall this result for '2C is unexpectedly good since
its ground state, as mentioned above, has a comparatively large non-zero spin contribution. The reason might be
that this contribution is fully treated in this formalism, which has captured most of the physics necessary to describe
these scattering observables, whereas the effect of the neglected spin-dependent terms appear to be of secondary
importance. Indeed, it is obvious from the differential cross section that there are deficiencies in the description, since
the experimental minima in the cross section differ from the calculation.

Recently the differential cross section of protons off *He has been measured at 200 MeV /nucleon [53]. Since this
energy falls within the range of energies studied here, we show in Fig. 11 a comparison of the experiment with our
calculation of the differential cross section. Our calculations are performed at Nyax = 18 (same as for 4He) while hw
is varied between 16 and 24 MeV, and our results are in good agreement with the available data. In addition we show
a prediction of the analyzing power. Elastic scattering of ®He off a polarized proton target has a somewhat longer
history. The first measurement of the analyzing power involving elastic scattering of an exotic nucleus was carried
out at 71 MeV /nucleon [54] and still deviates considerably from microscopic calculations [55-58]. Therefore, it will
be illuminating to compare our prediction with the measurement at 200 MeV /nucleon, once fully analyzed [59].



C. Total and Reaction Cross Sections

In addition to differential cross sections and spin observables, it is often illuminating to consider e.g. neutron total
cross sections or reaction cross sections since they are integrated over all scattering angles and may reveal averaged
information about the reaction. In our calculations the total cross section is computed from the imaginary part of
the forward scattering amplitude, while the reaction cross section is obtained using the optical theorem.

The total cross section for neutron scattering off 160 is shown in Fig. 12 as function of the projectile laboratory
kinetic energy. Our calculations between 65 and 200 MeV using values of hw between 16 and 24 MeV are shown as
error bar (without a midpoint). To have a better comparison with previous work using the same theoretical approach
but different input we show as solid squares calculations based on a Hartree-Fock-Bogoliubov (HFB) nonlocal density
with the Gogny-D18S interaction [60] and scattering amplitudes from the CD-Bonn potential [50]. The solid triangles
use the same HFB density but the NNLO,y interaction for the scattering amplitudes. From a comparison of those
three calculations we can conclude that the choice of interaction has a major influence on the value of the total cross
section. However, only the consistent use of the NNLO,y, interaction for the scattering amplitudes and the one-body
density leads to a very good agreement with experiment between 100 and 200 MeV. We observe that the calculation
at 65 MeV significantly underestimates the data, indicating that a first-order folding potential is no longer sufficient
to describe the scattering data below about 100 MeV most likely due to a lack of absorption in the single scattering
term. We have found that if one multiplies the effective potential by the scalar €°-244? which is consistent with similar
factors found in Ref. [61], that it uniformally improves all observables in which experimental data exists (i.e. reduces
the x?/datum). We leave an analysis of this effect to future work.

Furthermore, it is worthwhile investigating if there is a correlation between observables computed within the
structure calculation, and cross sections obtained from scattering. Here we use proton scattering data and calculations,
since neutron total cross section data for *He were not available to us. In Table I the total cross section, oo, and
the reaction cross section, 0cqc, for proton scattering at 230 MeV laboratory projectile kinetic energy from 60, 12C,
and “He are given together with the point-proton root-mean-square (7,5 ,) radii of those nuclei, and compared to
experimental data where available . The experimentally deduced point-proton 7, , are calculated from experimental
charge radii [62], using proton and neutron mean-square charge radii R2 = 0.769(13) fm? [63] and R? = —0.1149(27)
fm? [62], respectively, and a first-order relativistic correction of 0.033 fm?. The proton total cross section refers here
to the extracted nuclear part [64]. Three different values for hiw are listed in the table, for which Ny is kept fixed at
values given in the table caption. The calculated total and reaction cross sections are in a close agreement with the
data within its error bars, whereas the point-proton rms radii are slightly underpredicted, as is often the case for radii
calculated from chiral potentials [65]. The table hints at a correlation between the structure and reaction observables.
If one represents the calculated results for each observable as coordinates of a vector, the scalar product of the two
traceless normalized (shifted so the mean of the distribution is zero and the standard deviation is one) vectors is a
measure of their correlation [66]. Fig. 13 (a) plots the coordinates of the traceless normalized vectors corresponding
to the reaction cross section (y axis) and to the point-proton rms radius (z axis) for a given nucleus. Indeed, there is
almost perfect correlation between the calculated reaction cross sections with the calculated point-proton rms radii (or
equally, the charge radii) for varying NCSM model parameters, Nyax and fiw, as shown in Fig. 13 (a). This correlation
holds for both “closed shell” and “open shell” nuclei under consideration, as well as for different laboratory projectile
kinetic energies (only 230 MeV is shown in the figure). This means that the reaction cross section is sensitive to the
average radius, and not to the details of the spatial distribution, e.g., the deformation that is pronounced in '2C.
Furthermore, such a feature is especially important for uncertainty quantification of the calculated cross section based
on uncertainties obtained for the ground-state rms radius of each nucleus. Calculated cross sections as function of
point-proton 7,5 , radii for targets of 120 and 190 are shown in Figs. 13 (b) and (c) together with point-proton Trms,p
radii extracted from NCSM calculations based on the crossover point as described in Ref. [67]. While not evident
from the correlation results, Figs. 13 (b) and (c) reveal a linear dependence with a comparable slope for laboratory
projectile kinetic energies between 100-230 MeV (as an example, 200 MeV is also shown in the figure). Extracted
radii and uncertainties are determined from NCSM calculations up through Np.x = 10 and over the Aiw range of 16-24
MeV that contains the fastest rate of convergence of ry.,,s , With respect to Nyax, with a rather conservative estimate
for the error arising from hw variations. Thus, e.g. for 2C, the extracted ground-state Trms,p Of 2.31(13) fm yields
an estimated reaction cross section of 222(9) mb for 230 MeV laboratory projectile kinetic energy. It is interesting
to note that the extracted ry.,,s , radius and the estimated reaction cross section lie quite close to the experimental
values and agree within the errors. Similarly, for 'O | for which the extracted ground-state ry,s , is 2.32(11) fm,
leading to the estimate for the 230-MeV reaction cross section of 261(10) mb. Such an almost perfect correlation with
the rms radii (charge radii) is also observed for the extracted total cross section.



IV. CONCLUSIONS AND OUTLOOK

We have calculated the full-folding integral for the first-order effective (optical) potential for NA scattering within
the framework of the spectator expansion of multiple scattering theory. Those potentials are calculated ab initio, i.e.
are based consistently on one single NN interaction, in our case the chiral next-to-next-to-leading order NNLOgp¢
interaction from Ref. [44], which is fitted to NN data up to 125 MeV laboratory kinetic energy with x? ~ 1 per
degree of freedom, and which describes the A = 3, 4 nucleon systems such that the contributions of the 3NFs are
smaller than in most other parameterizations of chiral interactions. Based on this interaction, the one-body nonlocal
nuclear densities are calculated for the “closed shell” nuclei *He and 60, as well as for the “open shell” nuclei He
and '2C using two-body interactions only. The nonlocal densities are created translationally invariant as laid out in
Ref. [47]. Recoil and frame transformation factors are implemented in the calculation of the scattering observables in
their complete form.

We calculated proton elastic scattering observables for the above-mentioned nuclei at laboratory projectile energies
from 100 to 200 MeV, compared them to experimental information, and find them in very good agreement with the
data in the angle and momentum transfer regime where the first term of the full-folding effective potential should be
valid. Specifically we want to point out the excellent agreement of the predictions in this regime for the analyzing
powers with the data. That may be due to the specific fit of the NNLO,,, interaction, which seems to slightly change
the ratio of the central depth of the effective potential to its spin-orbit part in addition to minimizing 3NF contribution.
The first-order term in the multiple scattering expansion does not explicitly contain any 3NF contributions, thus the
choice of the NNLOgpt, works well with the theoretical content of the effective potential. Further studies with different
interactions in the future will have to shed more light on the effect including 3NFs in the one-body density for the
first-order effective potential. This will be particularly interesting, since the description of the analyzing powers in the
same energy regime is quite different in Ref.[31] when the same nuclei are considered.

The theoretical derivation of the first-order potential neglects spin-dependent terms that vanish for nuclear states
with total intrinsic spin zero, thus we first considered the “closed shell” nuclei “He and 60O in our study. Since the
same formulation is often also applied to “open shell” even-even nuclei like 12C [31, 34], we tested our approach also
for this case. We find that the description of the differential cross section and the analyzing power is of similar quality
as the one we found for 0. We also predict differential cross section and analyzing power at 200 MeV for 6He, a
reaction measured and still being analyzed at RIKEN. Applying a formulation of the first-order term in the multiple
scattering theory in which only the NN Wolfenstein amplitudes A and C enter, implies neglecting contribution that
come from the other spin couplings inherent in the NN interaction. They may be small, considering that the one-
body densities of the nuclei considered are dominated by spin-zero components and also hinted by the reasonably
good results presented here for 12C, but nevertheless this approximation will have to be tested in future work. Exotic
nuclei may very well have larger non-zero spin components.

We also calculated total cross sections for neutron scattering and reaction cross sections for proton scattering.
We found that the neutron total cross section for 0O computed consistently with the NNLO,y interaction gives
a superior description of the data compared to previous calculations, which employed different interactions for the
one-body density and the two-body t-matrix. When comparing total reaction cross sections with point-proton 7,
radii extracted from the structure calculation, we find an almost perfect correlation between those two quantities for
both, “closed shell” and “open shell” nuclei under consideration, indicating that the reaction cross section obtained
from the first-order folding potential is mainly sensitive to the average radius of these nuclei.

Appendix A: Center-of-Mass (CoM) Contribution in Scattering Observables

It is long-standing knowledge that nuclear one-body densities computed in fixed coordinates, either local or non-
local, must have their CoM contribution removed in order to be translationally invariant [47, 68-72]. Working with
translationally invariant one-body densities is particularly important in reaction calculations, since those are carried
out in the c.m. frame of the particles involved in the reaction. It is well understood that the size of the CoM con-
tribution decreases with the nuclear mass as 1/A. In Fig. 14 the differential cross section divided by the Rutherford
cross section along with the analyzing power is shown for both *He (a) and 160 (b) at 200 MeV laboratory kinetic
energy. The solid lines represent the full-folding calculation using a translationally invariant nonlocal density, while
the dashed lines represent a calculation containing the CoM contribution. The cross sections follow the expected
trend, with “He being greatly affected already at relatively low momentum transfers, while the effect for 60 is only
evident at large momentum transfers.

The analyzing powers are less affected by the CoM contribution, even for *He, which is most likely due to the fact
that the analyzing powers are ratios of spin-dependent cross sections, and deviations in their magnitude are divided
out. A similar, even more detailed study is presented in Ref. [31]. We want to confirm those results and suggest that



the analyzing power should be generally unaffected by the CoM contribution for nuclei A 2 16, while cross sections
should be unaffected for A 2 20. Thus, ab initio structure calculations for heavier nuclei for which it is not possible
to remove the CoM contribution exactly, can also provide one-body densities for NA scattering calculations.
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Target |E [MeV]|Exp. oot [mb]| oo [mb] |EXp. 0reac[mb]|oreac. [Mb] | EXp. rrms,p [fm]|[7rms,p [fm]|fiw [MeV]
359.2 262.9 2.346 16
160 230 380 + 15 351.5 295 + 12 253.3 2.569 + 0.006 2.240 20
346.2 246.8 2.169 24
288.7 221.6 2.304 16
2¢ 230 290 + 12 283.3 218 + 5 214.5 2.327 + 0.004 2.202 20
279.7 209.8 2.135 24
1114 86.5 1.440 16
“He 230 109 + 1 111.1 - 86.3 1.456 + 0.005* 1.437 20
110.8 86.1 1.436 24

11

& A discrepancy between this value and that listed in Ref. [73] is mainly caused by a difference of the 4He charge radii used here and in
Ref. [73]. However, both numbers agree within error bars.

TABLE 1. The total cross section, reaction cross section, and point-proton rms radii for 160, 12C, and *He over a range of
oscillator parameter A values. All calculations are performed with Nyax=10 for %0 and '2C while “He used Nmax=18. The
experimental total cross section and reaction cross section values are taken from [64]. The total cross section is an extracted
value for the nuclear part. The experimentally deduced point-proton rms radii are extracted from [62].
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FIG. 1. Diagram for the matrix element of the effective (optical) potential for the single scattering term.
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NNLOgpt chiral interaction [44]. The solid diamonds represent the extraction from the GW-INS analysis [49].
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FIG. 4. The angular distribution of the differential cross section divided by the Rutherford cross section for elastic proton
scattering from '°0 at 200 MeV laboratory kinetic energy as function of the c.m. angle calculated with the NNLOgp; chiral
interaction [44]. The different values of Nimax are indicated in the legend. From top to bottom, the three sets of lines correspond

to hw = 24, 20, and 16 MeV respectively.
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FIG. 5. The angular distribution of the differential cross section divided by the Rutherford cross section for elastic proton
scattering from “He at 100, 150, and 200 MeV laboratory kinetic energy as function of the momentum transfer and the c.m.
angle calculated with the NNLOgp chiral interaction [44]. The dashed line represents the calculation based on nonlocal densities
using hw = 16 MeV, the solid line with 20 MeV, and the dash-dotted line with 24 MeV. For all calculations Npax = 18 is
employed. The data for 100 MeV are taken from Ref. [74], for 156 MeV from Ref. [75], and for 200 MeV from Ref. [76]. The
dashed vertical line in each figure indicates the momentum transfer ¢ = 2.45 fm~! corresponding to the laboratory kinetic
energy 125 MeV of the np system.
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laboratory kinetic energy as function of the momentum transfer and the c.m. angle calculated with the NNLO,p chiral
interaction [44]. The lines follow the same notation as in Fig. 5. The data for 150 MeV are taken from Ref. [77], and for
200 MeV from Ref. [76].
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FIG. 7. The angular distribution of the differential cross section divided by the Rutherford cross section for elastic proton
scattering from 0O at 100, 135, and 200 MeV laboratory kinetic energy as function of the momentum transfer and the c.m.
angle calculated with the NNLOgp chiral interaction [44]. The dashed line represents the calculation based on nonlocal densities
using hw = 16 MeV, the solid line with 20 MeV, and the dash-dotted line with 24 MeV. For all calculations Npax = 10 is
employed. The data for 100 MeV are taken from Ref. [78], for 135 MeV from Ref. [79], and for 200 MeV from Ref. [80]. The
dashed vertical line in each figure indicates the momentum transfer ¢ = 2.45 fm~! corresponding to the laboratory kinetic
energy 125 MeV of the np system.
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Ref. [79], and for 200 MeV from Ref. [80].
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using hw = 16 MeV, the solid line with 20 MeV, and the dash-dotted line with 24 MeV. For all calculations Npax = 10 is
employed. The data for 122 MeV are taken from Ref. [81], for 160 MeV from Ref. [81], and for 200 MeV from Ref. [82]. The
dashed vertical line in each figure indicates the momentum transfer ¢ = 2.45 fm~! corresponding to the laboratory kinetic
energy 125 MeV of the np system.
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from Ref. [81], and for 200 MeV from Ref. [82].
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FIG. 12. The total cross section for neutron scattering from O as function of the neutron incident energy. The data are taken
from Ref. [83]. The solid band corresponds to calculations using the NNLOgp chiral interaction [44} consistently in the nonlocal
density as well as in the NN t-matrix with the band width determined by different hw values. The downward triangles use the
NNLO,pt¢ interaction only in the NN t-matrix, while employing a HFB density based on the Gogny-D18S interaction [60]. The
squares use this density together with the CD-Bonn [50] NN t-matrix.
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FIG. 13. Calculated reaction cross sections vs. calculated point-proton rms radii 7,5 for proton scattering at 200 and 230 MeV
laboratory projectile kinetic energies off *He, 12C, and °O: (a) Correlation plot between the two observables at 230 MeV energy
and targets of “*He, '?C, and '90; to guide the eye, the perfect correlation is indicated by the grey dashed line (see text for
details). (b) and (c) Calculated cross sections as function of point-proton ryms radii for targets of **C (b) and *¢O (c), shown
together with point-proton 7, radii extracted from NCSM calculations (labeled as “Theory”), and compared to experimental
cross sections (where data are available) and experimentally deduced point-proton rms radii extracted from Ref. [62] (labeled
as “Expt.”), with the corresponding errors shown by shaded areas (see text for details). For each nucleus, calculations are
performed for Npax=6, 8, and 10, and for Aiw =16, 20, and 24 MeV.
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FIG. 14. The angular distribution of the differential cross section divided by the Rutherford cross section and the angular
distribution of the analyzing power for elastic proton scattering from *He (a) and 160 (b) at 200 MeV laboratory kinetic energy
as function of the momentum transfer and the c.m. angle calculated with the NNLOp¢ chiral interaction [44]. The solid line
represents the calculation based on nonlocal densities without the center-of-mass contribution (CoM) while the dashed line
includes it. For all “He calculations, Nmax = 18 and fiw = 20 MeV are employed, while all 10 calculations employ Npax = 10
and hw = 20 MeV. The data for *He at 200 MeV are taken from Ref. [76] while the data for °O at 200 MeV are taken
from Ref. [80]. The dashed vertical line in each figure indicates the momentum transfer ¢ = 2.45 fm™" corresponding to the
laboratory kinetic energy 125 MeV of the np system.



