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We construct a new class of phenomenological equations of state for homogeneous matter for
use in simulations of hot and dense matter in local thermodynamic equilibrium. We construct a
functional form which respects experimental, observational and theoretical constraints on the nature
of matter in various density and temperature regimes. Our equation of state matches (i) the virial
coefficients expected from nucleon-nucleon scattering phase shifts, (ii) experimental measurements
of nuclear masses and charge radii, (iii) observations of neutron star radii, (iv) theory results on
the equation of state of neutron matter near the saturation density, and (v) theory results on the
evolution of the EOS at finite temperatures near the saturation density. Our analytical model allows
one to compute the variation in the thermodynamic quantities based on the uncertainties in the
nature of the nucleon-nucleon interaction. Finally, we perform a correction to ensure the equation
of state is causal at all densities, temperatures, and electron fractions.

PACS numbers: 97.60.Jd, 95.30.Cq, 26.60.-c

I. INTRODUCTION

The equation of state (EOS) of dense nucleonic mat-
ter is a central microphysical input required for numer-
ical simulations of core-collapse supernovae [1] and neu-
tron star mergers [2]. These simulations probe baryon
densities (nB) up to a few nucleons per fm3, tempera-
tures (T ) up to 100 MeV, and a wide range of electron
fractions (Ye). This three-dimensional space is often de-
scribed through an EOS table which relates the free en-
ergy or pressure of the system to the thermodynamic
variables describing the ambient environment. These ta-
bles, in turn, are built from modeling the interactions
between nucleons, nuclei, and potentially exotic particles
that may appear at high densities.

Over this large three-dimensional (nB , Ye, T ) space,
there are several different physical regimes each con-
strained by different observables and theoretical ap-
proaches. The first regime, zero temperature nuclear
matter at nuclear saturation density, is closely connected
to nuclear masses, charge radii, giant resonances, and
other laboratory observables. Global fits to experimen-
tal data have been performed with Skyrme (e.g., Ref. [3])
and covariant mean-field models (e.g., Ref. [4]). The
second regime, cold neutron matter below nuclear sat-
uration density, is difficult to probe experimentally but
is well-constrained by theoretical calculations based on
semi-phenomenological nuclear forces or microscopic chi-
ral effective field theory-based interactions [5–7]. The
third regime, strongly-interacting high-temperature mat-
ter, is best described by interactions and many-body ap-
proaches similar to those applied to cold neutron mat-
ter near saturation density [8–11]. The fourth regime,
low-density and high-temperature matter that is nearly
non-degenerate, is best described by the virial expansion.
The equation of state in this regime is determined from

nucleon-nucleon scattering phase shifts [12, 13]. Finally,
neutron-rich matter at densities above twice saturation
density is most strongly constrained by observations of
neutron star masses and radii, particularly the observa-
tion of neutron stars with M ' 2M� [14, 15].

There are several currently available tabulated equa-
tions of state. The first set of EOSs, developed by Lat-
timer and Swesty (LS) [16], was constructed in the single-
nucleus approximation and based on three different non-
relativistic Skyrme interactions. Two of the three Skyrme
interactions have nuclear incompressibilities (K) far out-
side of modern constraints [17, 18]. The third, with
K = 220 MeV, has a combination of symmetry energy
(S) and slope of the symmetry energy (L) that are only
slightly outside of current constraints ([19–22]). The LS
EOS with K = 220 MeV also produces a 2 M� neutron
star and is still important for simulations of core-collapse
supernovae and neutron star mergers. The second set of
EOSs came from H. Shen et al. [23] (also using the single-
nucleus approximation) and was based on the NL3 rela-
tivistic mean-field Lagrangian. The values of K and L for
NL3 are much larger than current neutron star oberva-
tions (see the analysis in e.g., [24]) and nuclear theory [25]
suggest.

While the single-nucleus approximation is sufficient to
describe the bulk thermodynamics, it does not in gen-
eral accurately describe the composition [26–31] and the
associated weak reaction rates. More modern EOS ta-
bles often include a more complete nuclear distribution
as a result. The third set from G. Shen et al. [32] in-
cludes an EOS table based on a more modern relativistic
mean-field model, “FSUGold” [33], and goes beyond the
single nucleus approximation to include a full distribu-
tion of nuclei in nuclear statistical equilibrium (NSE).
This model has values of K, L and S that are within re-
cent constraints from experiment and (in later versions)
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produces a neutron star maximum mass larger than 2
M�. These EOSs based on FSUGold include more mod-
ern nuclear physics input, including a proper treatment
of nearly non-degenerate matter that matches the virial
expansion. The fourth set of EOS tables was based on the
work of Hempel and others [34] that built upon several
nucleon-nucleon interactions which produce reasonable
values of K, S and L and generate 2 M� neutron stars,
including FSUGold, DD2 [35], IUFSU [36], SFHo [37] and
SFHx [37]. The latter two interactions were designed to
simultaneously match laboratory nuclei and give neutron
star radii that match astronomical observations of neu-
tron stars [24]. More recently, several EOSs have been
added to the CompOSE (CompStar Online Supernovae
Equations of State) database [38], including an EOS with
hyperons [39].

In this work, we construct a phenomenological free en-
ergy density that is consistent with observational and
theoretical constraints in the five aforementioned physi-
cal regimes. This is in contrast to works which attempt to
describe matter over the entire density and temperature
range with a single detailed model of the nucleon-nucleon
interaction. Many previous works proceed this way us-
ing a Skyrme-based or relativistic mean-field model to
describe matter at all densities and temperatures. The
principal problem is that these models are guaranteed to
work well only for isospin-symmetric nuclear matter at
zero temperature. Extrapolating these models to other
density and temperature regimes may lead to inaccurate
EOS results or may introduce unphysical correlations be-
tween the nature of matter across different regimes. For
example, given a Skyrme model it is common to observe
that the nuclear incompressibility is correlated with the
maximum mass of neutron stars. Such a correlation has
little physical meaning, however, since the neutron star
maximum mass is determined by interactions in high-
density matter that likely have little similarity to nucle-
ons in the laboratory (see a similar argument in Ref. [40]).
We avoid extrapolations where possible, but some ex-
trapolation will still be required where experimental and
theoretical guidance is lacking.

Our second advance is in the treatment of uncer-
tainties. The most relevant parameters which describe
the uncertainties in different density and temperature
regimes are not clearly related. The virial expansion pro-
vides a clear path forward for describing uncertainties
at low-density and high-temperature, but higher-order
virial terms are not necessarily useful for quantifying un-
certainties at higher densities. In this work, through the
construction of a phenomenological model one can vary
uncertainties in different regimes independently, without
spoiling agreement elsewhere.

II. METHOD

The EOS table is constructed by combining an EOS for
homogenous nucleonic matter consisting only of neutrons

and protons. The EOS is written in the form of the
Helmholtz free energy (including only the contribution
from nucleons) fnp(nB , Ye, T ). In the discussion below,
we remove the nucleon rest mass contributions from the
free energy densities and chemical potentials and use a
tilde when these rest mass contributions are included, i.e.

f̃np(nB , Ye, T ) ≡ fnp(nB , Ye, T )

+nB [(1− Ye)mn + Yemp] , (1)

where mn and mp are the neutron and proton masses.
When electrons are included, their rest mass contribu-
tion to the free energy is also included. We ignore muons
because they are rarely included in simulations [41]. We
also ignore exotic particles at higher densities. Thus the
proton fraction, xp, is always equal to the electron frac-
tion, Ye.

A. Virial expansion and homogeneous nucleonic
matter

The virial expansion is a model-independent way of
computing the pressure of matter at low densities and
high temperatures [12, 13, 42]. It is an expansion in
powers of the fugacity, zi, of particle i defined by

zi = exp (µi,vir/T ) , (2)

where µi,vir denotes the nucleon chemical potential. In
matter consisting only of neutrons and protons, the first-
order terms in the pressure, proportional to zn and zp,
consist of the classical non-interacting contribution to
the pressure. The coefficients of the second-order terms
(second-order virial coefficients) in the virial expansion
can be obtained directly from nucleon-nucleon scattering
phase shifts. Third-order virial coefficients are not well
known. Nuclear statistical equilibrium implies that the
fugacity of nuclei can be written in terms of the neutron
and proton fugacities

z(Z,N) ∝ zNn zZp . (3)

Thus when the neutron and proton fugacities are nearly
equal the contribution of deuterons comes at second order
in the virial expansion and the contribution from alpha
particles comes at fourth order. Two-body scattering
between nucleons and alpha particles contributes at fifth
order in the virial expansion. In this work, because the
third-order virial coefficients are not well-known, third-
order and higher terms are ignored.

Second-order terms in the virial expansion affect the
description of homogeneous nucleonic matter. In order
to ensure that the free energy matches the virial result
at low densities and high temperatures, the free energy
density is written as

fnp(nB , xp, T ) = fvirial(nB , xp, T )g

+fdeg(nB , xp, T )(1− g) , (4)
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where fvirial is the virial free energy density, fdeg is the
free energy density when either the neutrons or protons
are sufficiently degenerate so that the virial expansion is
a poor approximation. The function g is defined by

g ≡ 1/(1 + 3z2n + 3z2p) . (5)

This definition ensures that (1−g)fdeg appears as a third-
or higher-order correction to the free energy density in
the virial expansion as long as fdeg is at least linear in
the fugacity at low densities (we verify this below). The
value of g is 1 only when zn and zp are both sufficiently
small. The numerical coefficient 3 was chosen to ensure a
positive entropy in the entire region in (nB , Ye, T ) space
for which the pressure of our EOS is positive. The rela-
tionship between the fugacities and the densities is

nn = 2λ−3
[
zn + 2z2nbn(T ) + 2znzpbpn(T )

]
np = 2λ−3

[
zp + 2z2pbn(T ) + 2znzpbpn(T )

]
. (6)

These equations are solved for the fugacities in order to
compute the free energy density from the virial expan-

sion. The quantity λ ≡ [4π/(mnT +mpT )]
1/2

is the av-
erage nucleon thermal wavelength, the quantity bn(T ) is
the second neutron virial coefficient, and the quantity
bpn(T ) is the virial coefficient describing the interaction
between neutrons and protons.

The virial coefficients bn(T ) and bpn(T ) are determined
by scattering phase shifts. Analytical fits can be em-
ployed, similar to those in Ref. [43], but previous fits for
bn employ functional forms which diverge for T → 0. We
perform an alternate fit, constraining the zero tempera-
ture behavior to match that expected from a finite-range
expansion, which will be correct when the density is suf-
ficiently small. The values of the virial coefficients at
high temperature are not well-known, so we arbitrarily
constrain the fits so that the virial coefficients give the
value expected for noninteracting fermions at T = 150
MeV. While very hot and nearly nondegenerate matter
is present in simulations, it is unlikely to strongly affect
the dynamics.

For the neutron matter virial coefficient, we use the
data given in Refs. [12, 13] and add three points at
T = 0.1, 0.5 and 150 MeV, with virial coefficients of
0.207, 0.272, and 2−5/2 respectively. The first two are de-
termined from an effective range expansion to the phase
shift with scattering length −18.9 fm and effective range
2.75 fm as determined from Ref. [44]. The last value at
T = 150 MeV is the non-interacting result. We fit this
data to a 10-parameter functional form

bn(T ) = b0 + b1T + b2T
2 + b3T

3 + b4e
−b5(T−b6)2

+b7e
−b8(T−b9) . (7)

We find that the parameter set b0 = 0.28745, b1 =
2.2006 × 10−3 MeV−1, b2 = −2.6210 × 10−5 MeV−2,
b3 = 6.0617 × 10−8 MeV−3, b4 = 1.0595 × 10−2,
b5 = 5.6734 × 10−2 MeV−2, b6 = 3.4925 MeV, b7 =
−2.7106 × 10−3, b8 = 3.1405 MeV−1, b9 = 1.2010 MeV
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FIG. 1. Fit of virial coefficients to data. The points at T=0.1
MeV are computed through effective range expansion.

matches the data. The data and the fit are shown in the
top panel of Fig. 1.

The contribution from the deuteron binding energy
is typically included in bpn(T ), but in this work the
deuteron binding energy is removed We do not yet in-
clude other bound states of nucleons (such as alpha par-
ticles) so it would be inconsistent to include the deuteron.
Nuclei will be added in a nuclear statistical equilibrium
part of the free energy in a later work. For the low-
temperature result (T < 1 MeV), both 1S0 and 3S1 phase
shifts contribute at low energy, while due to the factor
e−E/2T from Eq. (22) in Ref. [13], it is reasonable to ig-
nore the higher-order phase shift contributions. We use
the scattering length −23.74 fm and effective range 2.77
fm [44] for 1S0 channel and the scattering length 5.418
fm and effective range 1.833 fm for the 3S1 channel from
Ref. [45]. An alternate fit for bpn is

bpn(T ) = c0e
−c1(T+c2)

2

+ c3e
−c4(T+c5), (8)

where c0 = 1.5273, c1 = 1.7488 × 10−4 MeV−2, c2 =
1.7550 × 101 MeV, c3 = 0.45104, c4 = 0.27513 MeV−1,
c5 = −1.1250 MeV. The data and the fit are shown in
the bottom panel of Fig. 1.
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B. First derivatives of the free energy

From Eq. (4), we can obtain the chemical potentials
and entropy directly

µi = µi,virg + fvirial
∂g

∂ni

+
∂fdeg
∂ni

(1− g)− fdeg
∂g

∂ni
(9)

for i = n, p where

µi,vir ≡
∂fvirial
∂ni

(10)

and for the entropy

s = −∂fvirial
∂T

g − fvirial
∂g

∂T

−∂fdeg
∂T

(1− g) + fdeg
∂g

∂T
. (11)

In order to compute the derivatives of g with respect to
the densities, one can differentiate Eqs. (6) with respect
to nn and np and then solve the resulting four equations
for the quantities ∂µi,vir/∂nj (for i, j = n, p).

C. Matter near nuclear saturation density

Experimentally-measured nuclear masses are well-
described by Skyrme energy density functionals and thus
it is expected that the energy density of nuclear matter
at zero temperature is also well-described by the Skyrme
model. In Ref. [3], the parameters of the Skyrme model
were fit to several nuclear masses, charge radii, and pair-
ing energies using Bayesian inference. We use a set of
1000 Skyrme parameterizations selected from the poste-
rior distribution computed in Ref. [3] to describe isospin
symmetric matter.

Because there is relatively little information from the-
ory or experiment in some regimes, the Skyrme model
will also be extrapolated to higher densities and temper-
atures from below. This means that, however, we cannot
use all of the parameterizations because some of them
have a nucleon effective mass which becomes negative for
densities below nB < 2 fm−3. We remove such Skyrme
models from consideration.

Nuclear mass measurements are restricted to relatively
isospin-symmetric nuclei, thus neutron matter is not nec-
essarily accurately described by Skyrme models (see e.g.
the discussion regarding large fluctuations in the isovec-
tor channel in Ref. [46]). Zero-temperature neutron mat-
ter up to nuclear saturation density is tractable in quan-
tum Monte Carlo [47] and many-body perturbation the-
ory [7, 48]. It has thus become common to fit to neutron
matter calculations as well as nuclear mass data [49, 50].
However, this practice presumes that the Skyrme func-
tional is well-suited to describing pure neutron matter, an
assumption that is not necessarily valid. Thus, for pure

neutron matter we use the four-parameter expression
based on quantum Monte Carlo results from Ref. [47],

εQMC(nB) = fQMC(nB)

= nB

[
a
(
nB

n0

)α
+ b

(
nB

n0

)β]
. (12)

The range for the parameters 0.47 < a < 0.53 and
12 MeV < α < 13 MeV is chosen as in Ref. [51] to
enclose the limits in Ref. [47].

The symmetry energy implied by many of the Skyrme
fits, when combined with the quantum Monte Carlo re-
sults for neutron matter, naturally implies bound neutron
matter at subsaturation densities. Similarly, much of the
range for S and L implied by the Skyrme parameteriza-
tions is outside the allowed range from Ref. [22]. Thus
we ignore the values for S and L from the Skyrme models
and limit L between 44 and 65 MeV, and S between 29.5
and 36.1 MeV as in Ref. [51]. These bounds are consistent
with recent microscopic constraints [21] on the density
dependence of the symmetry energy from chiral effective
field theory. The prescription (9.17S− 266 MeV) < L <
(14.3S − 379 MeV) is used to ensure that S and L are
correlated. The coefficients b and β are determined by

b = S − a+ (E/A)sky (13)

β =
1

b

(
L

3
− αa

)
(14)

where (E/A)sky is the binding energy per particle of nu-
clear matter from the Skyrme interaction. Finally, we
combine the nuclear matter and neutron matter results
by assuming the symmetry energy is quadratic in xp.
This choice ensures that nuclear matter is representative
of experimental results on nuclear masses while neutron
matter agrees with modern theory results.

We note that the free energy density of matter from
the QMC results above is always at least linear in the
density, and by Eq. (6) at least linear in the fugacity
at low densities. This also holds for the Skyrme model,
since the kinetic part of the energy density is proportional
to k5F and the potential energy part is proportional to
at least one power of the density. Thus our function
g in Eq. (5) above is defined so that fdeg will leave the
second-order virial coefficients unchanged from the values
determined by experiment in the low-density limit.

D. Matter at high densities

Above nuclear saturation density, there are two princi-
pal sources for constraints on the EOS of matter: heavy
ion collisions and neutron star observations. Constraints
on the EOS from heavy ion collisions near the saturation
density do not yet contradict results from Skyrme fits.
On the other hand, constraints from heavy ion collisions
on the EOS at higher densities do not yet provide a clear
picture. Until the results from heavy ion collisions are
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more definitive, the Skyrme model from above is extrap-
olated to higher densities to describe isospin-symmetric
nuclear matter.

Neutron star mass and radius observations constrain
the equation of state of neutron-rich matter at high densi-
ties, in particular, the pressure as a function of the energy
density [24]. Unfortunately, neutron star observations do
not yet currently constrain the proton fraction of neutron
star matter. We find that the form

εNS(nB) = fNS(nB) = p0nB
√
nB + p1n

2
B + p2n

2
B

√
nB

+p3n
3
B + p4n

4
B (15)

provides a good fit to the results from Ref. [24]. We ran-
domly select EOSs from a Markov chain constructed in
Ref. [51], and fit them to Eq. (15). Ref. [51] constructed
several Markov chains, and we use the chain which was
constructed using GCR (as above; from Ref. [47]), Model
A (which models high-density matter using polytropes),
and includes all of the mass and radius data from pho-
tospheric radius expansion X-ray bursts and quiescent
low-mass X-ray binaries.

Astrophysical simulations can probe densities larger
than those constrained by the neutron star data in
Ref. [51]. Between a transition density, nBf and the

largest baryon density we consider, nB = 2 fm−3, we im-
plement a simple EOS adapted from Constantinou and
Prakash [52, herafter denoted C&P]. The procedure for
matching these EOSs begins by setting nBf equal to
the highest density specified by the Monte Carlo data
in Ref. [51]. We decrease this transition density as nec-
essary to ensure that the EOS from Eq. (15) is causal for
densities lower than this transition density. We add an
additional parameter, φ, which is equal to the speed of
sound at the largest density we consider, nB = 2 fm−3.

The EOS between nB = nBf and nB = 2 fm−3 is cho-
sen depending on the relative magnitude of the speed of
sound at these two endpoints. If the speed of sound is in-
creasing with increasing baryon density, then, we choose

c2s = 1− a1 +
a1a2n

a1
B

1 + a2n
a1
B

(16)

and determine a1 and a2 by matching the boundaries ≡
c2s (nBf ) and φ = c2s

(
nB = 2 fm−3

)
thus ensuring β → 1

as nB →∞. The energy density above nB = nBf is

εNS = −mnnB + c1

(
1

2
a2n

2
B +

n2−a1B

2− a1

)
+ c2, (17)

where

c1 =
εf +mnnBf + Pf

n2Bf

(
a2 + n−a1Bf

)
c2 =

1

2

(εf +mnnBf − Pf ) + a1
εf +mnnBf + Pf

(a1 − 2)
(

1 + a2n
a1
Bf

)
(18)

Alternatively, if the speed of sound is decreasing with
increasing density, then we set

c2s = a1 −
a1a2n

a1
B

1 + a2n
a1
B

(19)

and match the boundaries as before ensuring β → 0 as
nB →∞. The corresponding energy density is

εNS =
c1nB 2F1

(
1,− 1

a1
, 1− 1

a1
,−nB

−a1

a2

)
a2

+ c2 −mnnB

(20)
where 2F1 is a hyper-geometric function with Pfaff’s
transformation and the constants c1 and c2 are

c1 = n−a1−1Bf

(
a2n

a1
Bf

+ 1
) (
εf +mnnBf

+ Pf
)

c2 = n−a1Bf

[
a2n

a1
Bf

(
εf +mnnBf

)
−
(
a2n

a1
Bf

+ 1
)

2F1

(
1,− 1

a1
, 1− 1

a1
,−n

−a1
B

a2

)
(
εf +mnnBf

+ Pf
)] 1

a2
. (21)

Although in practice φ is chosen randomly so this is rare,
if c2s (nBf ) = φ = c2s

(
nB = 2 fm−3

)
, then we ensure c2s

is constant at high densities. The corresponding energy
density is

εNS = −mnnB +

(
εf +mnnBf

+ Pf
)(

1 + C2
sf

) (
nB
nBf

)1+C2
sf

+
C2
sf

(
εf +mnnBf

)
− Pf

1 + C2
sf

. (22)

This speed of sound correction ensures that neutron star
matter is causal, but an additional correction (described
below) will be required to ensure that the speed of sound
is not larger than the speed of light at all temperatures
and electron fractions.

In order to combine information from QMC near the
saturation density and information from neutron star ob-
servations at higher densities, we define a function h,

h =
1

1 + exp [γ(nB − 3
2n0)]

(23)

where γ is 20.0 fm3. This function is used to interpolate
between the two density regimes.

E. Hot matter near the saturation density

Nuclear two- and three-body forces based on chiral ef-
fective theory have shown great progress in computing
the EOS of matter near nuclear saturation. The Kohn-
Luttinger-Ward perturbation series can be used to com-
pute the EOS of matter at finite temperature as described
in Refs. [9, 53]. The resulting EOS can then be fitted with
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parameter value

x0 4.19756 × 101

x1 −6.94792 × 10−2

x2 4.19202 × 10−1

x3 −2.87797 × 101

t0 5.06729 × 103 fm2

t1 1.74925 fm4

t2 −4.72119 × 10−1 fm4

t3 −1.94596 × 105 fm2+3α

α 1.44165 × 10−1

TABLE I. Skyrme parameters obtained from the chiral EOS
used for the finite-temperature corrections in this work

a Skyrme interaction, as done for example in Ref. [54].
However, it is difficult to use these results to quantify
the uncertainties in these EOS calculations for matter at
T = 0 where large cancellations between attractive and
repulsive interactions lead to large theoretical errors. We
cannot employ the Skyrme interaction from Ref. [54] by
itself because this EOS does not necessarily reproduce
nuclear structure at T = 0 as does our model which is
based on the fit in Ref. [3].

To attempt to address this, we refit only the finite-
temperature correction from the chiral EOS,

∆fhot(nB , xp, T ) ≡ fhot(nB , xp, T )− fhot(nB , xp, T = 0)
(24)

and add these finite temperature corrections on top of
our EOS. The EOS for neutron matter (xp = 0) and

nuclear matter (xp = 1/2) is obtained from the pertur-
bation series (including the non-interacting contribution)
and fitted with a single Skyrme model. The resulting pa-
rameter set is given in Table I. We assume that these fi-
nite temperature corrections are quadratic in the isospin
asymmetry, δ. The EOS is not fully quadratic [55, 56],
but the quadratic approximation is good enough in com-
parison to the uncertainties in the nature of the strong
interaction above the saturation density. We do not ex-
pect this Skyrme interaction to give a reasonable decrip-
tion of nuclei or saturated nuclear matter, because we
only employ it to describe the finite temperature part of
the EOS. There are some regions, especially at large den-
sities, for which the EOS is unstable, i.e. ds/dT < 0, but
these regions most often result in an acausal EOS and
are thus fixed by the speed of sound correction described
below.

F. The full combined EOS

First, we define the symmetry energy to include a zero-
temperature contribution which combines the QMC EOS
near saturation density, the neutron star fit at higher den-
sities, and the Skyrme interaction for isospin-symmetric
matter

εsym(nB) = h(nB)εQMC(nB) + [1− h(nB)] εNS(nB)

−fSkyrme(nB , xp = 1/2, T = 0) . (25)

Defining the isospin asymmetry δ = 1 − 2xp, we can
combine this with the model described above to obtain
the free energy density of degenerate matter

fdeg(nB , xp, T ) = fSkyrme(nB , xp = 1/2, T = 0) + δ2εsym(nB) +

+δ2∆fhot(nB , xp = 0, T ) + (1− δ2)∆fhot(nB , xp = 1/2, T ). (26)

Finally, we ensure that the total nucleonic free energy
gives the result from the virial expansion at high tem-
peratures using Eq. (4). When we need to include the
electrons, positrons, and photons, we define the free en-
ergy density

fnpeγ ≡ fnp + fe− + fe+ + fγ . (27)

Using this formalism, the chemical potentials and en-

tropy can be computed directly:

∂fdeg
∂nn

=
1

2
µn,Skyrme(nB , xp = 1/2, T = 0)

+
1

2
µp,Skyrme(nB , xp = 1/2, T = 0)

+δ2
∂εsym
∂nB

+
2δ(1− δ)

nB
εsym

+
2δ(1− δ)

nB
∆fhot(nB , xp = 0, T )

+δ2∆µn,hot(nB , xp = 0, T )

−2δ(1− δ)
nB

∆fhot(nB , xp = 1/2, T )

+
(
1− δ2

)
∆µn,hot(nB , xp = 1/2, T ), (28)
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∂fdeg
∂np

=
1

2
µp,Skyrme(nB , xp = 1/2, T = 0)

+
1

2
µn,Skyrme(nB , xp = 1/2, T = 0)

+δ2
∂εsym
∂nB

− 2δ (1 + δ)

nB
εsym

−2δ (1 + δ)

nB
∆fhot(nB , xp = 0, T )

+δ2∆µp,hot(nB , xp = 0, T )

+
2δ (1 + δ)

nB
∆fhot(nB , xp = 1/2, T )

+
(
1− δ2

)
∆µp,hot(nB , xp = 1/2, T ), (29)

and

∂fdeg
∂T

= −δ2shot (nB , xp = 0, T )−(
1− δ2

)
shot (nB , xp = 1/2, T ) , (30)

where

∂εsym
∂nB

= h′(nB)εQMC(nB) + h(nB)ε′QMC(nB)

−h′(nB)εNS(nB) + [1− h(nB)] ε′NS(nB) +

−1

2
[µn,Skyrme(nB , xp = 1/2, T = 0)

+ µp,Skyrme(nB , xp = 1/2, T = 0)] . (31)

In summary, we have 5 parameters: (i,ii) the values of
a and α which determine sub-saturation neutron matter,
(iii,iv) the values of S and L which determine the sym-
metry energy and its density dependence, and (v) the
value, φ, of the speed of sound in neutron star matter at
nB = 2 fm−3. In addition, we have two indices which
enumerate random samples from posterior distributions
including (i) the index of the Skyrme parameterization
from Ref. [3] and (vi) the index of the neutron star EOS
from the Markov chain generated in Ref. [51].

G. Enforcing causality at high density

Since our phenomenological EOS does not have mani-
fest Lorentz covariance, it has the potential to become
acausal at high-densities. At every electron fraction
and temperature, there may be a baryon density, n∗B ,
above which the EOS becomes acausal. Because our phe-
nomenological EOS (as all other EOS tables) operate as
functions of the densities and temperatures, it is useful
to rewrite the speed of sound in terms of derivatives of
the Helmholtz free energy. This is done in Appendix I
below for a general system with any number of conserved
charges (though here we only have two, baryon number
and electric charge).

When our phenomenological EOS becomes acausal
above some baryon density, n∗B , we replace the EOS with

a causal EOS, f̃C&P , following the prescription in Ref.

[52]. We construct a modified free energy density with
the following

f̃all = f̃npeγΘ(n∗B − nB) + f̃C&PΘ(nB − n∗B), (32)

where contributions from electrons, positrons and pho-
tons are included in f̃npeγ . To be more concise, we sup-
press the subscripts npeγ in the following. Using ε for
energy density (including rest mass energy density), S
for entropy, s for entropy density, and s̃ for entropy per
baryon, the C&P speed of sound is

c2s =

(
dP

dε

)
s̃,NB ,Ne

=

(
dP

dε

)
s̃,NB ,Ye

. (33)

Note that s̃ = S/NB = s/nB , where NB is the number
of baryons. The C&P derivation begins by noting that

P = −ε+ nB

(
∂ε

∂nB

)
s̃,NB ,Ye

. (34)

To see this we can write(
∂ε

∂nB

)
s̃,NB ,Ye

=

[
∂(E/V )

∂V

]
S,NB ,Ye

[
∂(NB/V )

∂V

]−1
S,NB ,Ye

=

(
−P
V
− E

V 2

)(
−NB
V 2

)−1
=

(P + ε)

nB
. (35)

Taking the derivative of Eq. (34), we can also rewrite the
pressure as a second derivative(

∂P

∂nB

)
s̃,NB ,Ye

= −
(
∂ε

∂nB

)
s̃,NB ,Ye

+

(
∂ε

∂nB

)
s̃,NB ,Ye

+nB

(
∂2ε

∂n2B

)
s̃,NB ,Ye

(36)

= nB

(
∂2ε

∂n2B

)
s̃,NB ,Ye

. (37)

Thus we can proceed as C&P do,(
∂2ε

∂n2B

)
s̃,NB ,Ye

− c2s
nB

(
∂ε

∂nB

)
s̃,NB ,Ye

= 0. (38)

Following the analytical continuation, at every value
of s̃, NB , and Ye in the acausal region, we can use the
C&P solution

εC&P (s̃, nB , NB , Ye)=

[
ε∗(s̃, NB , Ye) + P ∗(s̃, NB , Ye)

β + 1

]
×
[

nB
n∗B(s̃, NB , Ne)

]β+1

(39)

+

[
βε∗(s̃, NB , Ye)− P ∗(s̃, NB , Ye)

β + 1

]
. (40)

If we assume that ε∗, P ∗, and n∗B are volume indepen-
dent, then since they are determined at a fixed value of
nB , they cannot separately depend on NB . Thus the full
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energy density also does not depend on NB . To show
this explicitly, we start from

E = µBNB + µLNBYe + TS − PV,
dE = (µB + µLYe + T s̃) dNB + µLNBdYe

+TNBds̃− PdV. (41)

where µL ≡ µp + µe − µn. On the right hand side,

dV =
1

nB
dNB −

NB
nB2

dnB (42)

and on the left hand side,

dE = d

(
ε
NB
nB

)
=
NB
nB

dε+
ε

nB
dNB −

εNB
nB2

dnB . (43)

Substituting the above two equations back into Eq. (41),
we find

dε = µLnBdYe + TnBds̃+ (µB + µLYe + T s̃) dnB (44)

and the NB dependence disappears. Therefore
εC&P (s̃, nB , NB , Ye) = εC&P (s̃, nB , Ye):

εC&P (s̃, nB , Ye) =

[
ε∗(s̃, Ye) + P ∗(s̃, Ye)

β + 1

] [
nB

n∗B(s̃, Ye)

]β+1

+

[
βε∗(s̃, Ye)− P ∗(s̃, Ye)

β + 1

]
. (45)

We also find (
∂εC&P

∂Ye

)
s̃,nB

= µLnB , (46)

(
∂εC&P

∂s̃

)
nB ,Ye

= TnB , (47)

(
∂εC&P

∂nB

)
s̃,Ye

= µB + µLYe + T s̃. (48)

We choose to use this solution above the value of nB ,
denoted n∗B(s̃, Ye), for which c2s = β. From Eq. (47) the
temperature is

T =
1

nB

(
∂εC&P

∂s̃

)
nB ,Ye

. (49)

Thus computing the temperature using the method in
Ref. [52] requires evaluating derivatives of the form
(∂n∗B/∂s̃)Ye

. These derivatives are computed along the
surface for which the speed of sound is equal to its largest
possible value (which we set to 0.9). Because the speed
of sound requires two derivatives of the free energy, these
derivatives (derivatives along a line of constant c2s) re-
quire third derivatives of the free energy. The chemical
potentials require a similar calculation based on Eqs. (46)
and (48) which we do not explicitly show here.

The numerical evaluation of third derivatives intro-
duces quite a bit of noise. Our phenomenological for-
malism ensures that these derivatives can be computed
analytically. We leave this calculation to future work. In
the mean time, we can more easily compute the temper-
ature by an indirect approach. Presuming we would like
to compute the EOS at some fixed values of the baryon

density n̂B , electron fraction Ŷe, and temperature T̂ , one
needs to solve the five equations

c2s,DS(n∗B1, Ŷe, T1
∗) = β ,

c2s,DS(n∗B2, Ŷe, T2
∗) = β ,

s̃DS

(
n∗B1, Ŷe, T1

∗
)

= s̃ ,

s̃DS

(
n∗B2, Ŷe, T2

∗
)

= s̃+ δs̃ ,

1

n̂B

εC&P(s̃+ δs̃, Ŷe, nB)− εC&P(s̃, Ŷe, nB)

δs̃
= T̂ (50)

for the five values n∗B1, n
∗
B2, T

∗
1 , T

∗
2 , and s̃ given some

small fixed stepsize in the entropy per baryon, δs̃. Here
“DS” denotes our EOS while “C&P” denotes Eq. (39)
from Ref. [52]. The required numerical derivatives
to compute the temperature in the last equation of
Eq. (50) can then be computed directly from finite dif-
ferences. By solving the five equations above, we get

s̃C&P

(
n̂B , Ŷe, T̂

)
, and then

f̃C&P

(
n̂B , Ŷe, T̂

)
= εC&P − T̂ n̂B s̃C&P

(
n̂B , Ŷe, T̂

)
.

(51)

III. RESULTS

Fig. 2 shows how our full EOS behaves in the (i) non-
degenerate limit, (ii) the limit of zero-temperature neu-
tron matter, and (iii) the limit of high-temperature and
high-density nuclear matter. Only one parameter set is
chosen and the same parameter set is chosen for each of
the three panels. In the non-degenerate limit, our full
EOS smoothly matches on to the virial EOS as deter-
mined by Eq. (5). The middle panel shows that, in the
limit of zero-temperature neutron matter, our full EOS
matches the QMC result at low density and remains close
to the neutron star EOS at moderate densities. At higher
densities, the free energy does not increase too quickly
with density because our correction for causality begins
to start becoming important. The bottom panel com-
pares our full EOS (for this parameterization) with the
(T = 0) Skyrme EOS, showing a small modification in
the EOS due to the finite temperature correction from
the chiral EOS.

We can construct a figure similar to Fig. 2 for any
physical combination of our model parameters: α, a, S,
L, φ and Skyrme model from Ref. [3] (which represents
a 12-dimensional space of possible Skyrme models) and
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FIG. 2. Three figures which show how the full EOS com-
pares to the limiting forms. The top panel compares the full
free energy to the result from the virial expansion and shows
that they match at lower densities where the fugacities are
much smaller than 1. The middle panel shows that the re-
sult for neutron matter matches the QMC free energy at low
densities, the neutron star free energy at densities reached in
the neutron star interiors, and is softened at high densities to
ensure a speed of sound less than the speed of light. The bot-
tom panel shows that free energy starts to deviate from the
Skyrme interaction at higher temperatures as the corrections
from the chiral EOS begin to contribute. These panels show
the result from one of many EOSs generated in this work.
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FIG. 3. The probability distribution for the free energy per
baryon at nB = 0.004 fm−3, Ye = 0.5, and T = 10 MeV.
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IUFSU f/nB = 15. 66

FIG. 4. The probability distribution for the free energy per
baryon at nB = 0.16 fm−3, Ye = 0.01, and T = 0.1 MeV.

any neutron star model from Ref. [51] (which represents
a 6-dimensional space of high-density EOSs).

For any baryon density, electron fraction, and temper-
ature, we can compute a probability distribution for the
free energy per baryon over our entire parameter space.
The magnitude and shape of the uncertainty in the free
energy changes depending on the relevant physics in that
region which our model describes. Fig. 3 shows the varia-
tion in the free energy in nondegenerate matter where the
EOS is dominated by the virial expansion. The small re-
maining uncertainty here originates in the Skyrme model
that is selected, and the non-smooth nature in the prob-
ability distribution is a relic of the limited sampling size
of Skyrme interactions.

Fig. 4 shows the variation in the free energy per baryon
at nuclear saturation density in nearly pure neutron mat-
ter and in the limit of zero temperature. The results for
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FIG. 5. The probability distribution for the free energy per
baryon at nB = 0.16 fm−3, Ye = 0.01, and T = 10 MeV.

LS220, SFHo, SFHx, and IUFSU are also shown. The
distribution is centered around 16 MeV, corresponding to
a symmetry energy of 32 MeV, and values lower than 13
MeV are excluded in our model because they correspond
to symmetry energies lower than 29.5 MeV. Symmetry
energies this small seem to be excluded from Quantum
Monte Carlo and chiral effective field theory calculations
of pure neutron matter [21, 47, 57]. See also Ref. [22] for
a more general result that gives a similar lower limit for
S of 28 MeV.

Fig. 5 shows the distribution in the free energy per
baryon at a slightly larger temperature, and the entropy
contribution drops the free energy per baryon in each
case. In comparison to the results from Fig. 4, the LS220
free energy per particle drops more than SFHo or SFHx
because its effective mass (equal to the nucleon mass)
is larger than that in SFHo/x (about 0.7 times the nu-
cleon mass). The effective mass can be computed from
the chiral interaction directly [58, 59], and close to the
Fermi surface it is found to be nearly equal to the free-
space nucleon mass. Second-order many-body perturba-
tion theory contributions, however, produce a strong mo-
mentum dependence in this region, and averaging around
k = kF the effective mass is about 0.85 times the free-
space nucleon mass. The distribution in Fig. 5 is thus
larger than LS220 because of the smaller symmetry en-
ergy (S = 28.6 MeV) and larger effective mass in the
LS220 EOS.

Fig. 6 shows the probability distribution for the low-
temperature neutron-rich matter free energy per baryon
at higher densities. There is clearly a much larger spread
in the free energy per baryon, corresponding to our larger
ignorance regarding the nature of matter at higher den-
sity. While all models LS220, SFHo, SFHx and IUFSU
are inside the region suggested by our parameterization,
our distribution leans towards smaller values of the free
energy because of the constraint from relatively small
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IUFSU f/nB = 98. 61

FIG. 6. The probability distribution for the free energy per
baryon at nB = 0.48 fm−3, Ye = 0.10, and T = 0.1 MeV.
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FIG. 7. The probability distribution for the free energy per
baryon at nB = 0.48 fm−3, Ye = 0.5, and T = 0.1 MeV.

neutron star radii.
Fig. 7 shows low-temperature nuclear matter at higher

densities. The non-smooth nature of the distribution is
due to the small statistics afforded by the limited num-
ber of Skyrme models we have employed. IUFSU sug-
gests a larger free energy here because it originates in a
relativistic mean field model which tends to give larger
pressures than the non-relativistic models like Skyrme.
This region of parameter space is almost entirely uncon-
strained by experiment, since it is not possible to make
cold isospin symmetric matter at this density. However,
dense isospin-symmetric matter is not as relevant for this
work since simulations are typically neutron-rich at high
density.

Fig. 8 shows the free energy per baryon for one of our
parameterizations as a function of baryon density and
temperature for two electron fractions. Using the formal-
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FIG. 8. Density plots showing the free energy per baryon for
matter at Ye = 0.1 and Ye = 0.4 over the full range of densities
and temperatures considered in this work for one parameteri-
zation. Points with a free energy per baryon less than −1000
MeV are set equal to −1000 MeV to make the high-density
behavior more clear. The main variation in the free energy
per baryon from the lower-right region to the upper-left re-
gion in these plots is dominated by the virial contribution
to the EOS. The degenerate part of the EOS is clear in the
large increase in the free energy per baryon on the right-hand
boundary (at large baryon densities).
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FIG. 9. Values of nB and cs
2 explored by the EOS at Ye = 0.1

and s̃=0.5, The different curves represent models which differ
only by a different value of the parameter φ.

ism presented in this work, thousands of similar density
plots can be generated with alternate parameterizations.
The largest variation between parameterizations is in the
free energy per particle at high density which changes
with the “stiffness” of the EOS.

Since accurate neutron star radii have not yet been
measured for large mass neutron stars, the speed of sound
of matter at the highest densities probed in supernova
and merger simulations is not constrained by experiment.
We have parameterized this variation with φ. However,
the speed of sound must increase at moderate densities
in order to reproduce the observation of a two solar mass
neutron star. Fig. 9 shows the behavior of the speed of
sound in neutron-rich matter between nB = 0.1 fm−3

and nB = 2 fm−3 and demonstrates these two regimes.
The speed of sound must increase quickly below 1 fm−3

to ensure that the neutron star maximum mass is suffi-
ciently large [60], and the speed of sound at higher den-
sities varies considerably depending on the value of φ.
We restrict the speed of sound to be less than c

√
0.9 to

ensure finite-precision errors in simulations do not create
unphysical sound speeds.

In high-density isospin-symmetric matter, the speed
of sound is dominated by the Skyrme model used for
isospin-symmetric matter near the saturation density.
This region is principally constrained to have a speed
of sound less than c

√
0.9 by our implementation of the

prescription from Ref. [52] as described in section II G.
This is shown in Fig. 10. There is also a slight residual
impact from the modification in the speed of sound from
φ at values of Ye which are nearly but not exactly equal
to 1/2, so there are some slight kinks in the curves in
Fig. 10 near nB = 1 fm−3.

At sufficiently high density, the entropy from the chiral
EOS begins decreasing with increasing temperature. Be-
cause of the presence of ds/dT in the speed of sound (see



12

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
nB

(fm−3)

0.0

0.2

0.4

0.6

0.8

1.0
C

s
2

FIG. 10. Values of nB and cs
2 explored by the EOS at

Ye = 0.4 and s̃=0.5, The different curves represent randomly
selected models. Most of them have two kinks. The first one
(often very slight) is the residual impact of fixing the speed
of sound in neutron matter at high densities to φ as shown in
Fig. 9. The second kink between 1.3 < n∗

B < 1.8 fm−3 is due
to the use of the C&P prescription to decrease the speed of
sound above nB = n∗

B .

fTT in the denominator of Eq. (63)), this unstable region
implies a large speed of sound. Our use of the C&P pre-
scription thus cures this instability in the extrapolated
form of the finite-temperature corrections from the chi-
ral EOS. This is demonstrated in Fig. 11, which shows
contours of fixed ds/dT . This derivative becomes neg-
ative in the upper right region, but this is always at a
density larger than n∗B where the C&P EOS takes over.

As a final demonstration that our implementation of
the C&P prescription generates a continuous EOS, we
show the entropy as a function of density for several fixed
temperatures in Fig. 12. Our EOS above is used for den-
sities below n∗B (indicated by the red dot) and the C&P
EOS is used for densities above n∗B . It appears in this plot
that n∗B is independent of temperature, but this is not ex-
actly true as there is a weak temperature dependence as
shown in Fig. 11. We have found that solving Eqs. (50) is
numerically challenging because of the numerical deriva-
tives involved in computing the speed of sound (we use
exact expressions for the entropy and chemical potentials
but numerical differentiation for the number susceptibili-
ties and other second derivatives of the free energy). The
combination of the numerical derivatives plus the numer-
ical noise in the Newton-Raphson method used to solve
Eqs. (50) leads to a bit of noise in the entropy at large
densities. Future work will use exact expressions for sec-
ond derivatives of the free energy and thus facilitate the
correction to the speed of sound.
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FIG. 11. Contour plot of ds/dT as a function of nB and T
explored by the EOS for one of our EOS parameterizations.
The speed of sound correction from the C&P prescription
has not yet been applied. The blue line indicates the value
nB = n∗

B . The region above this line is replaced with the
C&P EOS (including the region where ds/dT < 0).
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IV. DISCUSSION

While we have made an attempt to explore the al-
lowed EOS space as much as possible, there are several
regions in which our parameterization is limited. Vari-
ations in the functions g and h could be explored, but
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modifications of these functions cannot be too large or
they are likely to create small regions where the EOS has
an acausal speed of sound. A better quantification of the
uncertainties in the finite temperature part of the chi-
ral EOS will be performed in future work. We have also
naively extrapolated the Skyrme model used in isospin-
symmetric matter at zero temperature near the satura-
tion density to higher densities. There is some experi-
mental constraint on matter in this region from heavy
ion collisions [61], but the associated systematic uncer-
tainties are not well-understood. In any case, dense and
isospin-symmetric matter is not often explored in the
neutron-rich matter encountered in neutron stars.

Uncertainties in the EOS may be relevant for the
timescale for core-collapse supernovae to explode after
bounce [62] and also, for example, in determining the
amount of r-process nucleosynthesis which occurs in the
neutrino-driven wind [63]. EOS uncertainties are also
relevant for neutron star mergers, as they dictate the
lifetime of hypermassive neutron star remnants and also
the amount of r-process material ejected [64].

Because we use the Markov chain from “Model A” in
Ref. [51], our EOS specifically prefers more moderate
phase transitions, which is appropriate to our assump-
tion that matter consists only of nucleons and no exotic
matter. Thus our uncertainties at high-density may be
underestimated because strong phase transitions are dis-
favored. One of the advantages of our analytical form
for the EOS is that our work can be easily generalized to
an EOS which includes exotic matter at high densities if
desired.

This article is the first step towards a full quantifica-
tion of how microphysical uncertainties may affect core-
collapse supernovae and neutron star mergers. The next
step is a full description of nuclei in the dense matter
environment with uncertainties that properly reflect the
relationship between nuclear structure and the underly-
ing nucleon-nucleon interaction. One way to include nu-
clei on top of our EOS for homogeneous matter is to use
the framework recently developed in Ref. [65]. Finally,
the EOS uncertainties must be propagated through to
the neutrino opacities. As this uncertainty quantifica-
tion matures, the comparison of simulations with data
points, such as GW170817 [66] and future nearby core-
collapse supernovae will provide more insight into what
models might be ruled out.
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APPENDIX I - SPEED OF SOUND FOR A
MULTICOMPONENT SYSTEM

Using ε for energy density, S for entropy, s for entropy
density, and s̃ for entropy per baryon, and assuming neu-
trinos are not trapped, the speed of sound is (all chemi-
cal potentials and energy densities below include the rest
mass contribution even though not explicitly indicated)

c2s =

(
∂P

∂ε

)
s̃,{Ni}

. (52)

In infinite matter, it is useful to rewrite this derivative in
terms of fixed volume rather than fixed number.

c2s =

(
∂P

∂ε

)
S,{Ni}

=

(
∂P

∂V

)
S,{Ni}

(
∂ε

∂V

)−1
S,{Ni}

, (53)

where the second derivative on the right-hand-side of this
expression is(

∂ε

∂V

)
S,{Ni}

=

[
∂(E/V )

∂V

]
S,{Ni}

= − 1

V
P − E

V 2

= −P + ε

V
= −Ts+

∑
i µini

V
(54)

and the first derivative on the right-hand side is(
∂P

∂V

)
S,{Nj}

= −
(
∂ε

∂V

)
S,{Nj}

+ S

[
∂(T/V )

∂V

]
S,{Nj}

+

∑
i

Ni

[
∂(µi/V )

∂V

]
S,{Nj}

(55)

= −
(
∂ε

∂V

)
S,{Nj}

+S

[
− T

V 2
+

(
∂T

∂V

)
S,{Nj}

]

+
∑
i

Ni

[
− µi
V 2

+

(
∂µi
∂V

)
S,{Nj}

]
(56)

=
P + ε

V
+ S

[
− T

V 2
−
(
∂P

∂S

)
{Nj},V

]

+
∑
i

Ni

[
− µi
V 2
−
(
∂P

∂Ni

)
S,{Nj 6=i},V

]

= −S
(
∂P

∂S

)
{nj},V

−
∑
i

Ni

(
∂P

∂Ni

)
S,{nj 6=i},V

(57)

Putting these two results together gives

c2s =

[
s

(
∂P

∂s

)
{nj},V

+
∑
i

ni

(
∂P

∂ni

)
S,{nj 6=i},V

]
(
Ts+

∑
i

µini

)−1
. (58)
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To re-express this in terms of derivatives of the free en-
ergy,

c2s =

{
s

[
∂(
∑
i µini − f)

∂s

]
{nj},V

+
∑
i

ni

[
∂(
∑
k µknk − f)

∂ni

]
s,{nj 6=i},V

}(
Ts+

∑
i

µini

)−1
.(59)

For the sum over k, all densities are constant except for
ni, thus

∑
i

ni
∂

∂ni

(∑
k

µknk − f
)
s,{nj 6=i},V

=
∑
i

ni
∂

∂ni

∑
k 6=i

µknk + µini − f


s,{nj 6=i},V

=
∑
i

[∑
k

nk

(
∂µk
∂ni

)
s,{nj 6=i},V

+ µi

−
(
∂f

∂ni

)
s,{nj 6=i},V

]
. (60)

To compute this we need(
∂f

∂ni

)
s,{nj 6=i},V

=

(
∂f

∂ni

)
{nj 6=i},T,V

+

(
∂f

∂T

)
nB ,{nj 6=i},V

(
∂T

∂ni

)
{nj 6=i},s,V

= µi − s
(
∂T

∂ni

)
{nj 6=i},s,V(

∂µk
∂ni

)
s,{nj 6=i},V

=

(
∂µk
∂ni

)
{nj 6=i},T,V

+

(
∂µk
∂T

)
ni,{nj 6=i},V

(
∂T

∂ni

)
{nj 6=i},s,V

= fnink
+ fnkT

(
∂T

∂ni

)
{nj 6=i},s,V

(61)

which requires

(
∂T

∂ni

)
{nj 6=i},s,V

= −
(
∂s

∂ni

)
{nj 6=i},T,V

(
∂s

∂T

)−1
{n},V

= −fniT /fTT (62)
Finally, we get

c2s =

{
−
(

s

fTT

)(∑
i

nifniT + s

)

+
∑
i

ni

[∑
k

nk
(
fnink

− fnkT fniT f
−1
TT

)
− sfniT f

−1
TT

]}
(
Ts+

∑
i

µini

)−1

=

[∑
i

∑
k

nink
(
fnink

− fnkT fniT f
−1
TT

)
−2
∑
i

snifniT f
−1
TT − s2f−1TT

](
Ts+

∑
i

µini

)−1
. (63)
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