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The strong deformation present immediately after scission has consequences for the angular mo-
mentum population of the fragments as well as the angular distribution of their decay radiation.
We find that the usual spin-cutoff parameterization describes very well the angular momentum dis-
tribution associated with the deformation of the fragments at the scission point. Depending on
the deformation, its contribution can be comparable to the thermal contribution to the angular
momentum of the newly formed fragments. The M -distribution of the angular momentum is highly
polarized and gives rise to large anisotropies in the subsequent gamma cascade. We treat in detail
a typical gamma cascade in a daughter nucleus, following usual model assumptions except for the
anisotropy of the initial state. In principle, the observed anisotropy can provide information on the
relative amounts of deformation and thermal energy present at the scission point.

Introduction. Fission is a very complex nuclear reac-
tion, both before and after the scission point. In principle
the post-scission theory should be simpler because one
is treating ordinary decay processes (gamma and neu-
tron emission) in nearly isolated mid-mass nuclei. How-
ever, there are differences from the decays of the excited
nuclei produced in compound-nucleus reactions. Most
importantly, the fission fragments may start in a state
of high deformation aligned along the fission axis. Un-
til recently [1], the angular momentum of the fragments
as been treated statistically, ignoring the specific con-
sequences of the deformation. Without inclusion of de-
formation effects, statistical modeling fails to reproduce
average angular momenta by as much as a factor of two
[2].

The goal of this article is to calculate the effects of
the deformation on the angular momentum distribution
of the nascent fission fragments and their subsequent de-
cay. The theory of the scission process is now under ac-
tive development and many details are still obscure. One
promising approach to determine properties of the frag-
ments immediately following scission is time-dependent
density functional theory [3] (see also Ref. [4]). The re-
lation between deformation and angular momentum con-
tent can be reasonably modeled in well-established mean-
field theories such as Hartree-Fock (HF) or Hartree-Fock-
Bogoliubov (HFB). In the first section below, we estimate
the average angular momentum in deformed configura-
tions using one of the popular energy density function-
als (Gogny D1S). In the section after that we determine
the angular momentum probability distribution by pro-
jection. We find that the shape of the J distribution
coming from deformation is nearly identical to the shape
assumed in the statistical theory, differing only by the
parameter controlling the average width 〈J2〉.

An interesting observable that hardly been used in the
past is the angular distribution of the decay gamma rays.
Due to the alignment of the deformed fragment along

the fission axis, the M distribution of its states favors
M = 0 along the axis. Here we examine the angular
distributions modeling the cascade from a fully aligned
initial population. We find that the effect on the gamma
distribution can approach a factor of two in anisotropy.
This effect is certainly measurable even in the presence
of a large contribution from the isotropic quasi-particle
contribution. The sign of the anisotropy is opposite for
dipole and quadrupole photons, and in fact the both
kinds of anisotropy have been seen in the final decays
to the ground states of daughter nuclei [5].

Of course the angular momentum distribution also has
contributions from quasi-particle excitations. Typically
the pre-scission state is already highly excited above the
collective potential energy surface and that excitation en-
ergy will be carried over to the post-scission fragments.
The strong alignment of the deformed initial configura-
tion is degraded by the presence of quasiparticles and
both 〈J2〉 and the angular distributions will be affected.
However, in view of all of the uncertainties in the present
theory at the scission point we have not attempted to
make a quantitative estimate of the resulting cascade an-
gular distributions.

Angular momentum of aligned deformed nuclei. The
deformation and alignment of the fission fragments re-
quires that the wave function be a coherent superpo-
sition of angular momentum states. To determine the
angular momentum content, we take the wave function
from self-consistent mean-field theory. The first question
we address is the relationship between deformation as
characterized by the Bohr parameter β and the average
squared angular momentum 〈J2〉. The second question
is how the angular momentum is distributed, ie. the
probability distribution P (J) given its average for the
configuration. These relationships were also studied in
Ref. [1] using different modeling assumptions.

Mean-square angular momentum. We construct de-
formed configurations using the Gogny D1S energy func-
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tional in the HF approximation, constraining on the mass
quadrupole operator Q0 = 〈Ψ|2z2−x2−y2|Ψ〉. Here the
many-body wave function Ψ is a Slater determinant of
orbitals. It is conventional to characterize the shape by
the deformation parameter β defined as

β =
(5π)1/2

3A5/3r20
Q0 (1)

where r0 = 1.2 fm.
The general HF formula for the mean-square angu-

lar momentum 〈J2
i 〉 around a Cartesian axis i = x, y, z

is〈Ψ|Ĵ2
i |Ψ〉 =

∑
k,k′ nk(1−nk′)〈k|ĵi|k′〉2 where k, k′ label

a complete set of single-particle orbitals and nk (equal to
0 or 1) is the occupation number in the wave function.
A similar formula applies to HFB wave functions[22, Eq.
(49)],[1, Eq. 40] .

We carry out the constrained minimization of the en-
ergy functional using the code HFBaxial written by one
of us (LMR). We consider several daughter nuclei that
are prominent among the products of the 235U(n,f) re-
action, namely the light fragments 96Kr, 96Sr, and 96Zr,
and the heavy fragments 140Te, 140Xe, and 140Ba. Since
the scission dynamics is still obscure and different models
can give very different shapes of the newly-formed fission
fragments, we do not attempt to calculate the deforma-
tions here but rather consider a range.

The output wave function of HFBaxial is axially sym-
metric and invariant under time reversal. This implies
that the angular momentum satisfies 〈J2

z 〉 = 0 and
〈J2
x〉 = 〈J2

y 〉. The code’s text output includes the expec-
tation value 〈J2

x〉, from which we obtain 〈J2〉 = 2〈J2
x〉.

Graphs of 〈J2〉β are shown in Fig. 1 for the six nuclei
mentioned in the previous paragraph. The curves are far
from smooth, due to the strong shell effects in the HF
approximation. As the deformation increases, particles
jump to orbitals of higher angular momentum, discon-
tinuously increasing the total. The dashed lines in the
Figure are visual fits assuming a linear relationship. A
linear formula covering both sets of nuclei is12

〈J2〉 ≈ (0.3± 0.05)A3/2β. (2)

To assess the importance of the deformation contri-
bution we can look to the existing theory on the scis-
sion dynamics. In one extreme, the scission is treated as
a stastistical process, depending only on the density of
states of the daughter fragments[6–8]. In particular, Ref.
[7] concluded that the lighter fragment would be formed
with a deformation β ≈ 0.6. In the opposite extreme, the

1 Here and elsewhere the angular momentum is given in units of
~.

2 Eq. (2 is purely phenomenological. It would be interesting to
determine the leading dependence on A and β theoretically, per-
haps using semiclassical methods.
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FIG. 1: Angular momentum of various fission fragments as
a function of deformation β. The upper black,blue, and red
lines are for heavy fission fragments 140Ba, 140Te, and 140Xe,
respectively. The lower lines are The other source of angu-
lar momentum is the quasi-particle contribution; we hope to
include its effects in a later publication.for the light fission
fragments 96Kr, 96Zr, and 96Sr. The dashed lines show the fit
obtained with Eq. (1).

scission can now be treated without any statistical as-
sumptions by time-dependent self-consistent mean field
theory [3]. In Ref. [9] it was found that the deformation
of the lighter post-scission fragment of mass A = 105
was in the range β = 0.55−0.7, depending on the energy
functional. Applying Eq. (2), the coherent angular mo-
mentum would be in the range 〈J2〉 = 175 − 220. This
is much larger than the estimates ∼ 100 based on sta-
tistical modeling[2]. We may conclude that the coherent
deformation is potentially the most important contrib-
utor to the angular momentum of the final state. The
other source of angular momentum is the quasi-particle
contribution; we hope to include its effects in a later pub-
lication.
J distribution. Next we analyze the distribution of

angular momenta in the deformed wave function. An
aligned axially symmetry wave function can be decom-
posed into angular momentum eigenstates |JM〉 as

|Ψ〉 =
∑
J

aJ |J0〉 (3)

where
∑
J |aJ |2 = 1, and J is restricted to even angular

momenta for an even-even nucleus in its ground state.
The individual probabilities |aJ |2 can be calculated by
the projection formula

|aJ |2 = (2J + 1)

∫ 1

0

dµ〈Ψ|R̂(θ)|Ψ〉PJ(µ) (4)

where R̂ is the rotation operator about the x axis,
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µ = cos θ, and PJ is a Legendre polynomial. In prac-
tice [10, 11], the overlap 〈Ψ|R̂(θ)|Ψ〉 is very well fitted
by an exponential function of µ. Then the probabilities
|aj |2 are computed from the integral

|aJ |2 = (2J + 1)

∫ 1

0

dµe−C(1−µ2)PJ(µ). (5)

Here C is a constant determined from 〈J2〉 =
∑
J J(J +

1)|aJ |2; it is approximately given by D ≈ 〈J2〉/4. The
resulting distribution for mean square angular momen-
tum 〈J2

p 〉 = 〈J2〉 = 100 is shown by the red circles in
Fig. 2.

In statistical theory, the angular momentum distribu-
tion is often parameterized by Gaussians in the three
Cartesian directions, P (Ji) ∼ e−J

2
i /2〈J

2
i 〉. Assuming this

functional form for the aligned intrinsic state and adding
a quantum correction, we obtain the standard spin-cutoff
formula [5, Eq. (3)]

|aJ |2 ∼ (J + 1/2)e−J(J+1)/2σ2

. (6)

where σ2 ≈
∑
i〈J2

i 〉. This distribution is shown by the
black line in Fig. 2. We see that Eq. (6) is an excellent
approximation to the projection formula Eq. (5).

In fact, the same formula Eq. (6) emerges from the
semiclassical limit of a Gaussian distribution only in the
transverse directions [1]. We note also that Ref. [23,
24] also assume that the angular momentum is purely
transverse.
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FIG. 2: Angular momentum decomposition of a axially de-
formed wave function aligned along the z-axis. Black: Eq.
(6); Red circles: Eq. (5).

Statistical decay angular distributions. The gamma-ray
angular distribution from fission products carries infor-
mation about the alignment of the deformed fragments.
Indeed, significant anisotropies with respect to the fission
axis were observed a long time ago [5]. There will also be

a component due to the Doppler shifts which we ignore
here.

In the gamma decay J ′ → J the relative populations of
daughter states ρ(J,M) are given in terms of the feeding
population distribution ρ(J ′,M ′) as

ρ(J,M) =
∑
M ′

ρ(J ′M ′)(J ′M ′LM−M ′|JM)2. (7)

Here L is the multipolarity of the electromagnetic tran-
sition and (J ′M ′ LM −M ′|JM) is a Clebsch-Gordan co-
efficient. The angular distribution p(θ) of the emitted
photon is given by[13]

p(θ) = NJ
∑

M ′,M,K

|dLK,1(θ)|2ρ(J ′M ′)(J ′M ′ LK|J M)2.

(8)
where dLµ,µ′ is the reduced Wigner D-function and NJ is
a normalization constant.

We first analyze a very simple cascade that starts from
a pure aligned state of angular momentum (J,M) =
(7, 0). The cascade proceeds by emitting dipole pho-
tons until the final transition which is quadrupolar.
Each dipole decay lowers J by one unit until the final
quadrupole decay. Thus the decay chain is 7→ 6→ 5→
4 → 3 → 2 → 0. The population of the 2+ first excited
state remain highly polarized despite the 4-5 preceding
gamma decays, as may be seen in as the solid line in
the upper panel of Fig. 3. The angular distribution of
the subsequent quadrupolar gamma ray is shown in the
lower panel of the Figure. It has an easily measurable
anisotropy and is peaked along the fission axis.

The dipole photons in the cascade also show an
anisotropy. The top panel of Fig. 4 shows the distri-
bution of dipole photons with respect to their angular
momentum about the fission axis. One sees that M = 0
is favored even though M = ±1 is permitted for the
great majority of the transitions in the cascade. Again
the resulting angular distribution (shown in the bottom
panel of the Figure) is anisotropic, but now suppressing
emission along the fission axis.

We have confirmed these findings with a more realistic
treatment of the level spectrum in the cascade. The level
density is generated stochastically following the constant-
temperature formula [14, 15] ρ(E∗) = exp(−E∗/T )/T
where E∗ is the excitation energy and the parameter T
is set to 1 MeV. Each level is assigned randomly an angu-
lar momentum and parity Jπ, except as described below.
The probability distribution for J is given by the spin-
cutoff formula Eq. (6). Here we assume that the factor
σ depends on excitation energy E∗ as [16] σ = b(E∗)1/4

with the parameter b = 4 MeV−1/4. The stochastic spec-
trum is modified in two ways. First, the lowest two states
are given spin-parity assignments 0+ and 2+, typical of
nearly all even-even nuclei. We also limit the maximum
J = Jmax in the probabilistic determination to insure the
cascade will not end on an isomeric state.
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FIG. 3: Top panel: histogram of M -state populations of the
2+ first excited level in the cascade. Solid line is from the
simplified cascade 7 → 6 → 5 → 4 → 3 → 2 starting from the
initial distribution ρ(7,M) = δM0. Dashed line is from the
realistic cascade (see text). Bottom panel: resulting angular
distribution of the gamma decay 2+ → 0+

gs.

The decay branching is also treated stochastically as-
suming that all transitions except the final one are elec-
tric dipole in character, with relative transition rates
given by the Brink-Axel strength function [17]

Tγ ∝ E3
γΓ

EγΓ

(E2
R − E2

γ)2 + E2
γΓ2

. (9)

The giant resonance parameters are taken as Γ = 5 MeV
and ER = 15 MeV.

The angular momentum of the entry point is taken
as (J,M) = (8, 0), chosen to be close to average values
obtained from phenomenological analyses [18, 19]. Its
excitation energy should be a little higher than the neu-
tron separation energy; we set it to E∗ = 8 MeV. Further
details are given in the Supplementary Material [20].

The resulting populations of M quantum numbers and
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FIG. 4: Top panel: Dipole gamma probabilities as a function
of K of the gamma. Solid histogram is from the simplified
cascade; dashed line is from the realistic cascade. Bottom
panel: Dipole gamma angular distribution.

gamma angular distributions are shown as the dashed
lines in Figs. 3 and 4. We see that the qualitative charac-
ter of the polarization remain in the more realistic treat-
ment. It is common to characterize the anisotropy as
coefficients of Legendre polynomials,

p(θ) = 1 + c2P2(cos θ) + ... (10)

. The results of our models are shown in Table I. For
the realistic cascade, we found c2 = −0.2 and 0.4 for the
dipole and quadrupole distributions, respectively.

The qualitative features of the gamma decay angular
distribution were already seen many years ago [5] in a
study of the decay products from the spontaneous fission
of 252Cf. Measurements were presented for transitions
from the first excited state to the ground state in the iso-
topes 144Ba, 110Ru, and 105Mo; the measured anisotropy
coefficients were c2 ≈ 0.1, 0.3, and -0.3, respectively. The
first two are electric quadrupole transitions and the signs
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Model Dipole Quadrupole

simple -0.3 0.4

realistic -0.2 0.4

Exp. 144Ba 0.1

Exp. 110Ru 0.3

Exp. 105Mo -0.3

TABLE I: Anisotropy coeffients c2 in Eq. (10). The model
labeled “simple” assumes the decay chain having 5 stretched
dipole transitions followed by a single quadrupole transition
to the ground state. The model labeled “realistic” is based
on the phenomenological level densities and dipole strength
function described in the text. The experimental anisotropies
are for the decays from the first excited state to the ground
state reported in Ref. [5].

agree with expectations, as was indeed noted in the pa-
per. The higher anisotropy suggests that heavier frag-
ment is more spherical, also expected due to its proximity
to the doubly magic 132Sn. The negative c2 for 105Mo was
left unexplained in the paper. We now know that spin-
parity assignments of the ground and first excited states
in that nucleus [21]: the transition is 7/2− → 5/2− and
has a predominantly M1 character. Thus, we expect a
dipole anisotropy, as observed. Overall, the large ampli-
tudes of the measured anisotropies suggest that quasipar-
ticle excitations do not dominate the angular momentum
distribution of the newly formed fragments.

Outlook We hope that the observable discussed here,
the prompt gamma angular distribution, can be used to
learn more about the division of excitation energy in the
newly formed fission fragments. Unfortunately, there are
too many variables to make a direct connection. The
amount of deformation at scission, and its energy cost, is
still very much uncertain. We believe that much of the
excitation energy in the newly formed fission fragments is
thermal, in the form of quasiparticle excitations, but we
are still lacking a theory of the scission process that can
describe the sharing of thermal excitation energy between
the two fragments. Combining quasiparticle angular mo-
mentum with the deformation will certainly reduce the
anisotropy of the gamma radiation, and that relationship
needs to be understood quantitatively.

Another question that needs to be re-examined is the
role of Coulomb excitation in the post-scission accelera-
tion phase. Both dipole and quadrupole components of
the Coulomb field of the partner fragment are large in
first hundred femtoseconds after scission. Ref. [5, Ap-
pendix] found the effects to be small in a simple model,
but with present-day theoretical tools one could make a
much more reliable estimate.
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