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Abstract
Within a Boltzmann transport model, we demonstrate correlation between stopping observables

and shear viscosity in central nuclear collisions at intermediate energies (on the order of 10–1000

MeV/nucleon). The correlation allows us to assess the viscosity of nuclear matter, by tuning the

in-medium nucleon-nucleon cross section in our transport model to agree with nuclear stopping

data. We also calculate the ratio of shear viscosity to entropy density to determine how close the

system is to the universal quantum lower limit proposed in the context of ultrarelativistic heavy

ion collisions.
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I. INTRODUCTION

Collisions between atomic nuclei at intermediate energies are often used to infer the bulk

properties of nuclear matter. Central among the bulk properties is the nuclear equation

of state (EOS), which pertains to the state of stationary equilibrium of the matter and

contains no information regarding the pace at which the equilibrium is reached. Collective

flow observables were successfully exploited to infer the EOS. On the other hand, bulk

properties that are tied to equilibration rate include transport coefficients such as shear

viscosity and heat conduction. In particular, shear viscosity is tied to momentum transport

in a medium and, among reaction observables, it is natural to link it to stopping observables

that quantify dissipation of momentum.

Knowledge of the shear viscosity is important for understanding the evolution of super-

novae, the stability of rotating neutron stars, and the formation of black holes. Besides

its immediate practical importance, there have been conjectures regarding a fundamental

quantum lower limit on the ratio of shear viscosity to entropy density (η/s) in a wide range

of media [1–3]. Among other situations, the limit is thought to be approached in the quark-

gluon plasma and accessed in ultrarelativistic heavy ion collisions [4]. The question remains

as to whether freeing quark degrees of freedom is needed to approach such a limit in colli-

sions. We will make a quantitative assessment of how close nuclear matter, as seen in these

lower-energy collisions, is to this “perfect liquid” limit.

In the present work, we use stopping, i.e. the degradation of the projectile longitudinal

momentum due to interaction with the target, to constrain the elastic part of the in-medium

nucleon-nucleon cross section, σmed
NN , in a BUU transport model. These constraints are not

without ambiguity. Different observables might lead to different conclusions. Therefore, we

consider different stopping observables for different systems at different energies. What’s

more, different strategies for modifying the cross section in the nuclear medium can lead

to the same degree of stopping, unsurprisingly. Consequently, we inspect whether shear

viscosity is actually correlated with the stopping observables in collisions. We calculate

the viscosity in a manner consistent with the Boltzmann equation used to describe the

collisions and find a strong correlation between the predicted stopping observables and the

magnitude of the predicted shear viscosity coefficients. The correlation suggests a robustness

in the conclusions on the viscosity, even when cross sections are not easy to pin down
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unambiguously based on the data alone.

II. BOLTZMANN-UEHLING-UHLENBECK EQUATION

To model central nuclear reactions and predict observables, we use a set of Boltzmann-

Uehling-Uhlenbeck (BUU) equations, one for each species X, describing the time evolution

of a Wigner quasi-probability distribution in phase space, fX ≡ fX(~r, ~p, t):

∂fX

∂t
+
∂ε~p
∂~p

∂fX

∂~r
− ∂ε~p
∂~r

∂fX

∂~p
= IX,elastic + IX,inelastic . (1)

A prototype equation for the above is the Vlasov equation (single-particle Liouville equa-

tion), with vanishing r.h.s., describing the single-particle evolution of a phase space density

in a mean field. In the above,
∂ε~p
∂~p

is the single-particle velocity, and
∂ε~p
∂~r

is the force due to

the mean field.

The r.h.s. of Eq. (1) takes into account the effects of elastic and inelastic collisions. The

elastic contribution can be expressed as

IX,elastic =
∑
Y

gX

(2π~)3

∫
d~pY dΩ vXY

dσ

dΩ

(
f̃Xf̃Yf

′
Xf
′
Y − f̃ ′Xf̃ ′YfXfY

)
. (2)

The first term accounts for particles with momenta ~p ′X and ~p ′Y colliding and acquiring

the final momenta ~pX and ~pY, thus increasing the occupancy fX (gain). The second term

describes, correspondingly, a decrease in the occupancy fX in a reverse process (loss). Here,

for nucleons, f̃X ≡ 1 − fX represents the Pauli principle blocking scattering into the final

state ~pX. The rate of scattering is governed by the elastic NN cross section
dσ

dΩ
(here, a

function of relative momentum and the scattering angle θ; Ω ≡ (θ, ϕ)). It is this cross

section of which modifications by in-medium effects are explored in Section IV.

The second, inelastic term on the r.h.s. of Eq. (1) represents interactions that create or

annihilate particles of the given species. There has been some work in producing medium

modifications to inelastic processes [5]. However, in the following sections, we only con-

sider modification of elastic cross sections. Therefore, we must limit drawing conclusions

to regimes of reaction dynamics where inelastic processes do not significantly affect the dy-

namics. Once beam energies are high enough, for example, pions are produced early in the

collision. This affects the stopping, so until inelastic cross sections are also addressed, we

restrict ourselves to lower energies. Formation and breakup of nuclear clusters is an inelastic
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process too, but we restrict this process to low densities, so that it plays a role only after

the dynamics significant to stopping have taken place.

An implementation of a time-dependent solution to the Boltzmann equation set by

Danielewicz and collaborators [6–11], often termed pBUU, is used to describe nuclear colli-

sions. In this implementation, the Wigner distributions are represented by a large number

of test particles. These particles move along classical trajectories under the influence of

the mean field and then encounter binary collisions on a statistical basis with other test

particles that are close to them in position space. With an increase of test particle number,

the simulation converges on a better sampled, stable solution [12].

The single-particle energies ε~p in Eq. (2) are derived from an assumed energy functional

E{f} [9] that accounts for modifications of the particle energies from free-space values ε0~p due

to the average effect of interactions with particles in the medium. The mean-field potential is

U = εp− ε0p. Unless otherwise indicated, we employ in the calculations an energy functional

that yields a soft equation of state (EOS) and momentum-dependent U . In the literature,

the abbreviation “SM” is attributed to such functionals.

A. Impact parameter selection

Throughout this work, we will be comparing our simulation results to experimental data.

In experiment, a range of impact parameters is selected for analysis. Most often, it is uncer-

tain what precisely the distribution of those impact parameters is. In any single transport

simulation, the initial state is prepared with one specific impact parameter. To save com-

putation time, an effective impact parameter, beff , is commonly chosen that represents the

median in probability for the impact parameter range. For a range bounded by bmin and

bmax, the effective impact parameter beff is normally taken from

πb2
eff =

πb2
min + πb2

max

2
,

beff =

√
1

2
(b2

min + b2
max) .

(3)

In studies of the central collisions, often experimental ranges effectively start at bmin = 0,

so beff = bmax/
√

2. We have tested in several cases that such a single parameter can indeed
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adequately represent the range, in that results from one parameter agree to a satisfactory

degree with those from combining calculations from impact parameters spanning the range.

III. SHEAR VISCOSITY

An elementary setting for introducing the concept of viscosity is that of laminar shear

in a macroscopic system. Consider two plates, with a medium between them, moving in

antiparallel directions, in the steady state. The layer adjacent to one plate induces a shear

stress, τ , on the layer below it, causing that layer to have a velocity v(y − dy) < v(y).

That layer induces a shear stress on the layer under it, and so on. In the linear response

approximation, these velocities can be related using the equation τ = η(∂v/∂y), where ŷ is

perpendicular to the plates. Here, η is the coefficient of shear viscosity, which is a measure

of the efficiency of the momentum transfer in the medium.

In the nuclear context, many investigations concentrated on characteristics of giant res-

onances in order to infer the viscosity of nuclear matter ([13], see references in [14]). This

relies on the validity of a hydrodynamic description down to zero temperature where the

nucleon mean free path diverges. We find that hydrodynamics fails to describe energetic

reactions where the mean free path, while short, is not short enough for a hydrodynamic

description to hold, requiring the use of transport theory to extrapolate to equilibrium or

near-equilibrium situations.

Several groups have investigated the aforementioned η/s ratio for different models utilized

in nuclear collisions at intermediate energies, such as statistical multifragmentation [15] and

quantum molecular dynamics (QMD) [16]. However, the latter investigations did not link

viscosity to specific observables and did not aim at generality of the results beyond the

specifics of the models. Zhou et al. noticed a correlation between shear viscosity and the

strength of elliptic flow [17]. However, they did not validate that their model was accurately

predicting viscosity-related observables by comparing to experimental data; therefore, their

result is helpful for gaining a qualitative understanding of a theoretical relationship, but

it is less reliable for learning about absolute bulk properties. Finally, the relaxation-time

approaches [18, 19] are suitable for order-of-magnitude estimates, but not for quantitative

assessments.

A compact but approximate expression for the shear viscosity coefficient η, derived from
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the Boltzmann equation in Ref. [20] (see also [21]), is

η =
5T

9

(∫
d~p1f1p

2
1

)2∫
d~p1 d~p2 dΩf1f2f̃

′
1f̃
′
2v12

dσ
dΩ
q4

12 sin2 θ
. (4)

Here, the elastic scattering cross section, dσ/dΩ, is scaled with a factor q4 sin2 θ, which

emphasizes large relative momenta q, where q12 = |~p1− ~p2|/2 , and wide scattering angles θ.

Corrections to Eq. (4) in order to yield the exact η for the Boltzmann equation with elastic

cross sections were estimated to be of the order of 2%, both in the low- and high-temperature

limits. According to Eq. (4), in kinetic transport, viscosity is tied to
dσ

dΩ
q4 sin2 θ, sometimes

called the “transport cross section” — the differential particle-particle cross section scaled

with a weight that increases with relative momentum and scattering angle. To learn about

the shear viscosity, we will adjust the NN cross sections to match the stopping data, and we

will draw conclusions about the viscosity using Eq. (4).

IV. THE NN CROSS SECTION IN THE NUCLEAR MEDIUM

Looking ahead, comparisons to data clearly demonstrate that using the bare nucleon-

nucleon cross section in the BUU equation (1) overestimates the amount of stopping found

in central collisions at intermediate energy. There are several different perspectives on the

σNN in the medium.

Many groups follow the assumption that cross sections (CS) should scale with the nucleon

effective mass [22–24]. This would require the nuclear transition matrix to stay the same

in the medium as in vacuum, which is a perturbative approximation that does not hold for

nuclear interactions. Therefore, there are questions about the validity of this assumption.

Further, the cross section should also be affected by the isospin asymmetry of the surround-

ing medium and several other factors not emphasized in the scaling. In confronting the

microscopic theory with the scaling [25], Sammaruca concluded that no simple phenomeno-

logical ansatz following effective mass scaling is valid. Some authors simply take σmed
NN as

a fraction, e.g. half, of the free cross section [26–29]. The deficiency of this assumption

is that the free NN cross sections are not recovered when the matter becomes sufficiently

dilute. Following the transition matrix approach, one can derive, in the quasi-particle limit,

both the mean field and in-medium cross section, making the development of the Boltzmann

equation more self-consistent, in principle, changing both sides of Eq. (1) [30, 31]. With this,
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though, the collision modification is only due to the mean field and statistics, and collisions

do not affect each other.

In the early phenomenological parametrization of σmed
NN in the literature, the cross section

was assumed to change linearly with density [32]. Eventually, with rise in density, this results

in negative values. Another phenomenological approach was later adopted, where the cross

section was assumed to reduce to a geometric unitary limit at high density [10].

In this paper, three scenarios for intermediate cross sections are discussed and then ex-

plored. We resort to those scenarios because the free NN cross sections are found to be

too large to describe data. In the BUU simulations, the application of the σmed
NN results in a

reduced probability for NN collisions, compared to σfree
NN. For practical use in the simulations,

each reduced cross section can be presented as a reduction factor multiplied by the free cross

section. That reduction factor gets sampled statistically in the simulations. Pauli blocking

of the final state is incorporated separately from this reduction factor.

A. Tempered cross sections

The Tempered cross section reduction scheme [10] is arrived at by considering unitarity.

For a particle moving through a medium of number density n, the scattering partners are

distributed at a relative distance of ≈ n−1/3. For two-body collisions to be independent from

each other, the cross sections should be no larger than a value of the order of the distance

squared, or n−2/3,

σmed
NN . σ0 ≡ νn−2/3 , (5)

where ν is of the order of 1. As the medium becomes more dilute, though, the cross sections

should reach their free-space limit. We parameterize the gradual change between the free

and unitary limits with the formula

σmed
NN = σ0 tanh

(
σfree

NN

σ0

)
, (6)

where σ0 is defined with the r.h.s. of Eq. (5) (in principle, other smooth interpolating func-

tions could be used). As energies in an NN subsystem increase, the free NN cross sections

become increasingly anisotropic, peaking in the forward and backward directions. Those

peaks are tied to higher angular momentum values. When particles are more tightly packed

in a medium, these cross section contributions should be more suppressed than contributions
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from lower angular momenta. For the anisotropic cross sections, we adopt a modification of

Eq. (6): (
dσ

dΩ

)med

=
σ0

4π
tanh

[
4π

σ0

(
dσ

dΩ

)free
]
. (7)

Here, for the purposes of the cross section, particles are treated as distinguishable, even when

they belong to the same species. The equation above accomplishes the goal of preferentially

suppressing the forward and backward peaks, or contributions from high angular-momenta,

relative to those from lower momenta. With Eq. (7), the cross sections become low and

isotropic in the high-density limit, with the absolute limit on differential cross section of

σ0/4π. We stress here again that we treat the particles as distinguishable in the determina-

tion of cross section.

B. Rostock cross sections

Some early microscopic calculations of in-medium cross sections were carried out at the

University of Rostock [33], within a thermodynamic T-matrix approach. In these calcula-

tions, the cross sections were modified to account for Pauli blocking in intermediate states

and due to single-particle energy shifts [34]. Moreover, the results were derived assuming

that the total momentum of the particles was zero in the frame of the local nuclear matter,

in order to simplify the calculations. We coarsely capture the essence of the results [30] with

the following parametrization of the cross section reduction:

σmed
NN = σfree

NN exp

(
−0.6

ρ/ρ0

1 + [Tc.m./(150MeV)]2

)
, (8)

where Tc.m. is the total kinetic energy of the two interacting particles, in the frame where

the local medium is at rest.

C. Fuchs cross sections

Fuchs et al. [35] underscored that in the BUU equation (1), the in-medium mean fields

that the particles are subject to on the l.h.s. of the equation should be derived consistently

with the in-medium NN cross sections σ used in the collision integral on the r.h.s. As the

basis for these simultaneous alterations, they employed the in-medium Dirac-Brueckner T-

matrix [35]. Like the Rostock one, this cross section was derived for two particles with total
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momentum equal to zero in the rest frame of the local medium. The cross section reduction

of Fuchs et al. is parameterized here with

σmed
nn = σfree

nn exp

(
−1.7

ρ/ρ0

1 + [Tc.m./(12MeV)]3/2

)
(9)

σmed
np = σfree

np exp

(
−1.4

ρ/ρ0

1 + [Tc.m./(33MeV)]

)
. (10)

The different cross section reductions above will be used to compare predictions from

pBUU to stopping data, to see if stopping is sensitive to the absolute or to the transport

cross section similarly to the shear viscosity. If the latter dependence were monotonic, then

we could tune the NN cross section to reproduce experimentally observed stopping and use

that tuned cross section to calculate the shear viscosity self-consistently.

V. STOPPING OBSERVABLES

Different observables have been used in the literature to characterize nuclear stopping.

The observables tend to be optimized for a specific energy range where measurements are

carried out. We use several of these observables to enable larger energy range coverage and

better discern the robustness of our conclusions.

A. Linear momentum transfer

In a mass-asymmetric collision of a light projectile colliding with a heavy target, one

can assess the momentum that is transferred to the target, and thus have a measure of

the stopping power — that is, a reflection of how much the projectile decelerates when it

interacts with the target, provided the target survives in some form. As in the schematic

in Fig. 1, one finds the laboratory-frame velocity of the largest fragment emitted from the

collision, assuming that this fragment stands out. Because of the high mass, that fragment is

assumed to originate from the target (the “target-like fragment”). The higher its velocity, the

more momentum was transferred from the projectile. This corresponds to a higher degree

of stopping. To compare the observable across reaction systems, this fragment velocity is

divided by that of the center of mass. Since the velocities involved are non-relativistic,

they can be used to infer the scaled linear momentum transfer (LMT). This observable was
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Before collision

After collision

projectile

target

target−like fragment

vbeam

FIG. 1: Schematic of asymmetric collision. Projectile transfers momentum to the target.

To assess linear momentum transfer, the longitudinal velocity of the target-like fragment is

compared to the velocity of the center-of-mass of the collision.

originally used to distinguish between direct and compound fission reactions in heavy nuclei

[36, 37], then used more generally in nucleus-nucleus collisions [38].

The technique relies on a clear determination of the target-like fragment, and as the

beam energy increases, there are more violent collisions and the largest fragment produced

becomes lighter. In consequence, the practical energy range for this observable is from

around the Coulomb barrier to around 150MeV/nucleon or so. Above this range, any

fragment that could be tied to the target is difficult to distinguish from other fragments of

similar intermediate mass.

The observable LMT is defined [39] as

LMT =

〈
v‖
vc.m.

〉
, (11)

where v‖ is the velocity of the target-like residue in the beam direction, vc.m. is the velocity

of the reaction center of mass. A higher LMT corresponds to a higher degree of stopping.

Experimental [39] and theoretical results for LMT in collisions of a 40Ar projectile with

Cu, Ag, and Au targets are shown in Figs. 2, 3, and 4, respectively. At low energies,

LMT' 1, indicating formation of a compound system and complete stopping. As beam

energy increases, transparency sets in and LMT decreases. In the experiment, it appears

that targets were used with their natural isotopic content. To determine V‖ in the equation

above, a filter on just the heaviest fragments was used, with the assumption that these

heaviest fragments provided a good average estimate of the longitudinal momentum of the
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Fuchs

Rostock

free

Data (Colin et al.)

FIG. 2: Linear momentum transfer for 40Ar+Cu. Lines represent the theoretical results

incorporating different in-medium NN cross sections. The “Tempered” reductions are

marked with their adjustable parameter ν. Symbols represent experimental data [40].

target remnant.

In the BUU calculations, we use the specific isotopes 63Cu, 107Ag, and 197Au for the

targets. In central collisions at this energy, the one- or two-neutron differences in the target

content should not impact LMT enough to matter. Within our simulation, the target

remnant is explicitly tracked throughout the collision, and its velocity is directly calculated

from the constituent particles. In particular, nucleons that initially belonged to the target

and continue to be bound are considered to be part of the target remnant. To be considered

bound, the particle energy must be at least 6MeV below the continuum in the local frame.

For charged particles, the energy excludes the Coulomb contribution, i.e. the continuum is

counted from the top of the local Coulomb barrier.

The various σmed
NN schemes described in Section IV are tested in BUU calculations, with

the corresponding results shown with lines in Figs. 2–4 alongside the experimental data.

The Rostock and Fuchs reductions, as well as the case with no reduction (“free”), are labeled

with their names, while the Tempered CS is marked by its tunable parameter ν. It is clear
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FIG. 3: Linear momentum transfer for 40Ar+Ag. Lines represent the theoretical results

incorporating different in-medium NN cross sections. The “Tempered” reductions are

marked with their adjustable parameter ν. Symbols represent experimental data [40].

from the LMT figures that the free cross section overestimates the stopping in all three

reaction systems, and that the Tempered CS with ν = 0.2 underestimates it. The Rostock

and Fuchs reductions produce LMT values that are very close to each other in all cases,

with Fuchs resulting in ∼ 7% higher values than Rostock in the 65MeV/nucleon region.

Generally, use of the free cross section results in a coarsely linear dependence of LMT

on beam energy in all three systems at about 27MeV and higher, while the reductions all

exhibit a positive concavity with energy in the 40Ar+Cu and 40Ar+Ag cases, which more

closely resembles the data. In the case of 40Ar+Au, all calculated lines show a roughly linear

dependence on beam energy, while the experimental data shows an even larger concavity

compared to the lighter systems.

Judging by eye, the cross section that best fits the 40Ar+Cu and 40Ar+Ag data is the

Tempered one with ν = 0.4 or 0.6. In the 40Ar+Au reaction, the cross section that best

fits the data seems to be the Tempered CS with ν = 0.8.

12



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.02 0.04 0.06 0.08 0.1 0.12 0.14

〈V
‖/
V
c
.m

.〉

beam energy [GeV/nucleon]

Ar+Au

ν = 0.2 ν = 0.4 ν = 0.6

ν = 0.8

Fuchs

Rostock

free

Data (Colin et al.)

FIG. 4: Linear momentum transfer for 40Ar+Au. Lines represent the theoretical results

incorporating different in-medium NN cross sections. The “Tempered” reductions are

marked with their adjustable parameter ν. Symbols represent experimental data [40].

B. Rapidity variance ratio

If particles in the hot, dense region of a nuclear collision undergo many collisions (because

the mean free path becomes comparable to the typical interparticle distance), the region

tends to equilibrate, and particles will lose memory of which direction they were originally

traveling in. With this, more stopping will occur and emission from this specific region will

tend towards isotropy in the reaction center of mass. The FOPI Collaboration provides a

practical measure of this isotropy with the observable varxz, defined as [41]

varxz =
∆yx
∆yz

, (12)

where ∆yx is the variance of particle rapidity along a randomly chosen direction that is

transverse to the beam and ∆yz is the variance of the standard particle longitudinal rapidity.

Fig. 5 shows the experimental results from FOPI [42] as well as the pBUU transport

simulation results with the various σmed
NN reduction schemes used, for Au+Au, looking at

the distribution of protons. The experiment was carried out using the heavy ion accelerator

13



SIS at GSI/Darmstadt, and charged particles were detected with a good coverage of angles

throughout the 4π region, using the FOPI detector and a set of other detectors that pro-

vided particle tracking, energy loss determinations, time of flight determination, and charged

particle identification. The beam energies spanned the range from 0.09 to 1.5GeV/nucleon,

and the impact parameter selection was limited to bred ≡ b/bmax . 0.15.

The most startling finding in Fig. 5 is that simulations with free cross sections yield varxz

clearly in excess of 1, in a wide energy range of 0.09 – 0.6 GeV/nucleon, while varxz seems to

always stay below 1 in measurements. This clearly eliminates the possibility of cross sections

staying the same in the medium as in free space. Thus, just like LMT, the varxz comparison

points to a reduction of the cross sections in the medium. In the simulations with free

cross sections, the matter exhibits a strong hydrodynamic behavior, splashing to the sides

in central collisions [43], yielding varxz > 1. On the other hand, in the measurements, even

the isotropy is never reached, with the medium always staying partially transparent.

Both in the calculations with free cross sections and in the measurements, varxz eventually

drops as energy increases. This can be attributed to two factors: typical momenta in the

center of mass become large compared to the Fermi momentum, and cross sections become

increasingly isotropic with the increase in energy. Additionally, as energy increases, inelastic

processes give rise to ∆ resonances and pions. The higher the energy, the more important

those inelastic processes become. While adjusting the in-medium cross sections, we can

arrive at similar varxz values as in experiment at energies below 0.8 GeV/nucleon. At

higher bombarding energies, the theoretical results with different cross sections begin to

merge and exceed experimental varxz. This is because, in the simulations, we adjust only

elastic cross sections and leave inelastic intact, and the balance in the importance shifts to

the latter cross sections as energy increases.

When examining the pBUU simulations with the tempered σmed
NN at ν = 0.6 (a reasonable

parameter), at energies from 90 to 1500MeV/nucleon, the ratio of peak ∆ production and

absorption rates, which are the primary inelastic processes, to peak elastic collision rates

varies from 0 to 0.8. Assuming that the inelastic collisions start significantly affecting the

reaction dynamics when the ratio is about 0.2 or 0.3, then we should look at beam energies

of less than 600MeV/nucleon in deciding on in-medium cross sections. Given this caveat, it

seems the σmed
NN that best fits the data below 600MeV/nucleon is either ν = 0.8 or Rostock.

Another caveat concerning conclusions on in-medium cross sections concerns another
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FIG. 5: Stopping observable varxz for protons in Au+Au collisions at different beam

energies at bred < 0.15. Lines show the effects of different in-medium reductions of the NN

cross section. The “Tempered” cross-section reductions are marked with their tunable

parameter ν. Symbols are experimental data from the FOPI Collaboration. [44].

type of inelastic process, namely cluster production and breakup. The clusters get more

copiously produced in colder regions of the matter and the production predominantly takes

place at subnormal densities. In the pBUU simulations, we have the option of activating

the production of A = 2 and A = 3 fragments. The production is limited in the simulations

to the densities ρ . 0.6ρ0, but the production and breakup rates are calculated based on

processes taking place in the vacuum without in-medium modifications. As the processes

of cluster production and breakup can compete with two-body collisions, there may be

concerns about the ability to make conclusions about the medium modifications of the two-

body processes.

Most often, due to concerns about the impact of any double-counting of interactions, we

carry out the calculations of stopping with the cluster production switched off. However,

for the sake of testing the validity of concerns tied to the cluster production and absorption,

we also carried out calculations of Au+Au reactions with the cluster production activated.
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FIG. 6: Analogous to Fig. 5, except that A = 2, 3 composite particle formation is enabled

in the simulations, so a comparison to results for different particle species in the

experiment [42] becomes possible.

The peak region in varxz vs. energy, where the comparison between data and theory may

be most telling, seems to be generally best described with the Rostock cross section or the

tempered cross section with ν = 0.8, regardless of whether the calculation includes cluster

production or not.

C. Isospin tracer

Another observable that we use for assessing cross sections, the so-called isospin tracer,

attempts to identify the relative yield of particles from the target and projectile in a given

region of momentum space by examining isospin content. This is done by studying collisions
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between nuclei with identical mass number but different charge number, interchanging the

projectile and target roles, and then comparing the results to those from collisions of identical

nuclei.

The method is described in more detail here:

“The (N/Z)-tracer method is based on the following idea: let us assume that

we are observing the final number of protons, Z in a given cell of the momentum

space. The expected yield ZRu measured for the Ru + Ru reaction is higher

than ZZr of the Zr+Zr reaction since Ru has 44 protons as opposed to 40 for Zr.

Such measurements using identical projectile and target deliver calibration values

ZRu and ZZr for each observed cell. In the case of a mixed reaction, Ru+Zr

or Zr+Ru, the measured proton yield Z takes values intermediate between the

calibration values (ZRu, ZZr). If, e.g., Z is close to ZRu in a Ru+Zr reaction,

means that the cell is populated predominantly from nucleons of the Ru projectile

while if it is close to ZZr it is mostly populated from nucleons of the Zr target. In

this way it is possible to trace back the relative abundance of target to projectile

nucleons contributing to a given cell.” [45]

Within the method, one constructs the observable RZ , defined as

RZ =
2× Z − ZZr − ZRu

ZZr − ZRu , (13)

which assesses relative abundances of the projectile-target nucleons. In this case, Z repre-

sents proton yield in a reaction with different projectile and target for a given location in

momentum space. Yields for other particles can also be used in velocity space [45]. With

the above definition, one arrives at RZ = 1 (−1) when a momentum cell gets populated by

protons originating exclusively from the Zr (Ru) nucleus, as long as the dynamics do not

depend on the charge content. The case of complete stopping would mean that the protons

completely mix and, for any cell, half come from Zr and half from Ru. Thus, full stopping

is expected to yield RZ ≡ 0.

The experimental results [45], along with results from the BUU transport model, with

the Z in RZ representing proton yield, for collisions between 96Zr and one of its A =

96 counterparts, 96Ru, are shown in Fig. 7 plotted against rapidity, for beam energy of

400MeV/nucleon and bred < 0.12.
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tendency of Rz to stay closer to zero at finite rapidities indicates a higher degree of mixing,

and thus stopping.

As rapidity (in the center of mass) gets more negative, the momentum cells are increas-

ingly populated by protons from the target, according to RZ and the interpretation above.

This makes sense, as the target’s particles are more likely to persist in the backward rapidity

region for limited momentum transfers in interactions. As the bins closer to midrapidity are

examined, it is seen that those bins get populated by protons from both colliding nuclei, as

RZ is close to zero there.

It is again clear from Fig. 7 that use of the free NN cross section overestimates the

stopping or mixing in this case, when assessed with the RZ observable. It seems that the

σmed
NN best fitting the data here is either Rostock, Fuchs, or Tempered with ν ∼ 0.8. The RZ

observable is challenging for Monte Carlo calculations, due to statistical fluctuations that

get emphasized in the subtraction of similar values, ZZr−ZRu, and further amplified in the

division by the resulting small number in Eq. (13).
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observable reaction system energies [MeV] best cross section reduction

LMT 40Ar+Cu 17–115 Tempered w/ 0.4 . ν . 0.6

LMT 40Ar+Ag 17–115 Tempered w/ 0.4 . ν . 0.6

LMT 40Ar+Au 27–115 Tempered w/ ν ' 0.8

varxz Au+Au 90–1500 Tempered w/ ν ' 0.8 or Rostock

Rz
96Zr+96Ru 400 Tempered w/ ν ' 0.8, Rostock, or Fuchs

(and inverse)

TABLE I: Summary of cross section determination results. No single cross section

reduction is favored universally. The Tempered cross section with ν ∼ 0.6 is deemed to be

the best compromise.

D. Summary of in-medium cross section analysis

A summary of the stopping observables that were investigated in different systems and

the optimal σmed
NN for each is given in Table I. Overall, there is not one σmed

NN that optimally

reproduces the stopping across all observables, sizes, and energies. It is clear, though, that

the cross section is reduced. For the remaining investigations, we use Tempered with ν = 0.6

as it is the most representative of the range of conclusions.

As the last issue of potential concern in drawing conclusions from stopping observables,

we discuss possible competition between cross sections and mean fields in shaping those

observables.

E. Mean-Field Sensitivity

Choices made regarding the energy functional can make the matter less or more com-

pressible. For more incompressible matter, the mean field potentials become more quickly

repulsive with increase in net density ρ. The mean field potentials can also depend on mo-

mentum p in the local rest frame. The incompressibility of matter is commonly described

in terms of the constant [46]

K = 9ρ0
∂2(E/A)

∂ρ2

∣∣∣∣
ρ=ρ0

, (14)

19



where E/A is the energy per nucleon in cold symmetric matter, and the derivative is evalu-

ated at the normal density ρ0. The calculations so far were all done employing a relatively

conventional functional yielding incompressibility K = 210MeV and effective mass at Fermi

momentum at ρ0 of m∗/m = 0.7, where the latter characterizes the momentum depen-

dence of U . Some uncertainty regarding the incompressibility and momentum dependence

remains, though, and the FOPI Collaboration [42] found some sensitivity of the stopping

to the decisions made on the mean-field interactions in the Isospin Quantum Molecular Dy-

namics (IQMD) model [47]. Here we test whether we can observe any similar sensitivity. An

excessive sensitivity would hamper the efforts to learn about the in-medium cross sections.

To test sensitivity to the mean field, we show in Fig. 8 results obtained for stopping

observables when using our standard mean field (soft, momentum-dependent, or “SM”),

corresponding to incompressibility K = 210MeV, as well as a mean field with no momentum

dependence, corresponding to incompressibility K = 380MeV (hard, or “H”). The two mean

fields yield similar results for flow in semicentral collisions [48]. However, the momentum-

dependent mean field fails to explain flow at high impact parameters or high transverse

momenta [9]. While the H mean field is not realistic, its use allows us to assess the general

sensitivity of the stopping observable to the choice of mean field.

Surprisingly, even when a quite extreme mean field like H is used, the stopping observ-

ables at high energies, varxz and isospin tracer RZ , change very little, suggesting relative

robustness of conclusions there. We find some sensitivity to the mean field at lower energies,

in the stopping observable LMT. Interestingly, no matter what mean field is used, the need

for in-medium cross section modifications is apparent, in order to match the data in Fig. 8.

The reduction in the momentum dependence in U , accompanied by an increase in the incom-

pressibility to meet flow data from semicentral collisions, results in an enhanced stopping

when judging that stopping with LMT. With this, to meet the data with reduced momentum

dependence in U , one would need a stronger reduction in in-medium cross section. However,

realistically, the uncertainty in U and in incompressibility spans approximately a third of

the range between SM and H. Given Figs. 4 and 8, any deemed change in the reduction for

in-medium cross section would be small compared to the ambivalence we already have.
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semicentral collisions [8].
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VI. STOPPING AND THE TRANSPORT CROSS SECTION

In-medium cross sections are obviously not directly observable, and they are tied to

the transport equation that relies on the concept of quasiparticles, which brings in a level

of phenomenology. So a question might be asked whether any more robust conclusions

may be drawn from the studies of stopping, which extend beyond the cross sections. To

illustrate the precarious nature of the conclusions on cross sections, we show in Fig. 9(a)

the collision number in Au+Au collisions at 400MeV/nucleon obtained in simulations with

three different in-medium cross sections: free-space, Rostock, and tempered with ν = 0.8.

As seen in Fig. 5, the stopping is similar in those simulations for the Rostock and ν = 0.8

cross sections, when quantified in terms of varxz, and significantly reduced compared to free

cross sections. Yet, in spite of the similar stopping in Fig. 5, the collision count for the two

cross sections is different by a factor of 2 in Fig. 9(a). Apparently, the stopping does not

directly correlate to the typical elementary cross section in a reaction, which in turn does

not bode well for reaching physics conclusions from stopping.

Taking another perspective, the collision count includes some collisions that are hard,

occurring at high relative velocity with large momentum transfer, and some that are soft,

occurring at low relative velocity and low momentum transfer. Those soft collisions con-

tribute little to momentum transfer across the system as represented by observables such

as LMT, varxz, or RZ . Stepping back from typical cross sections, one can consider that the

most elementary macroscopic characteristics for a system, which are tied to cross sections,

are transport coefficients. The one tied directly to momentum transfer is the shear viscosity,

and it involves the so-called transport cross sections.

The transport-type cross section may be recognized in Eq. (4). Here, the shear viscosity

coefficient η is dependent on the NN cross section, with the cross section’s weight dependent

on the relative momentum and scattering angle. In Fig. 9(b), we show the weighted collision

count, with each collision multiplied by its viscous weight factor q4 sin2 θ. The weighted

collision count is similar for the Rostock and ν = 0.8 cross sections, consistent with varxz

values being similar for those two cross sections in Fig. 5. To provide more insight, in

Fig. 10 we plot the unweighted (top panel) and weighted (bottom panel) collision counts up

to 100 fm/c vs. varxz, for a variety of σmed
NN . While the stopping correlates with the unweighted

collision count, the correlation is fairly broad, with the count differing by up to a factor of
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FIG. 9: Cumulative number of elastic NN collisions vs. elapsed time in central Au+Au

collisions at 400MeV/nucleon, for three different in-medium cross sections. Panels (a) and

(b) show, respectively, net number of collisions and number of collisions weighted with the

viscous weight.

2 for some different plausible cross section reductions. Here, one can see that the stopping

poorly tests the overall number of particle-particle collisions. However, the correlation of

the stopping is fairly tight with the collision count when the collisions are weighted with the

viscous weight, as seen in Fig. 10. The broader systematics further support the view that

the stopping tests transport cross sections and more broadly the medium shear viscosity.
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A. Viscosity from BUU

As Eq. (4) was derived using the same assumptions as the transport model used to

constrain the σmed
NN , that cross section can be inserted into this equation to find a viscosity

coefficient η that is hopefully of greater generality than even the transport model itself,

given the correlation shown in, for example, Fig. 10. The calculation is performed with the

effective mass described in Section VE, which tends to increase the viscosity somewhat,

compared to using the free mass.
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The results of viscosity calculations are displayed in Fig. 11. At all densities and cross

section reductions presented, the viscosity grows indiscriminately at low temperatures. This

occurs when the nucleon system becomes degenerate and collisions become strongly Pauli-

suppressed, with the weighted rate in the denominator in Eq. (4) tending towards zero.

As temperatures increase and Pauli effects diminish, the collisions become more frequent.

The viscosity goes through a minimum and at high temperatures, it behaves in a classical

fashion, growing with temperature like
√
T . Eventually, inelastic processes set in and calcu-

lation of viscosity using just elastic processes in Eq. (4) will start overestimating the actual

viscosity. For situations where consideration of only elastic cross sections is still justified, we

demonstrated that the stopping data imply a significant in-medium cross section reduction,

as compared to free, and thus we demonstrate an enhancement of the shear viscosity as com-

pared to that calculated with free cross sections. For reference, shear viscosity calculated

with free cross sections and velocities is also given in Fig. 11.

We now use our newly determined viscosity to explore how close nuclear matter is to

being the touted “perfect fluid”.
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B. Lower quantum limit of ratio of viscosity to entropy density

It has been found theoretically that certain strong coupling limits of gauge theories have

a constant ratio of shear viscosity to entropy density regardless of the metric used [1, 2],

η

s
=

~
4πkB

. (15)

Moreover, it has been speculated that this value represents a lower limit for all relativis-

tic, finite temperature quantum field theories with zero chemical potential, and for single-

component nonrelativistic gases of particles with spin 0 or 1/2 [2]. We calculate this ratio

at intermediate energies to find the proximity of nuclear matter at these energies to this

conjectured lower limit.

To find the ratio η/s, we calculate η and s separately. We simplify finding the entropy

density by utilizing the model’s ability to describe deuteron yields and use equilibrium

conditions relating the ratio of the yield of deuterons and deuteron-like correlations to that

of total charge, following the prescriptions of Bertsch and Cugnon [49] as formulated in

Ref. [50]. We reproduce the formula here:

σ = S/A = 3.945− ln (Nd-like/Z)− 1

8
Nd-like/Z , (16)

where Nd-like = Nd + 3
2
(Nt +Nh) + 2Nα + · · · and Z = Np +Nd +Nt + 2(Nh +Nα) + · · · [51].

The bulk of the entropy is produced in regions of hot, dense matter, during the compression

and thermalization phase of the reaction [6, 43]. This is also where the stopping signals are

generated. Therefore, the density and temperature in that specific space-time region should

be used to determine the entropy per volume, s = σn, as well as the temperature at which to

find the viscosity. In the simulation, we choose a 2 fm-radius spherical region centered at the

reaction center of mass, during the time of maximal density in that region. The temperature

is found assuming that the momentum distribution of the nucleons approximates that of a

degenerate relativistic Fermi gas.

We choose several representative reactions to find the characteristic temperatures and

densities reached at intermediate energies. Listed here in order of decreasing η/s and increas-

ing maximal temperature, as represented by open circles in Fig. 12, they are 197Au+197Au

at beam energies of 100, 400, and 1000MeV/nucleon, each at reduced impact parameter

bred = 1.5. Even though this work is at a much lower beam energy, the trend of the nuclear
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matter looks to match findings at RHIC energies, which use a Monte Carlo Bayesian frame-

work [52] following initializations in the Glauber [53] and KLN [54] models. Indeed, as the

temperature approaches the critical temperature for nuclear matter, ∼ 170MeV [55], η/s is

seen to approach the conjectured lower bound.

C. Stopping in Collisions and Stokes’s Law

The relationship between stopping and viscosity in the context of nuclear collisions is,

perhaps, counter-intuitive. In one’s everyday experience, stirring a liquid requires more force

to stir when the liquid is more viscous. In fact, Stokes’s law [56] states that the drag force

of a rigid sphere moving slowly through a fluid is directly proportional to the shear viscosity

coefficient of the fluid. On the other hand, as illustrated with different stopping observables,

stopping is enhanced when the transport cross section increases, which makes viscosity drop,

according to Eq. (4). Fig. 9 most dramatically illustrates the correlation between stopping

and the denominator in Eq. (4). These two cases seem to be both intuitively valid and yet

apparently contradictory.

The resolution is that these two cases correspond to systems in different limits of transport

behavior, as characterized in terms of the Knudsen number Kn = λ/R, where λ is the mean
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free path and R the macroscopic distance scale. The liquid stirred in a cup is in the Navier-

Stokes hydrodynamic regime of Knudsen number Kn � 0.1. Central nuclear collisions, on

the other hand, represent the so-called transition region of Kn & 0.1 in the early stages of the

collisions, turning into ballistic motion with large Kn as the system freezes out. Notably,

the Stokes’s law emerges farther in the limit of slow motion of incompressible fluid with

Mach number Ma � 1 and Reynolds number Re � 1. The Reynolds number, inversely

proportional to viscosity η, can be coarsely represented as a ratio of Mach and Knudsen

numbers times a factor of order 1, Re ∝ Ma/Kn. In contrast to the limit of the Stokes’s law,

energetic nuclear collisions are significantly supersonic, so Ma > 1, and Re & 1. Additionally,

the medium density varies significantly, unlike in the limit where the law is obtained.

Even when the Stokes’s law ceases to be strictly valid with the growth of Re or drop in

η, at Kn � 1, the drag on an object moving through a medium continues to drop with

the growth in Re or drop in η [57]. As the flow turns from laminar to turbulent at large

Re, another interesting limit emerges, of drag becoming independent of viscosity. This is

the limit of a parachute or paper dropped in air, as commonly considered in introductory

classrooms.

To conclude this subsection, changes in transport cross sections impact stopping in heavy

ion collisions differently from a rigid body moving through a medium in a laminar Navier-

Stokes regime. If transport cross sections drop, or mean-free-paths grow, at Kn & 0.1, indi-

vidual nucleons decelerate at a slower rate. When a rigid body moves through a medium in

the laminar Navier-Stokes regime, shrinking cross sections or growing mean-free-paths en-

hance the volume of the medium that gets irreversibly accelerated by the body and therefore

transfers the momentum to a larger extent of the medium.

VII. CONCLUSION

We investigated the viscosity of nuclear matter by adjusting the in-medium nucleon-

nucleon cross section to fit nuclear stopping data in terms of several different stopping

observables across a wide range of nuclear mass and beam energy. We found that, for

pBUU, an in-medium reduction in the NN cross section is necessary to match a variety of

experimental data, and that this need for reduction is consistent across a range of reasonable

choices of nuclear mean field. Using these in-medium nucleon-nucleon cross sections, we
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calculate shear viscosity η in nuclear matter, at densities and temperatures representing

those encountered in the collisions from which we draw the stopping observables, in a manner

consistent with the way we simulate the collisions to match the measured observables. We

argue that the stopping observables better correlate with viscosity than with the details in

the cross sections. In calculations of viscosity, the use of reduced cross sections, compared

to free-space, increases the viscosity values. We subsequently calculated the ratio of shear

viscosity to entropy per unit volume, η/s, which is often mentioned in the literature. We

demonstrate that our values for the ratio trend towards that deduced in ultrarelativistic

collisions as temperature increases, corresponding to changing beam energy. The calculated

ratio is only a few times larger than the speculated absolute lower bound of the ratio.

To benefit from data on stopping at higher energies, where pion production starts to

influence the stopping at a significant level, modifications of inelastic processes need to be

explored, from which we refrain at present. We do not systematically incorporate the effect

of inelastic processes on viscosity at high temperatures either. However, Fig. 5 suggests a

reduction in the rates for inelastic processes in the medium, as compared to free-space ex-

trapolations, and a corresponding increase in viscosity, just as in the case of elastic processes

only.
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