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Abstract

We perform a combined analysis of inclusive electron scattering data from A = 3 nuclei in the

deep-inelastic and quasielastic scattering regions, using Monte Carlo analysis methods and the

nuclear weak binding approximation to establish the range over which the data can be described

within the same theoretical framework. Comparison with quasielastic 3He cross sections from

SLAC and Jefferson Lab suggests that most features of the x & 1 data can be reasonably well

described in the impulse approximation with finite-Q2 nuclear smearing functions for momentum

transfers Q2 & 1 GeV2. For the DIS region, we analyze the recent 3He to deuterium cross section

ratio from the Jefferson Lab E03-103 experiment to explore the possible isospin dependence of the

nuclear effects. We discuss the implications of this for the MARATHON experiment at Jefferson

Lab, and outline how a Bayesian analysis of 3He, 3H and deuterium data can robustly determine

the free neutron structure function.
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I. INTRODUCTION

With the completion of the 12 GeV energy upgrade of Jefferson Lab, a new chapter in

the exploration of the quark structure of the nucleon and nuclei has begun. One of the

main drivers of the new facility is the determination of the spatial, momentum, and spin

distributions of the nucleon’s valence quarks. Of particular interest are configurations in

which a single quark carries a large fraction, x, of the momentum of the nucleon, which can

reveal details of the underlying quark-gluon dynamics [1].

It is surprising that, almost four decades after the first experimental deep-inelastic scat-

tering (DIS) programs were initiated, such fundamental quantities as the momentum fraction

carried by d quarks in the proton are still poorly known at large x [7–9]. While this is partly

due to the steeply falling inclusive DIS rates as x→ 1, the additional complication has been

the absence of free neutron targets, which has significantly limited the extraction of u and

d flavor information from hydrogen and deuterium data due to nuclear effects in the lat-

ter [10]. Indeed, uncertainties from the short-range part of the nucleon–nucleon interaction

give rise to differences in the extracted d/u parton distribution function (PDF) ratio that

are typically of the same order as the variation between predictions from different dynamical

models [11–13].

Recent progress on the experimental front has come with the measurement of the nearly-

free neutron structure function in the “BONuS” experiment at Jefferson Lab [14, 15], using

spectator tagging in semi-inclusive DIS from the deuteron, which has improved the precision

of the d/u ratio in the intermediate- to high-x region. More dramatically, data on charged

lepton and W -boson asymmetries in pp̄ collisions from the CDF and D0 Collaborations

at Fermilab [16–19] have provided more stringent constraints on the d/u behavior up to

x ∼ 0.7. In particular, the recent CJ15 global QCD analysis [20] suggested that the nucleon

off-shell effects in the deuteron are relatively small, at least in the isoscalar channel.

However, while the new data have led to a reduction in the extracted PDF uncertainties

at large x, there is still considerable uncertainty in the extrapolation from the highest x

values at which there are data to the x = 1 limit. For instance, depending on the functional

form chosen for the u and d PDFs, one can get rather different extrapolated d/u ratios in the

x = 1 limit [20, 21]. The experimental program at Jefferson Lab at 12 GeV aims to bridge

this gap by using several novel techniques to isolate the d/u ratio up to x ∼ 0.85 in the DIS
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region. The spectator tagging method will be used again to extend the BONuS experiment

to 12 GeV [22], isolating nearly free neutrons in the deuteron by detecting a low-momentum,

backward-angle proton in DIS off deuterium. Further ahead, the SoLID Collaboration aims

to measure parity-violating DIS from the proton, with the γ-Z interference structure function

providing a different combination of the u and d PDFs compared with electromagnetic

scattering [23, 24].

In this paper we consider the alternative method proposed to extract the d/u ratio,

using the measurement of DIS cross sections from 3He and 3H nuclei with the MARATHON

experiment at Jefferson Lab [25], which completed data taking in 2018. It was shown in

Refs. [26–29] that, under reasonable assumptions about the isospin dependence of nucleon

off-shell effects, the ratio of 3He to 3H structure functions could directly constrain the neutron

to proton ratio, F n
2 /F

p
2 , with nuclear effects largely canceling between the mirror nuclei.

From knowledge of the free neutron to proton ratio, one can then directly extract d/u in

the valence quark dominated region, x & 0.4.

Since the earlier calculations, progress on the theoretical front has been made in comput-

ing structure functions of light nuclei within the framework of the weak binding approxima-

tion (WBA) [30–32], including finite-energy corrections and nucleon off-shell contributions.

In the case of the DIS from the deuteron, the latter have been estimated within nuclear mod-

els [11, 12] and fitted in phenomenological analyses [20, 21, 30] for a given set of deuteron

wave functions. Information on the off-shell effects in A = 3 nuclei, on the other hand,

has been more difficult to obtain, partly because of the dearth of data on unpolarized 3He

structure functions (and the complete absence for 3H). This had left open the possibility

of potentially large isovector off-shell effects [29], which would contribute to 3He/3H struc-

ture functions, but not be seen in DIS from deuterium. (For early work that considered

quark-gluon effects in scattering from A = 3 nuclei, see Refs. [2–6].)

In the present work we revisit the question of the isospin dependence of off-shell effects

in the light of more recent data from the Jefferson Lab E03-103 experiment [33], which

measured ratios of structure functions of light nuclei to those of deuterium. In particular,

the experiment obtained the first high-precision determination of the 3He to deuterium cross

section ratio for x ∼ 0.3−0.6 in DIS kinematics. These data have the potential to constrain,

when combined with the inclusive deuterium DIS data, the individual off-shell corrections to

the proton and neutron structure functions, and clarify the impact on the extracted F n
2 /F

p
2
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ratio. In Ref. [34], for example, the data were used to benchmark the n/p ratio extracted

from E03-103 with that obtained from earlier inclusive proton and deuterium data sets,

requiring a “renormalization” of the 3He to deuterium cross section ratio by +3%. Here we

re-examine the E03-103 3He/deuterium data, in combination with the isoscalar nucleon off-

shell corrections obtained from the recent CJ15 global QCD analysis [20], and place upper

limits on the magnitude of the isospin dependence of the off-shell corrections.

To further constrain the models of the nuclear effects, we test the efficacy of the 3He

smearing functions computed within the WBA framework to simultaneously describe other

processes, such as quasielastic (QE) electron scattering from 3He nuclei. We compare with

the available QE data from experiments at SLAC [35, 36] and Jefferson Lab [37] in the

region x & 1 and at four-momentum transfers Q2 ∼ 1 to a few GeV2, where the nuclear

impulse approximation is expected to be valid.

We begin in Sec. II by reviewing the formalism for inclusive lepton scattering from nuclei,

and summarizing the results for nuclear structure functions in terms of on-shell and off-shell

convolutions of nucleon structure functions and nucleon (light-cone) momentum distribution

functions in A = 3 nuclei. Here we also illustrate the specific features of the nucleon light

cone distributions (which are also referred to as nucleon “smearing functions”) as a function

of nuclear momentum fraction andQ2. The versatility of the smearing functions in describing

different 3He observables is discussed in Sec. III, where we compare the QE cross sections

calculated in the WBA with data on inclusive electron–3He scattering in the QE region,

x ∼ 1, from SLAC [35, 36] and Jefferson Lab [37]. After establishing the kinematic regions

in x and Q2 where the data can be accommodated, we estimate the QE cross sections for

3He and 3H at the kinematics of the E12-11-112 experiment at Jefferson Lab [38].

DIS from 3He and 3H nuclei is discussed in Sec. IV. Here we fit the recent 6 GeV Jefferson

Lab data [33] on the 3He to deuterium cross section ratio to extract the isovector component

of the nucleon off-shell contributions. We use several different nuclear models and off-shell

parametrizations to estimate the theoretical uncertainty in the extracted off-shell corrections,

and determine the impact on the extraction of the F n
2 /F

p
2 ratio. Finally, in Sec. V we

summarize our findings and anticipate future developments in experiment and theory which

may reveal further insight into both the quark structure of the nucleon and the dynamics of

3He and 3H nuclei.
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II. FORMALISM

In this section we summarize the basic formulas for inclusive electron scattering from nu-

clei. We present the results for the nuclear structure functions in the framework of the WBA,

in which the structure functions of the nucleus are represented as convolutions of nucleon

momentum distributions in the nucleus and structure functions of (off-shell) nucleons, up to

O(p2/M2) corrections, where p and M are the 3-momentum and mass of the initial state

nucleon [30, 31, 39–41]. (Higher order relativistic effects necessarily lead to a breakdown

of the factorization embodied in the convolution representation [42, 43].) After providing

the complete set of formulas for structure functions for scattering of both transverse and

longitudinal photons, we illustrate the smearing functions, for on-shell and off-shell nucleon

contributions, for A = 3 nuclei.

A. Inclusive nuclear cross section and structure functions

We consider the inclusive scattering of an electron from a nucleus A (later specializing to

the case A = 3He and 3H), eA→ eX, where X represents the unobserved hadronic state. We

denote the four-momenta of the incident and scattered electrons by kµ and k′µ, respectively,

and the four-momentum of the target by Pµ. In the target rest frame the inclusive cross

section is given by

d2σ

dΩdE ′
=
α2

Q4

E ′

E

1

MA

LµνW
µν , (1)

where α is the fine structure constant, E (E ′) is the energy of the incident (scattered)

electron, and MA is the mass of the nucleus. The four-momentum of the exchanged virtual

photon is qµ = kµ − k′µ. The invariant mass squared of the photon can be approximated

by neglecting the small electron mass, Q2 ≡ −q2 ≈ 4EE ′ sin2(θ/2), where θ is the angle

between the incident and scattered electrons. The leptonic tensor in Eq. (1) is given by

Lµν = 2kµk
′
ν + 2k′µkν + q2gµν , (2)

and the hadronic tensor is parametrized by the nuclear structure functions FA
1 and FA

2 ,

W µν(P, q) =

(
−gµν +

qµqν

q2

)
FA

1 +

(
P µ − P · q

q2
qµ
)(

P ν − P · q
q2

qν
)

FA
2

P · q . (3)
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The structure functions are taken to be functions of Q2 and the Bjorken scaling variable,

x = Q2/2Mν, where ν = E − E ′ is the energy transfer. One can then write the inclusive

cross section in terms of the nuclear structure functions as

σA ≡ d2σ

dΩdE ′
= σMott

(
2

MA

tan2 θ

2
FA

1 (x,Q2) +
1

ν
FA

2 (x,Q2)

)
, (4)

where σMott = (4α2E ′2/Q4) cos2(θ/2) is the Mott cross section for scattering from a point

particle. Note that for forward scattering, θ = 0◦, the cross section is dominated by the FA
2

structure function, while for backward scattering, θ = 180◦, it is given only in terms of FA
1 .

For intermediate scattering angles, both the FA
1 and FA

2 structure functions contribute to

the cross section.

Alternatively, one can also write the hadronic tensor and cross section in terms of the

transverse and longitudinal structure functions, FA
T and FA

L , corresponding to the contribu-

tions to the scattering from exchanged photons with transverse or longitudinal polarization,

respectively,

FA
T (x,Q2) = 2xFA

1 (x,Q2), (5a)

FA
L (x,Q2) = γ2 FA

2 (x,Q2)− FA
T (x,Q2), (5b)

where the kinematical parameter

γ2 ≡ q2

ν2
= 1 +

4M2x2

Q2
(6)

accounts for finite-energy effects. The parameter γ is related to the Nachtmann scaling

variable [44, 45] ξ = 2x/(1 + γ), which takes into account target mass corrections that arise

at finite energy. Note that sometimes in the literature one uses the nuclear scaling variable,

xA = (M/MA)x, which ranges between 0 and 1. In the present analysis we will use the

variable x when comparing structure functions of nuclei and nucleons.

B. Structure functions in the weak binding approximation

Neglecting antinucleon degrees of freedom, in the WBA the nucleus is approximated as a

system of weakly bound nucleons with four-momentum pµ ≡ (M + ε,p), where the nucleon

three-momentum p and off-shell energy energy ε (< 0) are both much smaller than the

nucleon mass, |p|, |ε| � M [39, 40]. Reducing the relativistic Lorentz-Dirac structures in
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the general decomposition of the off-shell nucleon hadronic tensor [39, 42], one can relate

the relativistic four-component nucleon field to the corresponding two-component operator,

up to order O(p2/M2) [30, 31]. The imaginary part of the nucleon propagator can then

be written in terms of a nuclear spectral function defined through the correlator of the

nonrelativistic fields.

A lengthy but straightforward derivation then allows one to show that the nuclear struc-

ture functions can be written in factorized form,

xFA
1 (x,Q2) =

∑

N

∫
d4p

(2π)4
FN0 (ε,p)

(
1 +

γpz
M

)

×
[
C11

x

y
F̃N

1

(
x

y
,Q2, p2

)
+ C12 F̃

N
2

(
x

y
,Q2, p2

)]
, (7a)

FA
2 (x,Q2) =

∑

N

∫
d4p

(2π)4
FN0 (ε,p)

(
1 +

γpz
M

)
C22 F̃

N
2

(
x

y
,Q2, p2

)
, (7b)

FA
L (x,Q2) =

∑

N

∫
d4p

(2π)4
FN0 (ε,p)

(
1 +

γpz
M

)

×
[
CLL F̃N

L

(
x

y
,Q2, p2

)
+ CL2 F̃

N
2

(
x

y
,Q2, p2

)]
, (7c)

where the sum is over nucleons N = p, n, the function FN0 is the nonrelativistic nucleon

spectral function in the nucleus, and F̃N
i (i = 1, 2, L) are the off-shell nucleon structure

functions, which depend also on the nucleon virtuality, p2. The variable

y ≡ MA

M

p · q
P · q =

p0 + γpz
M

(8)

is the light-cone fraction of the nuclear momentum carried by the interacting nucleon. The

coefficients Cij are given by

C11 = 1,

C12 = (γ2 − 1)
p2
⊥

4y2M2
,

C22 =
1

γ2

[
1 +

(γ2 − 1)

2y2M2

(
2p2 + 3p2

⊥
)]
, (9)

CLL = 1,

CL2 = (γ2 − 1)
p2
⊥

y2M2
.

Note that while in the Q2 →∞ limit all the structure functions are “diagonal”, at finite Q2

the transverse and longitudinal structure functions FA
1 and FA

L receive contributions from
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both the nucleon’s F̃N
1 and F̃N

2 (or F̃N
L and F̃N

2 ) structure functions, whereas FA
2 remains

diagonal.

The p2 dependence of the off-shell nucleon structure functions F̃N
i is, in itself, unphysical

and must be interpreted in the context of the p2 dependence of the spectral function FN0 , such

that only the total nuclear structure function is physical. Nevertheless, for a given nuclear

wave function model which defines the spectral function, one can extract the off-shell part of

the nucleon structure function phenomenologically. For small nucleon virtualities, |v| � 1,

where v ≡ v(p2) = (p2 −M2)/M2, one can expand the off-shell nucleon structure functions

in a Taylor series around p2 = M2,

F̃N
i

(
x,Q2, p2

)
= FN

i

(
x,Q2

) (
1 + v(p2) δfNi

(
x,Q2

)
+O(v2)

)
, i = 1, 2, L (10)

where FN
i are the on-shell nucleon structure functions, and the coefficient of the O(v) term

is given by

δfNi
(
x,Q2

)
=
∂ log F̃N

i (x,Q2, p2)

∂v(p2)

∣∣∣∣∣
v=0

. (11)

In earlier analyses, the off-shell function δfNi was either computed within simple specta-

tor quark models [11, 30, 40] or extrated from empirical fits to nuclear structure function

data [20, 21, 30] assuming dependence on x only. Furthermore, typically it has been assumed

that the same function describes the off-shell modification of both the FN
1 and FN

2 (and FN
L )

structure functions, δfN1 = δfN2 = δfNL ≡ δfN . However, unlike in previous analyses which

assumed also the isospin independence of δfN , here we allow the off-shell corrections for the

proton and neutron to differ, δf pi 6= δfni .

The Taylor series expansion in Eq. (10) allows the derivation of simple expressions for the

nuclear structure functions in terms of on-shell and off-shell convolutions. For the on-shell

part, taking the first term in Eq. (10) yields the familiar on-shell convolution approximation

to the nuclear structure functions [20, 30, 46],

xF
A (on)
1 (x,Q2) =

∑

N

∫
dy

[
fN11(y, γ)

x

y
FN

1

(
x

y
,Q2

)
+ fN12(y, γ)FN

2

(
x

y
,Q2

)]
, (12a)

F
A (on)
2 (x,Q2) =

∑

N

∫
dy

[
fN22(y, γ)FN

2

(
x

y
,Q2

)]
, (12b)

F
A (on)
L (x,Q2) =

∑

N

∫
dy

[
fNLL(y, γ)FN

L

(
x

y
,Q2

)
+ fNL2(y, γ)FN

2

(
x

y
,Q2

)]
, (12c)
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where the one-dimensional smearing functions are given by

fNij (y, γ) =

∫
d4p

(2π)4
FN0 (ε,p)

(
1 +

γpz
M

)
Cij δ

(
y − 1− ε+ γpz

M

)
, (13)

and the y integrations in Eqs. (12) range from x to MA/M . Note that for γ = 1 the diagonal

functions fNii (i = 1, 2, L) are normalized to unity, corresponding to the spectral function

normalization,
∫ MA/M

0

dy fNii (y, γ = 1) =

∫
d4p

(2π)4
FN0 (ε,p) = 1 (14)

for both protons and neutrons, N = p, n. Generalizing Eqs. (12) to include the off-shell

term in Eq. (10) proportional to v, one can write the first-order off-shell contributions to

the nuclear structure functions as [47]

xF
A (off)
1 (x,Q2) =

∑

N

∫
dy

[
f̃N11(y, γ)

x

y
FN

1

(
x

y
,Q2

)
+ f̃N12(y, γ)FN

2

(
x

y
,Q2

)]

× δfN
(
x

y
,Q2

)
, (15a)

F
A (off)
2 (x,Q2) =

∑

N

∫
dy

[
f̃N22(y, γ)FN

2

(
x

y
,Q2

)]
δfN

(
x

y
,Q2

)
, (15b)

xF
A (off)
L (x,Q2) =

∑

N

∫
dy

[
f̃NLL(y, γ)FN

L

(
x

y
,Q2

)
+ f̃NL2(y, γ)FN

2

(
x

y
,Q2

)]

× δfN
(
x

y
,Q2

)
, (15c)

where the off-shell smearing functions f̃Nij are defined by including the factor v in the inte-

grand of Eq. (13),

f̃Nij (y, γ) =

∫
d4p

(2π)4
FN0 (ε,p)

(
1 +

γpz
M

)
Cij v(p2) δ

(
y − 1− ε+ γpz

M

)
. (16)

The total nuclear structure functions are then given by the sum of the on-shell and off-shell

contributions,

FA
i (x,Q2) = F

A (on)
i (x,Q2) + F

A (off)
i (x,Q2), i = 1, 2, L. (17)

These results are general and valid for any bound system of A nucleons. With the above

normalization for the smearing functions (14), the nuclear structure functions can be written

in terms of the proton and neutron contributions as

FA
i (x,Q2) = ZF

p/A
i (x,Q2) + (A− Z)F

n/A
i (x,Q2), i = 1, 2, L. (18)

In the next section we specialize to the case of A = 3 nuclei.
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C. Smearing functions for A = 3 nuclei

In this section we describe the proton and neutron spectral functions for the case of three-

body nuclei, which is the focus of the present study, and illustrate the shapes and magnitudes

of the on-shell and off-shell smearing functions for specific models. In general, the spectral

function is defined to give the probability distribution for finding a nucleon with momentum

p and energy ε in the nucleus A, summed over all possible configurations of the residual

A−1 system. For the proton spectral function in 3He there are two contributions: one from

the bound pn intermediate state corresponding to a deuteron, with energy ε = εd − ε3He,

where εd = −2.22 MeV and ε3He = −7.72 MeV are the deuteron and 3He binding energies,

respectively, and one from the pn continuum scattering states, with off-shell energy ε,

Fp0 (ε,p) = Fp (d)
0 (p) δ(ε+ ε3He − εd) + Fp (cont)

0 (ε,p). (19)

For the neutron, on the other hand, since there is no bound state of two protons, the spectral

function contains only a contribution from the pp continuum scattering state,

Fn0 (ε,p) = Fn (cont)
0 (ε,p). (20)

Assuming isospin symmetry, the spectral functions for tritium, 3H, can be obtained from

those of 3He simply by interchanging the proton and neutron. As is well known, however, this

underestimates the triton binding energy of ε3H = −8.482 MeV, and requires the addition

of Coulomb interactions and charge-symmetry breaking effects.

In practice, the spectral functions are typically evaluated in terms of the (positive) sep-

aration energy E, defined as the energy required to remove a single (on-shell) nucleon from

the nucleus,

E = MA−1 +M −MA, (21)

where the mass of the spectator A− 1 system is

MA−1 =
√
E2
A−1 − p2

A−1, (22)

with

EA−1 = MA − p0 = MA −M − ε (23)

10



the on-shell energy of the spectator system, and p2
A−1 = p2 in the rest frame of the nucleus.

Solving Eqs. (21) and (23), the energy ε can be written in terms of the separation energy E

as

ε = MA −M −
√

(E +MA −M)2 + p2, (24)

which in the nonrelativistic limit is approximated as

ε ≈ −E − p2

2(E +MA −M)
. (25)

For a nucleon at rest in the nucleus, p = 0, the energy ε is then simply the negative of the

separation energy,

ε(p = 0) = −E. (26)

The functions Fp (d)
0 (p) and Fp,n (cont)

0 can be determined by solving the three-body bound

state problem using one of several methods. Bissey et al. [48] solved the Faddeev equation

using a separable approximation to the two-body nucleon–nucleon Paris potential [49], as

well as the unitary pole approximation [50] to the Reid soft core (RSC) NN potential [51],

and the Yamaguchi potential [52] with 7% mixing between 3S1 and 3D1 waves. The resulting

smearing functions were used in the analysis of 3He and 3H structure functions in Refs. [26,

27]. Schulze and Sauer (SS) [53] also solved the Faddeev equation for 18 channels using the

Paris NN potential for the ground state 3He wave function [54], and projecting onto the

deuteron and continuum scattering states.

In contrast, Ciofi degli Atti et al. pioneered [55, 56] the use of the variational method using

harmonic oscillator wave functions and the RSC NN interaction. Kievsky et al. (KPSV) [57]

extended this approach, making use of a pair-correlated hyperspherical harmonic basis [58]

with the AV18 NN potential, including a Coulomb interaction between protons and the

Urbana IX three-body force. The KPSV and SS spectral functions were used in the analyses

of spin-dependent 3He structure functions in Refs. [31, 32], and we will use these in the

present work. Table I summarizes the average nucleon off-shell energy ε and kinetic energy

〈p2〉/2M for the KPSV [57] and SS [53] models.

The on-shell smearing functions fNij for the proton and neutron in 3He, as well as the

off-shell functions f̃Nij , are illustrated in Figs. 1 and 2, respectively, for the KPSV model, at

several values of the parameter γ. The diagonal functions fN22 and fNLL are steeply peaked
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TABLE I. Average nucleon energy ε and kinetic energy 〈p2〉/2M (in units of MeV) in 3He and 3H

nuclei, for the KPSV [57] and SS [53] models of the nuclear spectral functions.

model nucleus 〈ε〉 〈p2〉/2M

KPSV 3He −64.28 48.85

3H −66.56 48.84

SS 3He −53.66 38.45

3H −55.94 38.44

around y = 1, but become broader with increasing γ. This has the effect of introducing

stronger nuclear smearing at low values of Q2 and at large x, where the cross sections

are small, than at lower x where they are larger. Note that for γ = 1 the fN22 and fNLL

distributions are identical, but differ for γ > 1. The non-diagonal functions fNL2 vanish

identically for γ = 1, but rise to ∼ 20% of the diagonal functions at y = 1 for γ = 4.

For the off-shell smearing functions in Figs. 1 and 2, because of the factor v (< 0) in

the integrand of Eq. (16), these are negative for both the proton and neutron. For γ = 1,

the off-shell functions f̃N22 and f̃NLL are identical, with a magnitude of ≈ 3% of their on-shell

counterparts at the peak y ∼ 1 for the proton and ≈ 5% for the neutron. As for the on-

shell functions, the off-shell distributions become broader with increasing γ, approximately

tracking the γ dependence of the on-shell distributions.

The slightly narrower peak for the proton function in Fig. 1 compared with the neutron

in Fig. 2 reflects the presence of the bound deuteron spectator contribution in the former

but not in the latter. In fact, the deuteron bound state component amounts to around 2/3

of the strength of the proton on-shell smearing function, with the continuum contribution

accounting for ∼ 1/3. This is illustrated in Fig. 3(a) and (b), where the deuteron contri-

bution is shown relative to the total for the proton on-shell fp22 and off-shell f̃p22 functions,

respectively. For the proton off-shell function, the fraction at the y ≈ 1 peak is closer to

1/2. Away from the peak, the deuteron pole fractions decrease rapidly for γ = 1, but remain

broader for larger γ. The results for the fpLL and f̃pLL functions are very similar to those in

Fig. 3, as are the ratios for the neutron.

The dependence of the smearing functions on the choice of model for the A = 3 wave

function is illustrated in Fig. 3(c) and (d) as a ratio of SS [53] to KPSV [57] spectral functions
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FIG. 1. Proton smearing functions in 3He, fpij(y, γ), i = 2, L, for the on-shell [(a)–(c)] and off-shell

[(d)–(f)] distributions, computed from the KPSV spectral function [57] for γ = 1 (red solid curves),

1.5 (green dot-dashed curves) and 4 (blue dashed curves).

for the proton fp22 and f̃p22 distributions. The on-shell smearing function for the SS model

is slightly narrower around y ≈ 1, with an ≈ 5% higher peak, which is compensated by

lower distributions away from the peak. For the off-shell function, the SS model distribution

is ≈ 5% lower than for the KPSV model, with a similar behavior away from the peak.

These results illustrate an interesing compensation for the differences between the on-shell

smearing functions around y = 1 and the off-shell functions for the two models.
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FIG. 2. Neutron smearing functions in 3He, fnij(y, γ), i = 2, L, for the on-shell [(a)–(c)] and off-shell

[(d)–(f)] distributions, computed from the KPSV spectral function [57] for γ = 1 (red solid curves),

1.5 (green dot-dashed curves) and 4 (blue dashed curves).

With these distributions, one can now proceed to compute the nuclear structure functions

FA
i for A = 3He and 3H, which will be the subject of the remaining sections.
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FIG. 3. Ratio of deuteron pole contribution to the total smearing function for (a) the proton

on-shell fp22 function, and (b) proton off-shell f̃p22 function, for different values of γ. The ratio of

the total proton smearing functions for the SS [53] and KPSV [57] spectral functions is given in

(c) and (d) for the on-shell and off-shell functions, respectively.

III. QUASIELASTIC SCATTERING

The veracity of any calculation of nuclear structure functions depends, within the convo-

lution framework of Eqs. (12) and (15), on the reliability of the smearing functions fNij (y, γ)

that characterize the distribution of nucleons in the nucleus. One of best testing grounds

for models of the smearing functions is QE electron–nucleus scattering, where an electron

scatters elastically from a proton or neutron bound in the nucleus. Whereas for inelastic scat-

tering from the bound nucleon the light-cone distributions are convoluted with a nontrivial x

distribution in the inelastic FN
i structure functions, for QE scattering the cross section and

structure functions are given directly by products of fNij and Q2-dependent elastic nucleon

form factors. It is important, therefore, to establish the range of kinematics whereby the

inclusive cross sections can be described in terms of the same smearing functions in both the

deep-inelastic and QE regions. After providing the basic formulas for the QE contributions
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to the nuclear structure functions, in this section we compare the results for the 3He cross

sections with precision QE data from SLAC and Jefferson Lab in the vicinity of x ≈ 1.

A. Quasielastic structure functions

The matrix elements of the electromagnetic current operator Jµ between on-shell nucleon

states are usually parametrized in terms of the nucleon’s Dirac F1N and Pauli F2N form

factors,

〈N(p+ q)|Jµ|N(p)〉 = ū(p+ q)

[
γµ F1N(Q2) + iσµνqν

F2N(Q2)

2M

]
u(p). (27)

Using the Dirac equation, and defining the Sachs electric GEN and magnetic GMN form

factors such that

F1N(Q2) =
1

1 + τ

[
GEN(Q2) + τGMN(Q2)

]
, (28a)

F2N(Q2) =
1

1 + τ

[
GMN(Q2)−GEN(Q2)

]
, (28b)

where τ = 4M2/Q2, the matrix element can be equivalently written as

〈N(p+ q)|Jµ|N(p)〉 = ū(p+ q)

[
γµGMN(Q2) − (2pµ + qµ)

F2N(Q2)

2M

]
u(p). (29)

The contributions to the nucleon elastic structure functions FN
i are then given by products

of the form factors multiplied by an energy conserving δ function at x = 1,

F
N(el)
1 (x,Q2) =

[
1

2
G2
MN(Q2)

]
δ(1− x), (30a)

F
N(el)
2 (x,Q2) =

[
G2
EN(Q2) + τG2

MN(Q2)

1 + τ

]
δ(1− x), (30b)

where we have used the on-shell relation

Q2 δ
(
(p+ q)2 −M2

)
= 2p · q δ

(
(p+ q)2 −M2

)
= δ(1− x). (31)

The elastic contribution to the longitudinal structure function, F
N(el)
L , can then be computed

from Eqs. (30) using the relation F
N(el)
L (x,Q2) = (1 + 1/τ)F

N(el)
2 (x,Q2) − 2F

N(el)
1 (x,Q2).

Putting these results together, the QE nuclear structure functions can be written in terms

of the nucleon Sachs form factors as

xF
A(QE)
1 (x,Q2) =

∑

N

{
1

2
xfN11(x, γ)G2

MN(Q2) + xfN12(x, γ)

[
G2
EN(Q2) + τG2

MN(Q2)

1 + τ

]}
,

(32a)

F
A(QE)
2 (x,Q2) =

∑

N

xfN22(x, γ)

[
G2
EN(Q2) + τG2

MN(Q2)

1 + τ

]
. (32b)
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B. Off-shell nucleons

Generalizing to the case where the struck nucleon is bound inside a nucleus, and hence

off its mass-shell, p2 6= M2, one can write the kinematic constraint for elastic scattering to

an on-shell nucleon final state as 2p · q = Q2 + M2 − p2 = Q2/(x/y), where y is defined in

Eq. (8). In this case the δ function in Eq. (31) can be written as

Q2 δ
(
(p+ q)2 −M2

)
=
x

y
δ
(

1− κ(p2)
x

y

)
, (33)

where κ(p2) = 1− v(p2)M2/Q2 parametrizes the kinematical effects of the off-shell correc-

tion. The generalization of the current operator to off-shell is not unique, and in the liter-

ature one encounters several prescriptions for this. The most common ones are the “cc1”

and “cc2” prescription of De Forest [59], which correspond to generalizing the currents in

Eqs. (29) and (27), respectively, to the off-shell region. The elastic structure functions for

the off-shell nucleon are then given by

F̃
N(el)
1

(x
y
,Q2, p2

)
=

[
G2
MN

2

(
1 +

vM2

Q2

)]
x

y
δ
(

1− κ(p2)
x

y

)
, (34a)

F̃
N(el)
2

(x
y
,Q2, p2

)
=

[
G2
EN + τG2

MN

1 + τ
+ v

(GMN −GEN)2

4(1 + τ)2

]
δ
(

1− κ(p2)
x

y

)
, (34b)

and

F̃
N(el)
1

(x
y
,Q2, p2

)
=

[
G2
MN

2
+
vM2

2Q2

(
G2
EN + τG2

MN

1 + τ
+ v

(GMN −GEN)2

4(1 + τ)2

)]

× x
y
δ
(

1− κ(p2)
x

y

)
, (35a)

F̃
N(el)
2

(x
y
,Q2, p2

)
=

[
G2
EN + τG2

MN

1 + τ

]
δ
(

1− κ(p2)
x

y

)
, (35b)

for the “cc1” and “cc2” cases, respectively. Assuming the GE and GM form factors them-

selves remain functions of Q2 only, the off-shell corrections to the on-shell elastic structure

functions in Eqs. (30) involve terms that are of order v and v2, in addition to the modified

δ function. In each case the off-shell corrections vanish in the Q2 →∞ limit. In terms of the

elastic off-shell functions, the total QE structure functions can be computed by substituting

Eqs. (34) or (35) into Eqs. (7), and using the δ function in (33) to eliminate the dy integra-

tion in d4p→ dy d|p| dε, so that the QE structure functions are computed as integrals over

the variables |p| and ε. Alternatively, one can use the δ function to eliminate the |p| or p2

integration, leaving integrations over ε and y.
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In the following we discuss the off-shell corrections numerically, and compare the WBA

predictions for the QE cross sections with experimental measurements of the inclusive cross

sections in the QE region at x ∼ 1.

C. Comparison with quasielastic 3He data

A number of experiments have been performed scattering electrons from A = 3 nuclei in

the QE region, over a range of energies and scattering angles. A convenient summary of the

experimental data is provided in the Quasielastic Electron–Nucleus Scattering Archive [60].

The most relevant of these for the present analysis are data from experiments at SLAC [35,

36] and Jefferson Lab [37].

The early SLAC data from Ref. [35] were taken for incident electron energies between

3 and 15 GeV at θ = 8◦ scattering angle, corresponding to momentum transfers of up to

≈ 1.4 GeV. Measurements from the subsequent NE9 experiment [36] were taken at electron

energies between 0.9 and 4.3 GeV, and scattering angles of 15◦ and 85◦. Both the transverse

and longitudinal structure functions were extracted using the Rosenbluth separation tech-

nique at a 3-momentum transfer of ≈ 1 GeV, and the latter was used to test the Coulomb

sum rule. More recently, high precision data from the Jefferson Lab experiment E02-019

were collected using a 5.766 GeV electron beam on various nuclear targets, including 3He,

primarily to study “super-fast” quarks at x > 1 [37]. QE data were taken at scattering an-

gles between 18◦ and 50◦, corresponding to values of the four-momentum exchange squared

of 2 . Q2 . 9 GeV2.

Data from lower energy experiments from Bates [61] and Saclay [62], on 3He as well as

3H targets, are not included in our analysis, which focuses on the region of validity of the

nuclear impulse approximation, corresponding to intermediate Q2 values from ∼ 1 GeV2 to

a few GeV2. At very large values of x� 1, contributions from processes involving nucleons

that no longer retain their clear identity as nonoverlapping bound states of quarks, as well

as multi-nucleon effects requiring nuclear quark degrees of freedom, are expected to become

more important. At very low Q2 values, Q2 � 1 GeV2, coherent effects and meson exchange

corrections, as well as rescattering, are known to play a greater role. At higher Q2 values,

Q2 � 1 GeV2, identification of the QE component of the inclusive cross section underneath

the rising inelastic scattering contributions becomes increasingly more difficult and model
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FIG. 4. QE electron–3He cross section as a function of x for fixed incident electron energies E

and scattering angles θ, with Q2
0 the value of the momentum transfer squared at x = 1. Data

from the early SLAC experiment by Day et al. [35] (a)–(c) and the subsequent NE9 experiment

by Meziani et al. [36] (d)–(f) are compared with the WBA calculation using the KPSV and SS

spectral functions, and the “cc1” and “cc2” off-shell prescriptions, as well as a calculation using

smearing functions at γ = 1 [(a) and (d)], scaled by a factor 1/2 for clarity).

dependent. In the Q2 ∼ 1 GeV2 to several GeV2 range, where the x ∼ 1 region should still be

dominated by single-nucleon QE scattering, one can explore the efficacy and limitations of

an incoherent impulse approximation description in terms of the nucleon smearing functions

of Sec. II.
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In Fig. 4 the QE data from the SLAC experiments [35, 36] are compared with the cross

sections computed from the smearing functions in the WBA model. The data include both

forward scattering angles [Fig. 4(a)–(d), (f)], as well as sideways scattering [Fig. 4(e)], with

the value of Q2 at x = 1 (labeled by Q2
0) ranging from ≈ 1 GeV2 to . 4 GeV2. For the elastic

structure function we use the parametrizations of the electric and magnetic form factors of

the proton and neutron from Kelly [63]. Experience from previous analyses of QE scattering

from the deuteron [64] shows that use of other parametrizations, e.g., from Refs. [65–67],

has little (. few %) effect on the cross sections at the relavant kinematics.

As a baseline for the calculation, the KPSV [57] model is used for the 3He spectral

function, and the results with and without the off-shell corrections are compared. As Fig. 4

illustrates, the effect of the off-shell corrections is a softening of the momentum distribution,

which shifts the peak in the cross section to slightly lower values of x, and improves the

overall agreement with the data. The difference between the off-shell corrections computed

using the two prescription (“cc1” or “cc2”) is very small, and, as expected from Eqs. (33)–

(35), the off-shell effects become less prominent with increasing Q2.

The importance of the Q2 dependence is illustrated more strikingly in Fig. 4(a) and (d),

which compares the calculation using exact kinematics with that taking smearing functions

at γ = 1, as often done in deep-inelastic scattering applications at high Q2. The result with

γ = 1 gives a significantly narrower distribution around x = 1, and a peak that is ∼ 2

times larger than the data indicate. In contrast, the results with the finite-Q2 kinematics

correctly implemented is in significantly better agreement with the data. The dependence of

the results on the 3He spectral function is very mild, as the comparison with the SS spectral

function [53] in Fig. 4(c) and (f) shows, with the SS results giving a slightly narrower

distribution around the QE peak compared with the KPSV spectral function [57].

Overall, the qualitative features of the data versus theory comparisons are similar for the

Day et al. [35] and Meziani et al. [36] data, with the agreement being somewhat better for

the more recent data set [36]. The similar kinematics of the two experiments, in particular

for forward scattering angles at Q2 ∼ 1 GeV2, raise the question of whether there may be a

systematic underestimate in the Day et al. [35] data in this region.

The most recent QE data from Jefferson Lab experiment E02-019 [37] are shown in Fig. 5,

for a fixed electron energy E = 5.766 GeV and scattering angles from θ = 18◦ to 50◦. This

corresponds to slightly larger Q2 values at the QE peak than for the SLAC data in Fig. 4,
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FIG. 5. As in Fig. 4, but for the Jefferson Lab QE data from Fomin et al. [37] at E = 5.766 GeV.

Cross sections which include inelastic contributions are illustrated in panels (e) and (f) [black

dot-dashed curves].

ranging from Q2
0 ≈ 2.5 GeV2 to ≈ 7.4 GeV2. At these higher Q2 values the effects of the

off-shell corrections are relatively small, and for the spectra with Q2
0 & 4 GeV2 the full cross

sections are almost indistinguishable from the on-shell only contributions.

What is rather more important at the higher Q2 values are the effects of the inelastic

scattering contributions. These are illustrated in Fig. 5(e) at Q2
0 ≈ 6.3 GeV2 and Fig. 5(f) at

Q2
0 ≈ 7.4 GeV2, using the nonresonant part of the Christy–Bosted nucleon structure function
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parametrization [68]. For the higher Q2
0 case in particular, the inelastic cross section is quite

large — more than half of the total at the QE peak, and dominates at smaller x values,

x . 1.

Since the inelastic contribution in the present work is not fitted, but simply ported

from a previous phenomenological analysis [68], and since the separation of the total cross

section into resonance and nonresonant contributions is not unique, achieving quantitative

agreement of the QE plus inelastic sum with the data is not the primary goal. The point to

be noted in this comparison is the relative magnitude of the inelastic component compared

with the nucleon elastic, and the difficulty in determining the QE piece unambiguously at

high values of Q2, especially for Q2
0 & 4− 5 GeV2.

The dependence on the model 3He spectral function is similar to that in Fig. 4, with the SS

model [53] giving a slightly higher cross section at x ≈ 1, with marginally softer distributions

away from the QE peak. Overall, the agreement with the data is relatively good for both

spectral function models, and suggests that at these kinematics the description in terms

of the smearing functions, with indications of small but nonzero off-shell corrections, can

provide a reliable framework for describing electron scattering from 3He. The agreement of

the calculation with the data at kinematics Q2
0 ≈ 2 GeV2 comparable to some of the Day et

al. spectra again suggests potential issues with these data.

In the near future the recently completed Jefferson Lab E12-11-112 experiment [38] will

provide additional information on QE scattering in the Q2 ∼ 1−3 GeV2 for both 3He and 3H

nuclei. An estimate of the anticipated cross sections at the E12-11-112 kinematics is given in

Fig. 6, for a beam energy of E = 4.3 GeV and scattering angles of 15◦ and 30◦. Interestingly,

the 3He cross section at the QE peak is ∼ 30%−40% larger than the corresponding 3H cross

section, which can be understood from the larger elastic contribution to the proton structure

function compared with the neutron, F
p (el)
2 > F

n (el)
2 , which is doubly represented in 3He.

The wave function model dependence is again relatively weak, as Fig. 6 illustrates with the

ratios of the 3He to 3H cross sections. Confronting these predictions with the E12-11-112

data will provide important guidance for the identification of isospin dependent effects in

scattering from A = 3 nuclei, and the limitations of the impulse approximation and the

WBA framework for computing the smearing functions.
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FIG. 6. QE cross section for 3He (red solid curves) and 3H (blue dashed curves) [in units of

nb/sr·GeV] at typical kinematics of the E12-11-112 experiment [38] with E = 4.3 GeV, for (a)

θ = 15◦ and Q2
0 = 1 GeV2 and (b) θ = 30◦ and Q2

0 = 3 GeV2. The corresponding ratios of the 3He

and 3H cross sections in (c) and (d) illustrate the effects of the different A = 3 spectral functions,

from the KPSV (red solid curves) and SS (green dashed curves) models.

D. Elastic form factors from QE data

If the 3He and 3H smearing functions are sufficiently well constrained at y ≈ 1, the QE

3He and 3H data can also be used to extract information about the nucleon’s elastic electro-

magnetic form factors. In particular, from the ratio of 3He to 3H QE cross sections measured

in the E12-11-112 experiment [38] at x = 1, and input on the proton’s electromagnetic form

factors and the neutron’s electric form factor, one can in principle extract the free neutron’s

magnetic form factor, GMn.

A simple inversion of the QE formulas in the on-shell approximation in Eqs. (32) allows
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the nucleon elastic form factors GEN , GMN to be determined from the smearing functions

fNij and the 3He to 3H structure functions. To maximize the rates and simplify the analysis,

one can take the QE cross section in the vicinity of the QE peak, x ≈ 1. Taking the F2

structure function as an example, the ratio of the QE 3He to 3H functions can then be

written

R(QE) ≡ F
3He(QE)
2

F
3H(QE)
2

=
2 + (fn/fp)Rnp

(fn/fp) + 2Rnp

, (36)

where fN ≡ fN22(x = 1, γ) and

Rnp =
G2
En + τG2

Mn

G2
Ep + τG2

Mp

(37)

is the ratio of the neutron to proton form factor combination entering the F2 structure

function. From Figs. 1 and 2, the ratio of the neutron to proton smearing functions at y = 1

is ≈ 0.87, almost independent of γ for the range γ = 1 − 4 considered there, for both the

KPSV and SS spectral function models. The weak model dependence of the ratio is also

illustrated in the QE 3He to 3H cross section ratio in Fig. 6, which is ≈ 1.4 at the QE peak.

Note that a slightly different combination of form factors would be extracted from ratios

of the QE F
A(QE)
1 structure functions, or from ratios of the actual cross sections, which

are combinations of F
A(QE)
1 and F

A(QE)
2 . In practice, this would be immaterial, as one

could either extract F
A(QE)
1 and F

A(QE)
2 from the cross section by performing a Rosenbluth

separation, or simply work in terms of a different combination of the GEN and GMN form

factors which enters the cross section.

Inverting Eq. (36), one can write the form factor ratio in Eq. (37) as

Rnp =
(fn/fp)R(QE) − 2

(fn/fp)− 2R(QE)
, (38)

with the QE ratio R(QE) defined as in Eq. (36). Measurement of R(QE), together with a model

for the smearing function ratio fn/fp and knowledge of GEp, GMp and GEn, can then be used

to infer the magnetic neutron form factor GMn. In Fig. 7 we show the ratio of GMn extracted

from Eq. (38) to the input parametrization, G
(0)
Mn. The full calculation, illustrated here for

the on-shell nucleon structure function case with proton and neutron electromagnetic form

factors from Ref. [63], of course gives a ratio of unity, reflecting the self-consistency of the

extraction method. In contrast, if one were to use Eq. (38) with the assumption fp = fn,

the extracted GMn would be ≈ 10% lower over the range Q2 ≈ 1 − 8 GeV2 than the true
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FIG. 7. Ratio of the neutron magnetic form factor GMn, extracted from Eqs. (37) and (38), to

the input form factor G
(0)
Mn taken from the Kelly parametrization [63]. The extracted GMn is

computed using the exact on-shell calculation (dashed blue curve), giving a ratio of unity, and

with GMn computed from Eq. (38) but with fp = fn (solid red curve), or for fp = fn with the

off-shell calculation using the “cc2” prescription (dot-dashed green curve).

result. Similar results are found for the off-shell calculation, as illustrated in Fig. 7 for the

“cc2” prescription. Therefore, if one seeks experiments with precision for the extracted GMn

to less than ≈ 10% at these kinematics, using the correct smearing function ratios would

clearly be important in such analyses.

IV. DEEP-INELASTIC SCATTERING FROM 3HE AND 3H

The central motivation for the MARATHON experiment [25] at Jefferson Lab is the

measurement of the inclusive 3He to 3H cross section ratio in the deep-inelastic scattering

region, from which one hopes to extract the ratio of the free neutron to proton structure

functions [26–29]. At large values of x (x & 0.6) poor knowledge of the neutron structure

function has prevented a reliable determination of the d/u quark PDF ratio in the proton

from inclusive DIS data [10]. Assuming that contributions from the scattering of longitudinal

photons are either sufficiently small or can be accurately estimated, the ratio of the cross

sections (4) for 3He and 3H can be used to determine the F
3He
2 /F

3H
2 structure function ratio,
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from which F n
2 /F

p
2 can be extracted via [26–29]

F n
2

F p
2

=
2R− F 3He

2 /F
3H
2

2F
3He
2 /F

3H
2 −R

, (39)

where

R =
R(3He)

R(3H)
(40)

is the “super-ratio” of nuclear EMC ratios in 3He and in 3H,

R(3He) =
F

3He
2

2F p
2 + F n

2

, (41a)

R(3H) =
F

3H
2

F p
2 + 2F n

2

. (41b)

Without a direct measurement of F n
2 , the EMC ratios R(3He) and R(3H) themselves cannot

be uniquely determined. However, irrespective of the magnitude of the nuclear corrections in

either 3He or 3H, if these effects are similar in the mirror nuclei or can be reliably determined

theoretically, then the uncertainty introduced in the extraction of F n
2 /F

p
2 in Eq. (39) due to

the super-ratio R can be minimized.

Several previous studies have estimated the super-ratio within various nuclear models.

Among the standard approaches based on the impulse approximation, Pace et al. [28] used a

similar convolution framework to that in Sec. II, together with smearing functions computed

in a correlated hyperspherical harmonics basis, including Coulomb and three-body interac-

tions. Afnan et al. [26, 27] evaluated the super-ratio in the convolution approximation using

three-nucleon wave functions obtained by solving the Faddeev equation, as well as using

the variational approach, while Sargsian et al. [29] employed a virtual-nucleon convolution

model in addition to a model based on light-front kinematics. All these estimates found

deviations of R of . 1% − 2% from unity over the range accessible in the MARATHON

experiment.

Beyond the impulse approximation, Afnan et al. [27] considered the impact on the super-

ratio of off-shell corrections computed from a spectator quark model [42, 69], as well as

from six-quark clusters, and a commonly used ansatz based on nuclear density scaling [70].

Sargsian et al. [29] further considered a Q2 rescaling model of the nuclear EMC effect [71, 72],

and a color screening model in which off-shell effects were represented in the form of short-

range NN correlations [70]. To estimate the effect of possible isospin dependence of the NN

correlation, the isosinglet and isotriplet combinations were assumed to experience different
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amounts of suppression. Of the scenarios considered, the isospin dependent effects produced

at most a 2% − 3% deviation in the super-ratio for x . 0.8. Of course, any evidence of

stronger isospin breaking corrections could induce larger effects on the super-ratio.

In this section we explore whether the data on the ratio of 3He to deuterium DIS cross

sections from the Jefferson Lab E03-103 experiment [33], that were taken after the earlier

studies [26–29] were performed, are able to provide any constraints on the possible isospin

dependence of the nuclear corrections and hence R. In particular, we examine whether any

isospin dependence in the off-shell corrections to the nucleon structure functions in Eq. (10)

can have noticeable effects on the super-ratio R and on the neutron/proton ratio extraction.

Such isospin dependence would not be visible in global QCD analyses of deuterium data [20,

21], but could play a role in the scattering from the isospin asymmetric 3He and 3H system.

Moreover, as an alternative to the super-ratio method (39) described above, we also propose a

more robust extraction procedure which, although requiring additional experimental inputs,

does not rely on any assumptions about R.

A. Nucleon off-shell corrections

Recently the CJ Collaboration [20] and Alekhin, Kulagin and Petti [21] performed global

analyses of deuteron DIS and other high energy scattering data in which nucleon off-shell

contributions to the deuteron F2 structure function in Eq. (15b) were obtained by fitting

the isoscalar off-shell function δf 0 directly,

F
d(off)
2 (x) =

∫
dy f̃

N/d
22 (y, γ)

[
F p

2

(x
y

)
+ F n

2

(x
y

)]
δf 0
(x
y

)
, (42)

where δf 0 is related to the proton and neutron off-shell functions in Eq. (10) by

δf 0(x) =
F p

2 (x) δf p(x) + F n
2 (x) δfn(x)

F p
2 (x) + F n

2 (x)
. (43)

(For simplicity here we have suppressed the Q2 dependence in the structure functions.)

Despite some differences in the fitted shapes of the off-shell functions in the two analy-

ses [20, 21], the overall magnitude of the off-shell effects was found to be relatively small for

the isoscalar combination δf 0. Assuming isospin independence of the off-shell corrections,

Kulagin and Petti (KP) [30] also fitted data on ratios of structure functions of heavy nuclei

to deuterium, extracting a universal function δfN ≡ δf 0 = δf p = δfn that agreed with the

shape of that in Ref. [21], but was somewhat larger than that from the CJ15 analysis [20].
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FIG. 8. Isoscalar off-shell function δf0 from the CJ15 [20] global QCD analysis of proton and

deuteron data (red solid curve) and the Kulagin-Petti (KP) [30] fit to of nuclear structure function

ratios, assuming δfp = δfn. The kinematics of the Jefferson Lab E03-103 experiment [33] are

indicated by the green horizontal band.

The isoscalar off-shell functions δf 0 from the CJ15 PDF analysis [20] and from the earlier

KP nuclear structure function fit [30] are shown in Fig. 8. Both analyses used a parametriza-

tion based on a third order polynomial of the form

δf 0(x) = C(x− x0)(x− x1)(1 + x0 − x), (44)

with parameters x0 and x1, and normalization C, which was constructed to ensure at least

one zero in the physical region of x. The CJ15 analysis further imposed the normalization [20]

∫ 1

0

dx δf 0(x)
[
q(x)− q̄(x)

]
= 0 (45)

to ensure that the off-shell corrections do not modify the valence quark number. As Fig. 8

illustrates, the CJ analysis found a relatively small magnitude for δf 0, slightly positive at

low x (x ∼ 0.2) and negative at large x (x & 0.4). The best fit corresponds to a deuteron

wave function computed from the AV18 NN interaction [73], although similar quality fits

were found using the CD-Bonn [74] and WJC-2 [75] wave functions, giving overall similar

shapes for δf 0. In contrast, the off-shell function from the KP fit [30], which uses the Paris

NN potential [76], generally has opposite sign compared with the CJ result in Fig. 8, and

a somewhat larger magnitude which grows as x → 1. Interestingly, in the CJ analysis a
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similar shape to this was found for the WJC-1 [75] deuteron wave function, which, however,

gave a slightly larger overall χ2 value for the global fit.

While the origin of the different behaviors for δf 0 found in the two analyses is difficult to

determine uniquely, one can speculate that it may arise partly from the use of heavy nuclear

data in [30], which generally show a stronger nuclear EMC effect than that in lighter nuclei.

To be conservative, in the present analysis we consider both scenarios and investigate the

consequences for the A = 3 structure functions of both shapes for δf 0 shown in Fig. 8.

B. Isospin dependence of off-shell corrections

Although deuterium data can only constrain the isoscalar combination of PDFs and off-

shell functions, data from the Jefferson Lab E03-103 experiment [33] on the ratio of 3He to

deuterium cross sections could in principle allow the isospin dependence to be disentangled.

In particular, because the 3He cross section is more sensitive to proton structure, one can

attempt to constrain the proton δf p correction from the 3He/d ratio, and, using information

from the global analyses on δf 0 [20, 30], extract the neutron off-shell correction from Eq. (43),

δfn =
1

F n
2

[
(F p

2 + F n
2 )δf 0 − F p

2 δf
p
]

= δf 0 − F p
2

F n
2

(δf p − δf 0). (46)

In the remainder of this section we will analyze the 3He/d data from Seely et al. [33] within

the theoretical framework of Sec. II, and discuss the implications of these data for the isospin

dependence of the off-shell corrections.

The 3He/d data from the E03-103 experiment [33] were taken in Jefferson Lab Hall C,

using a 5.767 GeV beam of electrons scattering mostly to an angle of 40◦. In the DIS region,

W 2 > 4 GeV2, the kinematics covered the range 0.33 . x . 0.58 and 2.9 . Q2 . 4.4 GeV2.

The measured ratio of the 3He to d cross sections is shown in Fig. 9, where the cross

sections are scaled to those per nucleon (total cross section ratio multiplied by a factor

2/3). Note that the data here do not include any “isoscalar correction”, which can introduce

unnecessary theoretical bias into the analysis. The experimental error bars include statistical

uncertainties and point-to-point systematic uncertainties added in quadrature. In addition,

there is an overall 1.84% fractional normalization uncertainty that is not shown in Fig. 9.
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FIG. 9. Ratio of 3He to deuterium cross sections, σ
3He/σd, scaled per nucleon, from the Jefferson

Lab E03-103 experiment [33] compared with the full Monte Carlo fit results (red solid curves and

bands) using (a) the CJ [20] and (b) the KP [30] isoscalar off-shell function δf0, as well as with

fits assuming isospin symmetric off-shell corrections, δfp = δfn (green dashed curves and bands),

and with the on-shell only fits (blue solid curves and bands). The experimental error bars include

statistical and systematic uncertainties added in quadrature, with an overall 1.84% normalization

uncertainty not shown [85].

For the analysis of the 3He/d ratio, we fit the proton off-shell function δf p using the

same parametrization as for the isoscalar off-shell function in Eq. (44). Using the maximum

likelihood method with Hessian error propagation, we fit the x-intercept x0 and the normal-

ization parameter C, and determine the position of the zero crossing at x1 from the off-shell

normalization constraint (45). The results are found to be rather strongly dependent on

the starting parameters of the fit, indicating the presence of more than a single χ2 mini-

mum in parameter space. To avoid this problem, we turn instead to a Monte Carlo analysis

method, using the nested sampling algorithm [77–79] to map the likelihood function into a

Monte Carlo weighted parameter sample. This method accounts for the possible presence

of multiple minima, and allows a rigorous determination of the fit uncertainties. Similar

methodology was recently used by the JAM Collaboration to extract collinear PDFs [80–82]

and fragmentation functions [83], as well as the transverse momentum dependent transver-

sity distribution [84].

The results of the Monte Carlo fit to the 3He/d data in Fig. 9 for the distribution of
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FIG. 10. Normalized yield of the Monte Carlo parameter distributions for the proton off-shell

function δfp, for the normalization C [(a) and (c)] and intercept x0 [(b) and (d)], using the isoscalar

off-shell function δf0 from the CJ [20] [(a) and (b)] and KP [30] [(c) and (d)] analyses. The colored

histograms represent 10 statistically independent Monte Carlo analyses, while the black histograms

are the combined result.

the fitted parameters C and x0 are shown in Fig. 10. For the CJ isoscalar function δf 0,

the normalization parameter C is peaked for positive values, while the intercept x0 shows

multiple solutions, both for x0 > 0 and x0 < 0. This clearly illustrates the necessity for

a Monte Carlo approach, which can sample multiple solutions over a much larger range of

parameter space. For the KP off-shell function, the distribution for the normalization C

is generally confined to negative values, while the solutions for x0 are strongly peaked and

appear to be somewhat anticorrelated with the values found for the CJ result.

From these fitted parameters, the resulting off-shell functions δf p and δfn are computed

in Fig. 11, for both the CJ and KP off-shell isoscalar distributions δf 0. In the kinematic

region constrained by the E03-103 data, 0.3 . x . 0.6, the proton off-shell function δf p is

found to be positive and significantly larger than the isoscalar function δf 0 for both CJ and

KP fits. Consequently, from Eq. (46) the neutron off-shell function δfn becomes negative
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FIG. 11. Off-shell functions for the proton, δfp (red solid curves and bands), and neutron, δfn

(blue solid curves and bands), from the fit to the E03-103 data [33], for a given isoscalar off-shell

function, δf0 (green dashed), from (a) the CJ [20] global analysis and (b) the Kulagin-Petti [30]

nuclear ratios fit. The functions are shown only in the range of x constrained by the E03-103 data.

[see the second term in (46)], with its magnitude enhanced by the factor F p
2 /F

n
2 > 1. For the

CJ fit the proton and neutron off-shell functions remain positive and negative, respectively,

over the fitted range, while for the KP off-shell fit there is a sign change at x ≈ 0.4.

Although the absolute values of the proton and neutron off-shell functions in Fig. 11

are large relative to the isoscalar functions, the respective contributions to the nucleon

structure functions are weighted by the nucleon virtuality v(p2) � 1. For 3He, the average

proton and neutron virtualities (for the KPSV spectral function) are found to be ≈ −7%

and ≈ −9%, respectively. At the lower end of the x range covered by the experiment, the

relative correction to the nucleon structure functions are . 10%, and rise to ∼ 30% for the

neutron at the higher x values. Off-shell corrections that are very large (& 30% − 50%)

are likely to invalidate the lowest order expansion in v assumed in Eq. (10), or may suggest

issues with the systematic uncertainties assigned to the 3He/d data [33].

Taking into account the overall normalization uncertainty of the 3He/d ratio data, the

Monte Carlo distribution of the fitted data normalization parameter, Ndat, is shown in

Fig. 12, with values restricted to lie within the 1.84% quoted for the E03-103 experiment [33].

For the fit using the CJ isoscalar function, the distribution is relatively broad, with a peak

at around 1% and an average of Ndat = 1.006± 0.009. This gives a very good overall fit to

32



1.015 1.02 1.025 1.03
0

100

200

n
or

m
al

iz
ed

yi
el

d

CJ
(δf p = δfn)

(a)

0.98 1 1.02 1.04 1.06
0

20

40

60

80 CJ
(δf p 6= δfn)

(b)

1.015 1.02 1.025 1.03
0

100

200

n
or

m
al

iz
ed

yi
el

d

KP
(δf p = δfn)

(c)

0.98 1 1.02 1.04 1.06

Ndat

0

20

40

60

80 KP
(δf p 6= δfn)

(d)

1.01 1.015 1.02 1.025 1.03

Ndat

0

200

400

n
or

m
al

iz
ed

yi
el

d

on-shell (e)

FIG. 12. Normalized yield of Monte Carlo distributions for the data normalization factors Ndat

for the CJ [20] [(a) and (b)] and KP [30] [(c) and (d)] isoscalar functions δf0, assuming isospin

symmetry (δfp = δfn) [(a) and (c)] and the isospin dependent analysis (δfp 6= δfn) [(b) and (d)],

along with the on-shell only fit [(e)]. The colored histograms represent 10 statistically independent

Monte Carlo analyses, while the black histograms are for the combined result. The pile-up in some

of the fits occurs at the upper boundary of the allowed 1.84% normalization uncertainty in the

E03-103 experiment [33].

the E03-103 data, as evident from Fig. 9. For the KP off-shell function, the normalization

parameter distribution is more concentrated at the upper limit, with an average Ndat =

1.012± 0.005. The resulting fit to the 3He/d data is not quite as good at the lower x values,

but still consistent with the data within 1σ.

Note that the full Monte Carlo fit clearly disfavors zero off-shell corrections, C = 0,

especially for the CJ isoscalar function, since it is easier for the fit to vary one of the free

parameters than to keep the same shape and compensate by a normalization shift in the
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data. Nevertheless, if the off-shell corrections are switched off “by hand”, one can still obtain

a good fit to the 3He/d data with just the on-shell contributions, as illustrated in Fig. 9,

with an average data normalization shift Ndat = 1.016±0.002, consistent with the maximum

1.84% allowed [see Fig. 12]. The χ2/dof value for the on-shell fit is slightly larger than that

for the off-shell fit, but is still < 1 and within 1σ from the best fit, even though the tendency

is towards a shape with a slightly different slope than the data prefer.

In an earlier analysis of the E03-103 3He/d ratio, Kulagin and Petti showed [34] that

with the KP off-shell correction, and assuming δf p = δfn, one could fit the Seely et al.

data with a 3% normalization shift, and be consistent with extractions of F n
2 /F

p
2 from

NMC data. This value lies outside of the 1σ range for Ndat quoted by the experiment.

Using our Monte Carlo methodology, we also attempt to fit the E03-103 data using the

isospin symmetric KP off-shell function. Constraining the normalization Ndat to be within

the quoted experimental uncertainty range, the fit shown in Fig. 12 prefers the maximum

upward shift of the data, with an average value Ndat = 1.016± 0.001. The resulting σ
3He/σd

ratio does not give as good a description of the data in Fig. 9, overestimating the ratio

at lower x and underestimating it at higher x. If one uses instead the CJ isoscalar off-

shell correction, assuming isospin symmetry, the fitted data normalization is also near the

maximum allowed, Ndat = 1.017±0.001. The resulting fit to the 3He/d data in Fig. 9 shows

good agreement at lower x, but overestimates the data at the higher x values.

The inescapable conclusion is that, taking the E03-103 3He/d data [33] with the quoted

uncertainties at face value, the fits clearly disfavor isospin symmetric off-shell corrections,

and slightly favor isospin dependent off-shell effects over no off-shell corrections. In the

next section we examine the consequences of this for the MARATHON experiment and the

extraction of the neutron to proton structure function ratio.

C. Implications for A = 3 structure functions

Having obtained the constraints on the nucleon off-shell functions from the E01-103 3He/d

data [33] and the previously determined isoscalar off-shell function, we next discuss the

implications of these results for the structure functions of A = 3 nuclei. In particular, the

MARATHON experiment [25] at Jefferson Lab will make high-precision measurements of the

inclusive cross section ratios for 3He to 3H, as well as 3He/d and 3H/d, which are expected
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FIG. 13. Ratios of nuclear to nucleon structure functions (a) R(3He) = F
3He
2 /(2F p2 + Fn2 ) and (b)

R(3H) = F
3H
2 /(F p2 + 2Fn2 ), for the off-shell Monte Carlo fits using the CJ [20] (solid red curves

and bands) and Kulagin-Petti [30] (solid blue curves and bands) isoscalar off-shell function δf0,

compared with the ratios assuming isospin symmetric off-shell functions from CJ (dashed red

curves) and KP (dashed blue curves), and the on-shell only fit (dotted green curves). The range

of x constrained by the Jefferson Lab E03-103 experiment [33] is indicated by the green horizontal

band, and a scale of Q2 = 4 GeV2, which is close to the average for the E03-103 data, was used

for all structure functions.

to yield information on the ratio of the free neutron to proton structure functions. If one

uses the super-ratio method in Eq. (39), the effect of the off-shell corrections extracted in

Sec. IV B on the R ratio will therefore be of direct relevance for the n/p determination.

For the on-shell only calculation, Fig. 13 shows rather similar 3He and 3H EMC ratios,

with both R(3He) and R(3H) having minima at x ≈ 0.5− 0.6, at which they dip ≈ 4%− 5%

below unity, before rising rapidly at x & 0.7 through Fermi motion. Because of the greater

sensitivity of the 3He and 3H ratios to any isospin dependence of off-shell effects, including

the off-shell corrections from Fig. 11 gives rise to some quite interesting features. Since

the 3He ratio is more sensitive to proton structure than to the neutron, for the case of the

CJ isoscalar off-shell correction the fitted positive proton off-shell function δf p induces a

slightly stronger EMC effect, with the dip in R(3He) increasing to ≈ 5%. In contrast, since

the neutron plays a greater role in the 3H EMC ratio, the fitted negative neutron off-shell

correction δfn reduces the dip in R(3H) to . 2% for x . 0.5, with an earlier onset of the
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Fermi motion rise above unity.

For the KP isoscalar off-shell function δf 0, which gives similarly small fitted proton and

neutron off-shell corrections at 0.3 . x . 0.4, but increasing magnitudes for the (positive)

neutron δfn and (negative) proton δf p at larger x, the effect on the 3He and 3H EMC

ratios is more dramatic. In particular, the positive neutron off-shell function enhances the

magnitude of the dip in the R(3H) ratio to almost 10% at x ≈ 0.65, in marked contrast to

the prediction with the CJ δf 0. The impact on the R(3He) ratio is much less at large x,

with little deviation of the KP off-shell result from the on-shell fit at x & 0.4. At smaller x

values, x . 0.3, the KP off-shell corrections yield an enhancement of ≈ 2%−3% above unity

in both the 3He and 3H ratios, which is directly related to the dip in the KP δf 0 function

at x ≈ 0.2 seen in Fig. 8. On the other hand, there is currently no compelling evidence for

such an enhancement from deuterium data [20], and the effect in the KP δf 0 may be due to

the use of data on heavy nuclei in the KP analysis [30], which do display some enhancement

of FA
2 /F

d
2 at x ∼ 0.1− 0.2.

Note also that the off-shell corrections are constrained by the E03-103 data [33] only in

the range between x ≈ 0.3 and 0.6, and outside this range, where the low-x enhancement for

the KP case and the growing differences between the R(3H) ratios at large x are apparent,

these are not directly constrained by data. Measurement of the 3H structure function in

the MARATHON experiment [25], covering a wide range of x values, 0.2 . x . 0.8, will

provide an unprecedented opportunity to examine the role of nucleon off-shell effects in the

A = 3 system, as well as their possible isospin dependence. In fact, as Fig. 13 illustrates,

the R(3He) and R(3H) ratios show sensitivity to the off-shell corrections even if these are

assumed to be isospin symmetric, δf 0 = δfp = δfn. In the case of δf 0 determined from the

CJ analysis [20], the off-shell corrections move both the 3He and 3H ratios upward relative

to the on-shell calculation, resulting in slightly weaker EMC effects for both nuclei. For δf 0

taken from the KP analysis [30], the effect is a downward shift, making the EMC effects in

3He and 3H slightly larger. Consequently, the relative shifts in R(3He) and R(3H) in both

models are similar.

This can be more directly seen in the super-ratio, R = R(3He)/R(3H), of the 3He and

3H EMC ratios, in Fig. 14. For both the on-shell only and isospin symmetric off-shell fits,

the super-ratio is within ≈ 1% of unity for x . 0.7, with the deviations increasing slightly

at larger x values. (Recall, however, from Fig. 9 that the fits to the E03-103 data [33] with
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FIG. 14. (a) Super-ratio R(3He)/R(3H) of the EMC ratios in 3He and 3H and (b) the ratio

F
3He
2 /F

3H
2 of the 3He and 3H structure functions. The off-shell Monte Carlo fits using the CJ [20]

(solid red curves and bands) and Kulagin-Petti [30] (solid blue curves and bands) isoscalar off-shell

functions δf0 are compared with the results assuming isospin symmetric off-shell functions from CJ

(dashed red curves) and KP (dashed blue curves), and the on-shell only fit (dotted green curves).

The range of x constrained by the Jefferson Lab E03-103 experiment [33] and the extended range

expected by the MARATHON experiment [25] are indicated by the green horizontal bands.

the isospin symmetric off-shell corrections give the worst agreement, especially for the KP

isoscalar correction.) For the isospin asymmetric off-shell functions, the deviations from

unity are at the few-percent level up to x ≈ 0.4, but become significantly larger at higher

x, reaching ≈ 15% above unity at x = 0.8 for the CJ fit, and a similar amount below

unity for the KP result, albeit with large uncertainties. This translates to a ratio of 3He

to 3H structure functions, which will be extracted from the MARATHON experiment, that

deviates from the on-shell result by up to ≈ −10% for the CJ result and ≈ +20% for the

KP fit at x = 0.8, with ≈ 50% statistical uncertainties on these values.

Of course, as discussed above, the results on the off-shell corrections are constrained by

the E03-103 data only for x . 0.6, above which their extrapolation cannot be considered

very reliable. In the region specificically covered by the E03-103 experiment [33], the off-

shell effects scale up to ≈ 5%, although in opposite directions for the CJ and KP isoscalar

off-shell corrections. Measurement of the 3He/3H ratio in MARATHON would therefore be

vital for discriminating between these scenarios.

37



On the other hand, without additional assumptions it may be difficult to attribute the

differences such as those in Fig. 14 entirely to different proton and neutron off-shell correc-

tions, or to a different behavior of the free neutron structure function at large x. In the

following we discuss an alternative analysis scenario, in which the MARATHON data on the

nuclear structure function ratios can be used as critical input for a simultaneous determina-

tion of both the neutron to proton ratio and the isospin dependence of the nucleon off-shell

corrections.

D. Extracting neutron structure from MARATHON

While our Monte Carlo analysis suggests that the possibility of strong isospin dependence

of the nucleon off-shell effects at high x cannot be ruled out on the basis of the E03-103

data [33], it is necessary to examine the caveats and assumptions that underlie these findings.

Firstly, our extraction of the proton and neutron off-shell functions δf p and δfn assumes the

isoscalar nucleon off-shell correction δf 0 to be reliably determined from previous analyses of

the proton and deuteron data (or, in the case of KP, also of heavy nuclear structure function

ratios). However, as is obvious from the sizeable differences between the CJ and KP δf 0

functions in Fig. 8 and in their consequences for the super-ratio in Fig. 14, the magnitude

of the isoscalar off-shell correction, and even its sign as a function of x, is controversial.

Futhermore, in our analysis we have used the same set of input nucleon PDFs [20] with

both the CJ and KP isoscalar off-shell functions. While this is consistent for the CJ δf 0,

for the analysis with the KP off-shell function one should in principle use the PDF set that

was used in the extraction of δf 0 in Ref. [30]. The KP analysis [30] assumed, however, that

δf p = δfn in the fits to structure function ratios for asymmetric nuclei, so using the KP δf 0

to determine the isospin dependence of δfN in our analysis is not entirely consistent.

A more reliable determination of the proton and neutron off-shell corrections would in-

volve a simultaneous analysis of proton, deuteron and A = 3 nuclear data. This would

remove many systematic effects arising from different theoretical assumptions and inputs

utilized in the different analyses. Whatever tensions then remain between data sets in the

combined fit would be treated consistently within the same analysis. In principle, while a

global QCD analysis is the most natural framework in which to perform the simultaneous fit

to the nucleon PDFs and nuclear off-shell functions, one could also imagine a more restricted
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fit at the structure function level.

In particular, with sufficient experimental information on the structure functions of 3He,

3H and deuterium, one can in practice disentangle the nuclear effects from the on-shell nu-

cleon structure functions. Within the convolution framework of Sec. II B, the nuclear struc-

ture functions are expressed as sums of on-shell and off-shell contributions, as in Eq. (17),

FA
2 (x,Q2) = F

A (on)
2 (x,Q2) + F

A (off)
2 (x,Q2), (47)

for A = d, 3He and 3H. The on-shell term depends on the free proton and neutron structure

functions, F p
2 and F n

2 , and the nuclear smearing functions, f
N/A
ij , in Eq. (13). The latter

are reasonably well determined away from the tails of the distributions at large y, which

become important only at x ∼ 1. The off-shell term depends on F p
2 , F n

2 , δf p, δfn and the

off-shell smearing functions f̃
N/A
ij in Eq. (16), which are computed in terms of the same set

of nuclear wave functions as the on-shell smearing functions f
N/A
ij .

Since the proton F p
2 structure function is well known, the three unknowns — the F n

2 /F
p
2

ratio, and the two off-shell corrections, δfp and δfn — can then be determined from three

independent observables, such as the ratios 3He/d and 3H/d (or 3He/3H) and F d
2 /F

p
2 . The

ratios involving 3He and 3H are the main focus of the MARATHON experiment; however,

the experiment will also measure the deuteron/proton structure function ratio over a more

restricted range of kinematics, from x = 0.18 to 0.38 (for Q2 between 2.5 and 5.3 GeV2),

which will be used to benchmark against the large body of high precision data on inclusive

F d
2 and F p

2 structure functions that has been accumulated over the past few decades [86].

While in global QCD analyses one typically parametrizes individual PDFs from which all

observables are then constructed, for an analysis at the structure function level the x and

Q2 dependence of the structure functions could be parametrized by a form such as [87]

F2(x,Q2) = a0(Q2)xa1(Q2)(1− x)a2(Q2)(1 + a3(Q2)
√
x+ a4(Q2)x+ · · · ), (48)

with Q2 dependent shape parameters

ai(Q
2) = a

(0)
i + a

(1)
i s(Q2), s(Q2) = log

(
log(Q2/Λ2

QCD)

log(µ2/Λ2
QCD)

)
, (49)

for i = 1− 4, where ΛQCD is the QCD scale parameter, and µ2 is a scale of order O(1 GeV2)

fitted to the data. For the proton and neutron off-shell functions a polynomial of degree 3,

as in Eq. (44), would be expected to be sufficient. (For simplicity one can assume that
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δfN is independent of Q2, so that the scale dependence of the off-shell contributions to

the structure functions is the same as the on-shell.) The extraction of the three unknown

functions would then involve fitting ∼ 30 parameters, which can be constrained within a

Bayesian likelihood analysis. In this approach, recently employed by the JAM collaboration

in their Monte Carlo analyses of PDFs and fragmentation functions [80–84], the multivariate

probability density for a set of fit parameters a = {ai} conditioned by the data is given by

p(a|data) ∝ L(data|a) π(a), where the likelihood L is a Gaussian function of the χ2,

L(data|a) = exp

[
−1

2
χ2(a, data)

]
, (50)

and π(a) is the distribution of priors. The χ2 function takes into account experimental

statistical, systematic (uncorrelated and correlated), and normalization uncertainties for

each data set used in the fit [80]. The expectation values and 1σ uncertainties for the fitted

quantities can then be computed by Monte Carlo sampling of the probability density [83].

The remaining approximations in such an analysis are ones that reflect the validity of the

convolution framework itself, as outlined in Sec. II B. Namely, one assumes that within the

WBA the form of the off-shell nucleon function δfN remains the same for both A = 2 and

A = 3 nuclei, with the A dependence of the off-shell structure functions in Eqs. (15) entering

only through the off-shell smearing function f̃
N/A
ij . The model dependence of the smearing

functions can be assessed by considering different wave functions or spectral functions for

the deuteron and A = 3 nuclei, as we have explored for the KPSV and SS 3He spectral

functions in Sec. II C. Since the choice of wave function model is a discrete rather than a

continuous parameter, it is difficult to systematically incorporate the uncertainty from this

into the final error analysis. The usual procedure is to examine the dependence of the results

on the choice of wave function and estimate the uncertainty from the resulting variation.

V. CONCLUSION

With the completion of data taking in 2018 by the suite of 3He/3H experiments at Jeffer-

son Lab, including MARATHON in DIS kinematics [25] and E12-11-112 in the QE region

and beyond, there is great anticipation to see the impact that the new data will have on

our knowledge of the structure of the free neutron, and in particular on the d/u PDF ratio

at large x, which has eluded definitive confirmation for over 3 decades. Working within the
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weak binding approximation formalism, we have revisited the calculation of deep-inelastic

A = 3 structure functions using the latest theoretical developments, in terms of finite-Q2

convolution formulas and nuclear effects computed from A = 3 spectral functions and off-

shell nucleon structure functions.

To test the veracity of the WBA smearing functions and the range of applicability of

the impulse approximation, we have examined the world’s available data on inclusive 3He

structure functions in the vicinity of x ≈ 1, which is expected to be dominated by QE

scattering. Comparison with existing data from SLAC and Jefferson Lab suggests that a

good description can be obtained using the Q2 dependent smearing functions as for DIS, for

Q2 & 1 GeV2 out to x ≈ 1.3. For smaller Q2 rescattering and MEC effects are expected

to be more important, while for x � 1 the effects of the off-shell corrections and other

multi-nucleon correlations will play a greater role. This analysis provides confidence in the

application of the nuclear model to the description of the A = 3 DIS and QE data, and

suggests that the extraction of neutron information from the MARATHON and E12-11-

112 Jefferson Lab data should not be impeded by the lack of knowledge of the short-range

structure of the A = 3 wave functions.

For the bound nucleon structure functions, the WBA formalism allows the inclusion of

possible off-shell dependence in the calculation of the nuclear structure functions, in both

DIS and QE kinematics. For the QE data comparisons, the off-shell corrections generally

improve the agreement between data and the WBA theory, especially at low Q2 values,

irrespective of the prescription adopted for the elastic off-shell nucleon structure function.

For the DIS region, the shape of the off-shell corrections for the isoscalar channel, δf 0, is

taken from the earlier CJ15 global QCD analysis of proton and deuterium data [20] or from

the Kulagin-Petti fit to various nuclear structure function ratios [30], which assumed isospin

symmetry for the off-shell functions.

To explore possible constraints on the isospin dependence of the off-shell functions, we

performed a Monte Carlo analysis of the recent data on the 3He/d cross section ratios from

the Jefferson Lab E03-103 experiment [33] for 0.33 . x . 0.58. Within the statistical and

systematic uncertainties of the data, one can obtain almost equally good descriptions with no

off-shell corrections and with nonzero off-shell corrections with large cancellations between

the proton and neutron contributions at large x. The analysis disfavors, however, fits with

nonzero off-shell corrections which assume δfp = δfn. Unfortunately, the results are quite
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sensitive to the shape of the input isoscalar off-shell correction, and a robust analysis must

therefore involve a simultaneous fit to all proton, deuteron and A = 3 data. Also, the

lack of scatter of the E03-103 data points in Fig. 9 suggests that the data do not follow a

Gaussian probability distribution, so that the uncertainties on the data points are dominated

by systematic errors. This highlights the important need for the new high-precision data

expected from the MARATHON experiment.

We have also outlined a new analysis procedure for extracting the neutron structure

function F n
2 using Bayesian methods, that would be capable of simultaneously extracting

the free neutron to proton structure function ratio and the proton and neutron off-shell

functions, δfp and δfn, within the nuclear WBA framework. This would remove potential

uncertainties in the extracted F n
2 propagating from any assumptions made about the super-

ratio, R, of the 3He to 3H EMC ratios. Instead, the method would utilize MARATHON data

on the 3He/d and 3H/d ratios, as well as d/p measurements to be used for benchmarking

against the global inclusive proton and deuteron DIS data sets. The MARATHON ratio

data can also be supplemented with measurements of the absolute values of the F p
2 and

F d
2 structure functions at similar kinematics in the E12-10-002 experiment [88] in Jefferson

Lab’s Hall C, for x & 0.2 and Q2 ≈ 5 − 16 GeV2. The new data are eagerly awaited, and

promise for the first time to reveal the detailed structure of the free neutron at large x, as

well as the isospin dependence of the nuclear effects, and solve the long-standing problem of

the size of the nuclear EMC effect in the deuteron.
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[54] A. Stadler, W. Glöckle and P. U. Sauer, Phys. Rev. C 44, 2319 (1991).

[55] C. Ciofi degli Atti, E. Pace and G. Salme, Phys. Rev. C 21, 805 (1980).

[56] C. Ciofi degli Atti, E. Pace and G. Salme, Phys. Lett. 141 B, 14 (1984).
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