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We compute the matrix elements for elastic scattering of dark matter (DM) particles off light nuclei
(®°H, *H, *He, “He and °Li) using Quantum Monte Carlo Methods. We focus on scalar-mediated
DM-nucleus interactions and use scalar currents obtained to next-to-leading order in chiral effective
theory. The nuclear ground states are obtained from a phenomenological nuclear Hamiltonian that
includes the Argonne v1g two-body interaction and the three-body Urbana IX. Within this approach,
we study the impact of one- and two-body currents and discuss the size of nuclear uncertainties,
including for the first time two-body effects in A = 4,6 systems. Our results provide the nuclear
structure input needed to assess the sensitivity of future experimental searches of (light) dark matter

using light nuclei, such as *He and *He.

I. INTRODUCTION

Observational evidence for Dark Matter (DM) in the
universe is extremely strong, coming both from astro-
physics and cosmology [1]. While searches for signals
from direct, indirect, and accelerator experiments have
yet to be successful, a vibrant worldwide experimental
program exists. In particular, the so-called “direct de-
tection” search for weakly interacting massive particles
(WIMPs) through nuclear recoils is very active, and there
is a growing emphasis on covering a broader DM mass
range, extending to the sub-GeV scale [2].

As emphasized already in early studies [3], in order
to interpret direct detection experiments and disentan-
gle the origin of possible future signals, it is important to
have a solid theoretical control of nuclear effects. In re-
cent years, a variety of approaches based on effective field
theory (EFT) have been proposed to tackle the physics
of DM-nucleus interactions. EFT methods have been ap-
plied at different levels: (i) non-relativistic DM-nucleus
interactions [4]; (ii) non-relativistic DM-nucleon interac-
tions [5]; (iii) DM-nucleon interactions derived from DM-
quark and DM-gluon interactions in the framework of
chiral-EFT [6-12], to be used in nuclear few- and many-
body calculations. Firts principle, lattice-QCD calcula-
tions, have also been performed for matrix elements of
scalar, axial, and tensor currents [13, 14].

We work within approach (iii), which is the only one
suitable for matching to higher scales and performing a
consistent phenomenology of direct, indirect, and collider
DM searches. In this approach, several classes of opera-
tors arise at the DM-quark and DM-gluon level (see for
example [12] and references therein). In this work, we fo-
cus on scalar-mediated DM-quark and DM-gluon interac-
tions, which could, for example, arise from the exchange
of particles from an extended Higgs sector in UV models.
However, we emphasize that our nuclear matrix elements
apply also to the case of “light” scalar mediators, with
masses below the electroweak scale (the expression for
the DM-nucleus scattering amplitude would have to be

multiplied in that case by the appropriate light scalar
propagator). The choice of scalar-mediated interactions
for this exploratory study is motivated by the fact that
two-nucleon currents arise in this case already at NLO in
the chiral counting, while they are relatively more sup-
pressed for other interactions [9].

We focus on DM scattering off a variety of light nu-
clei, namely 2H, 3H, 3He, *He and °Li. Our study
has a twofold motivation. First, for such light nuclei
first-principles calculations of the nuclear wave functions
are possible, once nucleon-level interactions are specified.
Therefore one can reliably study the effect of one- and
two-nucleon currents for different spin and isospin struc-
tures. Second, light nuclear targets are of great interest
because they provide a better kinematic match for light
DM and allow one to probe sub-GeV DM masses [2]. In
fact, both *He and “He isotopes are being considered for
future direct detection experiments [15-19], including di-
rectional detection [20]. So our study goes beyond the
benchmarking scope and will be relevant in the interpre-
tation of results from these experiments.

In our study we follow a hybrid approach in which the
scalar-mediated DM-nucleon interactions are derived in
the framework of chiral-EFT up to next-to-leading-order
(NLO) in the Weinberg counting [7], and the nuclear
wave functions are obtained from a phenomenological nu-
clear Hamiltonian than includes accurate two-body [21]
and three-body interactions [22]. This allows us to take
advantage of Quantum Monte Carlo methods, that in re-
cent years have proven to be extremely successful in de-
scribing light and medium-heavy nuclei from first princi-
ples [23-25]. Within this framework, the impact of two-
body currents has been previously studied in electron
scattering [26, 27] and neutral-current neutrino scatter-
ing [27, 28] (finding effects up to O(10%)), as well as in
B-decays [29] (finding effects of few %).

First-principles studies of DM-nucleus scattering for
light nuclei already exist in the recent literature [11, 30].
Ref. [11] focuses on systems with A=2,3 and performs
a self-consistent analysis of scalar-mediated DM-nucleus
scattering using both chiral currents and chiral poten-



tials for the nuclear wave functions. Ref. [30], on the
other hand, focuses on *He and “He isotopes and uses a
hybrid approach (different from ours) in which nuclear
wave functions are obtained in the no-core shell model
with NNLO chiral potential while general one-body “cur-
rents” (not just scalar-mediated) are parametrized in the
non-relativistic EFT framework of Ref. [5]. While over-
lapping with these studies, our work provides the first
results for two-nucleon currents in systems with A=4,6,
including the *He isotope of experimental interest.

The paper is organized as follows: we summarize the
relevant scalar-mediated DM-nucleon interactions in Sec-
tion II. In Section III we give the detail of nuclear Hamil-
tonian and wave functions used for the calculations of
the elastic scattering cross section and in Section IV we
present our results. We give our conclusions and outlook
in Section V.

II. SCALAR INTERACTION

A general, model-independent interaction for DM and
quarks can be built using higher dimension operators of
the form (see for example Ref. [12])

O = XTI xyTy1b, (1)
where 'y, € {1, 75, yH, y#45} are Dirac bilinears, x and
x are the DM fields, and ¢ and v the quark fields.

In this work, we will restrict ourselves to scalar inter-
action between a DM particle and standard model fields
(vector and axial-vector interactions will be studied in
future work). The DM particle is assumed to be a Dirac
fermion of spin 1/2. The effective Lagrangian describing
scalar-mediated DM-quark and DM-gluon interaction is
built from dimension-7 operators [7]:
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where the sum runs over the light quark fields ¢, ay is
the strong coupling constant and G, is the gluon field
strength tensor. We have introduced a new physics scale
A related to the mass of the mediator (or possibly a new
interaction mechanism) and dimensionless Wilson coeffi-
cients ¢4, ce that parametrize the interaction. For con-
venience, we include the masses of the quarks m, in the
definition of the operators.

The derivation of the interaction at the nucleon level
can be found in [7, 10, 11, 31]. The diagrams contributing
at this order are shown in Fig. 1. Here we only summarize
the resulting currents up to NLO, in the context of SU(2)
chiral perturbation theory [10, 11].

We assume the following convention for momenta,

N(pi) + x(k) — N(p;) + x(K'), (3)

where ¢ = k' — k = p; — p, and p;, k (p}, k') are incom-
ing (outgoing) momenta for nucleons and DM particle,
respectively (the index ¢ refers to the ith nucleon).

FIG. 1: (Color online): diagrams contributing to
DM-nucleus scattering up to NLO. Solid black lines
denote nucleons, dashed denote pions. Left panel:
interaction at LO. Middle panel: one-body interaction
at NLO. Right panel: two-body interaction at NLO.

In momentum space, the one body current describing
the DM interaction with the ¢th nucleon up to NLO can
be written as [11, 32]
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where OxN is the nucleon o-term,

Smy = (Mn = Mp) e os = mg(N|3s|N),
m§ =my — oxn — 05, and o, = (0.3 4 0.2)GeV 2 [33].
Moreover, we defined the isoscalar and isovector cou-
plings cis iv as the appropriate linear combinations of the
Wilson coefficients appearing in Eq. (2)
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The numerical values for the single-nucleon quantities
used in calculations are taken from [34] and [35], i.e.:

orn = (59.143.5) MeV, dmy = (2.32+0.17) MeV.

(7)

Even though we use the value for the o—term obtained
from a Roy-Steiner analysis of pion-nucleon scattering
in [34], our numerical results can be easily extended to
other values coming, for example, from lattice-QCD cal-
culations (see [36] and references therein).

As noted in Section IV, the o—term is factored out of
the cross section so the numerical input used will only
affect the relative size of the momentum dependent part
of the one-body current.

The two-body current appearing at NLO (Fig. 1c), is
given by
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The coordinate-space expressions of the currents are pro-
vided in the Appendix. Two-nucleon currents propor-
tional to ¢ appear formally at N3LO [7, 11, 32].

The elastic scattering cross section is given by

do 1 1
dq® drv2 25 + 1
J 2
X Z ’ij; |J(q)|wjmj> P (9>

T
mj,mi=—j

where v, is the velocity of the DM particle and we are
adopting nonrelativistic states normalization for the DM
particle and nucleus. The nuclear matrix element for a
given nucleus with ground state [¢;,;) is characterized
by total spin j and spin polarization m; and is calcu-
lated using J(q), given by the sum of one- and two-body
contributions from Eq. (4) and Eq. (8)

III. NUCLEAR WAVE FUNCTIONS

The evaluation of nuclear matrix elements required
in Eq. (9) is performed using the Variational Monte Carlo
method. We use variational wave functions [¢)) that min-
imize the expectation value of

(V[ H[Y)
(Wlp)

which provides an upper bound to the energy of the
ground state.

The phenomenological Hamiltonian used in this work
has an Argonne v1g potential [21] for the two-body inter-
action and Urbana IX [22] for the three-body:

H = ZT +Zv” Z Vijk - (11)

i<j i<j<k

Ey = (10)

The variational wave function for a given nucleus in
the J state is:

A
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(12)
where S is a symmetrization operator acting on two-
and three-body correlation operators, f. is a spin- and
isospin-independent two- and three-body correlation, ®
is an antisymmetric wave function containing the correct
quantum numbers for the state of interest, and the two-
body spin- and isospin-dependent correlations are con-
structed as

Uij = Z fP(ri;)O%; (13)
p

where the operators are

Of] :Ti'Tj,Ui'Uj7(Ti'Tj)(O’i'

a;),Sij, SijTi Ty, (14)

and f? are radial functions. For more details see [23] and
references therein.
Finally, the currents entering Eq. (9) are given by

- Z el T J(

obtained by Fourier transforming the expressions
in Eq. (4) and Eq. (8), as reported in Appendix.

)+ 3 I (giriry) . (15)
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IV. RESULTS

Here we present the results of our calculations, for a
variety of light nuclei. Considering for the moment only
the isoscalar part (the contribution of ¢y, ¢s and cg is
easily included according to Eq. (17) below), it is con-
venient, as in [11], to expand the total cross section in
terms of nuclear response functions

do & o25A% | o 1)
i :FZL;TVT% V(g )"‘flszb( %)+ ]:l(sr( ) ;

(16)
where we factorized the isoscalar coupling, o-term and

the number of nucleons A. Each function ]-' v ) carries

an index v referring to the chiral order, 1abe15 a to dis-
tinguish between isoscalar and isovector contributions,
1 for contributions of two-body currents and for the so-
called “nucleon radius” correction, given by the one-body
momentum-dependent correction in Eq. (4) proportional

to F' ( |9:] ) With our choice of normalization, we have

F0)=1.

In what follows we concentrate on the case ¢is # 0 while
setting civ s,c/cis = 0, because to the order we work the
additional couplings do not introduce independent nu-
clear responses. In fact, from Eq. (4) one can obtain the
cross section for general couplings ¢;y s ¢ 7# 0 by rescaling

F9(q?) in Eq. (16) by the factor
1_(civ> (5mNQZ—A+<cS)US—<'75q2 (17)
¢s ) dorny A Cis OxN
e 87rm%
(Cis> 9o N
The maximum momentum transfer g considered in the
calculations is 100 MeV, which is appropriate for light
nuclei and DM mass of about 1 GeV. In this scenario ¢
ranges from a few to tens of MeV. In Fig. 2 we present
the results for isoscalar terms in Eq. (16). For each nu-
cleus, we compare the results for LO and NLO contri-
butions. As we can see, the order (v = 1) corrections
slightly increase the cross section at low momenta. At
larger momenta, the contribution from the radius correc-
tion is greater than the two-body and of opposite sign,

making the total cross section decrease as ¢ increases.
This behavior is consistent for all the nuclei considered
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FIG. 2: (color online) Isoscalar matrix elements for nuclei from A=2 to 6. Dashed blue lines correspond to LO
calculations, and orange solid ones to NLO.

here. Nonetheless, in the range of values considered, the
deviation from LO results is at the few percent level.

In order to assess the effect of the two terms appearing
at order (v = 1), it is useful to consider their relative
contribution to the total cross section. First, we define
the radius correction in the following way [11]
FO D @) -
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where F"™(g?) is defined by the sum of the three
isoscalar terms on the right-hand side of Eq. (16). Work-
ing at NLO and expanding for small order (v = 1) cor-

rections, this expression reduces to
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The nuclear effects drop out and the correction is given
only by the momentum-dependence of Eq. (4). This ex-
pression agrees with the complete nuclear calculations,
in the range of the momenta considered here. For this
reason, we only present the radius correction for *He
in Fig. 3, and note that all the other nuclei show the
same behavior, up to minor differences due to the two-
body contribution and higher order terms in the expan-
sion (19). The radius correction vanishes at zero momen-
tum transfer and grows to about 6% at ¢ = 100 MeV.
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FIG. 3: Percentual radius correction for *He

Similarly to Eq. (18), the relative contribution of two
body currents is given by [11]
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In Fig. 4 we present the percentual correction given by
two-body operators entering at NLO with respect to the
total contribution up to NLO. All two-body corrections
are of modest size, with nuclei with A = 3 giving a
smaller contribution compared to ?H and “He, and being
almost exactly equal. The two-body corrections tend to
increase with the nucleus size at large momenta and this
effect might be even more pronounced for larger nuclei.
We notice however that al low momenta the correction
in 2H nucleus is somehow larger than A=3 and 4 nuclei.
Overall, the role of two-body operators increases with
the momentum transferred, from about 2% up to about
4%. This is true only for very large cutoff and note, how-
ever, that the actual size of the correction depends on our
choice civ s, = 0, and can be computed in the general
case through the rescaling introduced in Eq. (17) above.
Also, radius and two-body corrections for different val-
ues of the nucleon o —term can be obtained from our data
multiplying by the appropriate constant. Lower values of
the o—term as in [36] increase the relative size of NLO
contributions.

Finally, we discuss the cutoff-dependence of the nu-
clear matrix elements due to the short-distance regulator
introduced in the Fourier transforms (see Appendix). All
the results reported so far were obtained in the limit of
infinite cutoff A in Eq. (23). Ideally, one should con-
sider a cutoff in the current consistent to the one used
in the nuclear Hamiltonian, but this is not possible in
our hybrid approach. In fact, since we use a phenomeno-
logical potential in the nuclear Hamiltonian, there are
no “strong” low energy constant that allow for a varia-
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FIG. 4: (color online) Percentual two-body correction
to total cross section for various nuclei.
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FIG. 5: (color online) Percentual two-body correction
to total cross section for various nuclei.

tion of the cutoff when obtaining the nuclear wave func-
tion. In practice, since the Argonne v;g interaction has a
very strong hard core, we might expect its effective cutoff
to be very high. In such situations, a possible strategy
would be to fix the cutoff in the currents, fit the “weak”
low-energy constants to reproduce some observable, and
predict properties of larger nuclei. For Argonne Hamil-
tonians this has been for example explored in [-decay
calculations [29]. However, in the present case, up to the
order we work, there are no new low-energy constants
in the currents and this approach is not viable. So to
explore the cutoff dependence we have simply calculated
A®) for different values of A. The calculations are pre-
sented in Fig. 4 and Fig. 5 where we show the fractional
two-body corrections at A = 500 MeV and A = 10 GeV,
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FIG. 6: Cutoff dependence of the two-body contribution
for ¢ = 0.

respectively, as a function of ¢. In Fig. 6 we show the
two-body corrections for all the nuclei considered here as
a function of the cutoff A for a fixed ¢ = 0.

Nucl. A [MeV] AP (%)
(91 02 Ol + 02
’H 500 -34 4.2 0.7
10000 -4.9 7.9 3.0
“He 500 -13.2 10.7 -24
10000 -19.2 21.9 2.7

TABLE I: Percentual two-body correction to total cross
section for nonvanishing operators contributing at ¢ = 0.

Two features emerge from our results. First, for
A € [500,1000] MeV there is a strong cutoff dependence
of the two-body contribution, so that it even changes
signs for some nuclei. For example, the two-body cor-
rection is always positive for 2H, but it changes sign in
A=3 nuclei and SLi for A ~ 700 MeV and above 800
MeV for “He. This is due to the fact that there is a large
cancellation between the operators in Eq. (23). We il-
lustrate this point by reporting in Table I the fractional
contributions to the total cross section at q=0, which
arise entirely from the operators 07 (~ o1 - 02) and Os
(~ oy -7 o -7) in Eq. (23). The second feature is that
the two-body contribution saturates for large values of
A, starting around 2 GeV. This might reflect the fact
that the phenomenological nuclear Hamiltonian consid-
ered here effectively has a very large cutoff. Overall, the
cutoff dependence of the two-body current contribution
is the largest source of uncertainty in our approach. At-
tempts to remove this “systematic” effect will necessarily
involve the use of wave functions obtained by a chiral po-

tential, as discussed in Ref. [11].

V. CONCLUSIONS

We have studied the elastic scattering of DM particles
off a number of light nuclei (?H, *H, *He, *He and SLi)
with different spin and isospin using Quantum Monte
Carlo Methods. We have focused on scalar-mediated in-
teractions, parametrized by four Wilson coefficients re-
lated to the mediator mass and its coupling to DM and
quarks. We have used the resulting hadronic currents
up to NLO in the chiral expansion, containing both nu-
cleon “scalar radius” corrections and two-body effects.
We have followed a hybrid approach in which the chi-
ral EFT currents are used in combination with nuclear
wave functions obtained from a phenomenological nuclear
Hamiltonian that includes the Argonne v1g two-body in-
teraction, and the three-body Urbana IX.

We find that for the momentum transfers of interest,
the overall size of the NLO corrections is at the few %
level, perhaps smaller than suggested by chiral count-
ing. The NLO correction due to nucleon scalar radius
is essentially free of nuclear structure uncertainties and
grows from zero to = —2% at ¢ = 60 MeV and =~ —6%
at ¢ = 100 MeV. On the other hand, the corrections due
to scalar two-body currents — estimated for A = 4,6 for
the first time in this work — start at ¢ = 0 at the 2-3%
level (depending on the nucleus) and mildly grow with
q. For A =23, our results are in qualitative agreement
with [11].

We can also compare our findings for 3He and *He
with Ref. [30]. This reference considers only the one-body
current, generated by the operator O: in the NREFT
operator basis of Ref. [5]. While a detailed numerical
comparison is beyond the scope of our work, for the one-
body contribution we find a good qualitative agreement
with the results of Ref. [30].

Even assigning a conservative uncertainty as large
as the variation of the two-body matrix element be-
tween A = 500 MeV and A = 2 GeV, the total cross-
section is still known quite precisely, namely at the few
% level. Therefore, our results in combination with
Refs. [11, 30] already provide reasonable nuclear struc-
ture input needed to assess the sensitivity of future ex-
perimental searches of light dark matter using *He and
4He targets.

Further refinements are certainly warranted. Interest-
ing directions for future studies include: (i) moving be-
yond the hybrid approach, in the spirit of Ref. [11], by
using chiral interactions (as opposed to the Argonne v;g
potential) in combination with Quantum Monte Carlo to
obtain the nuclear wave functions; (ii) exploring the con-
sistency of Weinberg power counting in various channels
of DM-nucleon two-body interactions, and matching to
lattice-QCD calculations [13, 14], to determine the rele-
vant low energy constants
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VI. APPENDIX

The one- and two body DM-nucleon currents need to
be Fourier transformed so that they can be used in a Vari-
ational Monte Carlo calculation in coordinate space. To
tame the short-distance singularities we use a Gaussian
regulator of the form

2

Sa(k?) = e"2a? | (21)

with cutoff parameter A. The two-body current is ob-
tained from
Ak, d®ko

T (@i ra) = / (2m)° (2m)®
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T NI EN )

(22)

The coordinate space expression for two-body currents
can be calculated analytically, except for one integration
over an auxiliary variable y. It reads

2
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where r = r9 —r1, R = % and the radial functions
have the following expressions:
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As a useful cross-check, we can see that in the limit of
g =0 and A — oo the above expression reduces to

1

8

—mnr

[(o1-7)(o2-7)(1+mr)— (o1 -02)]e , (29)

which corresponds to Eq. (5.8) and (5.9) in [7].

[1] G. Bertone and D. Hooper, Submitted to: Rev. Mod.
Phys. (2016), arXiv:1605.04909 [astro-ph.CO].

[2] M. Battaglieri et al., (2017), arXiv:1707.04591 [hep-ph].

[3] J. Engel, S. Pittel, and P. Vogel, Int. J. Mod. Phys. E1,
1 (1992).

[4] J. Fan, M. Reece, and L.-T. Wang, JCAP 1011, 042
(2010), arXiv:1008.1591 [hep-ph].

[5] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and
Y. Xu, JCAP 1302, 004 (2013), arXiv:1203.3542 [hep-
ph].

[6] G. Prezeau, A. Kurylov, M. Kamionkowski, and P. Vo-
gel, Phys. Rev. Lett. 91, 231301 (2003), arXiv:astro-
ph/0309115 [astro-ph].

[7] V. Cirigliano, M. L. Graesser, and G. Ovanesyan, Jour-
nal of High Energy Physics 2012, 25 (2012).

[8] J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev.
D86, 103511 (2012), arXiv:1208.1094 [astro-ph.CO].

[9] M. Hoferichter, P. Klos, and A. Schwenk, Phys. Lett.
B746, 410 (2015), arXiv:1503.04811 [hep-ph].

[10] M. Hoferichter, P. Klos, J. Menéndez, and A. Schwenk,
Phys. Rev. D 94, 063505 (2016).

[11] C. Korber, A. Nogga, and J. de Vries, Phys. Rev. C 96,
035805 (2017).

[12] F. Bishara, J. Brod, B. Grinstein, and J. Zupan, JHEP
11, 059 (2017), arXiv:1707.06998 [hep-ph].

[13] E. Chang, Z. Davoudi, W. Detmold, A. S. Gambhir,
K. Orginos, M. J. Savage, P. E. Shanahan, M. L. Wag-
man, and F. Winter (NPLQCD Collaboration), Phys.
Rev. Lett. 120, 152002 (2018).

[14] S. R. Beane, S. D. Cohen, W. Detmold, H. W. Lin,
and M. J. Savage, Phys. Rev. D89, 074505 (2014),
arXiv:1306.6939 [hep-ph].

[15] W. Guo and D. N. McKinsey, Phys. Rev. D87, 115001
(2013), arXiv:1302.0534 [astro-ph.IM].

[16] T. M. Ito and G. M. Seidel, Phys. Rev. C88, 025805
(2013), arXiv:1303.3858 [astro-ph.IM].

[17] G. Gerbier et al., (2014), arXiv:1401.7902 [astro-ph.IM].

[18] S. Profumo, Phys. Rev. D93, 055036 (2016),



http://arxiv.org/abs/1605.04909
http://arxiv.org/abs/1707.04591
http://dx.doi.org/10.1142/S0218301392000023
http://dx.doi.org/10.1142/S0218301392000023
http://dx.doi.org/10.1088/1475-7516/2010/11/042
http://dx.doi.org/10.1088/1475-7516/2010/11/042
http://arxiv.org/abs/1008.1591
http://dx.doi.org/ 10.1088/1475-7516/2013/02/004
http://arxiv.org/abs/1203.3542
http://arxiv.org/abs/1203.3542
http://dx.doi.org/10.1103/PhysRevLett.91.231301
http://arxiv.org/abs/astro-ph/0309115
http://arxiv.org/abs/astro-ph/0309115
http://dx.doi.org/10.1007/JHEP10(2012)025
http://dx.doi.org/10.1007/JHEP10(2012)025
http://dx.doi.org/10.1103/PhysRevD.86.103511
http://dx.doi.org/10.1103/PhysRevD.86.103511
http://arxiv.org/abs/1208.1094
http://dx.doi.org/10.1016/j.physletb.2015.05.041
http://dx.doi.org/10.1016/j.physletb.2015.05.041
http://arxiv.org/abs/1503.04811
http://dx.doi.org/10.1103/PhysRevD.94.063505
http://dx.doi.org/10.1103/PhysRevC.96.035805
http://dx.doi.org/10.1103/PhysRevC.96.035805
http://dx.doi.org/10.1007/JHEP11(2017)059
http://dx.doi.org/10.1007/JHEP11(2017)059
http://arxiv.org/abs/1707.06998
http://dx.doi.org/10.1103/PhysRevLett.120.152002
http://dx.doi.org/10.1103/PhysRevLett.120.152002
http://dx.doi.org/ 10.1103/PhysRevD.89.074505
http://arxiv.org/abs/1306.6939
http://dx.doi.org/10.1103/PhysRevD.87.115001
http://dx.doi.org/10.1103/PhysRevD.87.115001
http://arxiv.org/abs/1302.0534
http://dx.doi.org/10.1103/PhysRevC.88.025805
http://dx.doi.org/10.1103/PhysRevC.88.025805
http://arxiv.org/abs/1303.3858
http://arxiv.org/abs/1401.7902
http://dx.doi.org/10.1103/PhysRevD.93.055036

arXiv:1507.07531 [hep-ph].

[19] S. A. Hertel, A. Biekert, J. Lin, V. Velan, and D. N.
McKinsey, (2018), arXiv:1810.06283 [physics.ins-det].

[20] F. Mayet et al., Phys. Rept. 627, 1 (2016),
arXiv:1602.03781 [astro-ph.CO].

[21] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys.
Rev. C 51, 38 (1995).

[22] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C.
Pieper, and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[23] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schi-
avilla, K. E. Schmidt, and R. B. Wiringa, Rev. Mod.
Phys. 87, 1067 (2015).

[24] J. E. Lynn, L. Tews, J. Carlson, S. Gandolfi, A. Gezerlis,
K. E. Schmidt, and A. Schwenk, Phys. Rev. Lett. 116,
062501 (2016).

[25] D. Lonardoni, J. Carlson, S. Gandolfi, J. E. Lynn, K. E.
Schmidt, A. Schwenk, and X. B. Wang, Phys. Rev. Lett.
120, 122502 (2018).

[26] A. Lovato, S. Gandolfi, R. Butler, J. Carlson, E. Lusk,
S. C. Pieper, and R. Schiavilla, Phys. Rev. Lett. 111,
092501 (2013).

[27] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper, and
R. Schiavilla, Phys. Rev. Lett. 117, 082501 (2016).

[28] A. Lovato, S. Gandolfi, J. Carlson, S. C. Pieper, and
R. Schiavilla, Phys. Rev. Lett. 112, 182502 (2014).

[29] S. Pastore, A. Baroni, J. Carlson, S. Gandolfi, S. C.
Pieper, R. Schiavilla, and R. B. Wiringa, Phys. Rev.
C 97, 022501 (2018).

[30] D. Gazda, R. Catena, and C. Forssn, Phys. Rev. D95,
103011 (2017), arXiv:1612.09165 [hep-ph).

[31] F. Bishara, J. Brod, B. Grinstein, and J. Zupan, Jour-
nal of Cosmology and Astroparticle Physics 2017, 009
(2017).

[32] A. Crivellin, M. Hoferichter, and M. Procura, Phys. Rev.
D89, 054021 (2014), arXiv:1312.4951 [hep-ph].

[33] M. Hoferichter, C. Ditsche, B. Kubis, and U. G. Meiss-
ner, JHEP 06, 063 (2012), arXiv:1204.6251 [hep-ph].

[34] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G.
Meifiner, Phys. Rev. Lett. 115, 092301 (2015).

[35] D. A. Brantley, B. Joo, E. V. Mastropas, E. Mereghetti,
H. Monge-Camacho, B. C. Tiburzi, and A. Walker-Loud,
(2016), arXiv:1612.07733 [hep-lat].

[36] P. E. Shanahan, J. Phys. G43,
arXiv:1606.08812 [hep-lat].

124001 (2016),


http://arxiv.org/abs/1507.07531
http://arxiv.org/abs/1810.06283
http://dx.doi.org/10.1016/j.physrep.2016.02.007
http://arxiv.org/abs/1602.03781
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/ 10.1103/RevModPhys.87.1067
http://dx.doi.org/ 10.1103/RevModPhys.87.1067
http://dx.doi.org/ 10.1103/PhysRevLett.116.062501
http://dx.doi.org/ 10.1103/PhysRevLett.116.062501
http://dx.doi.org/ 10.1103/PhysRevLett.120.122502
http://dx.doi.org/ 10.1103/PhysRevLett.120.122502
http://dx.doi.org/ 10.1103/PhysRevLett.111.092501
http://dx.doi.org/ 10.1103/PhysRevLett.111.092501
http://dx.doi.org/ 10.1103/PhysRevLett.117.082501
http://dx.doi.org/ 10.1103/PhysRevLett.112.182502
http://dx.doi.org/ 10.1103/PhysRevC.97.022501
http://dx.doi.org/ 10.1103/PhysRevC.97.022501
http://dx.doi.org/10.1103/PhysRevD.95.103011
http://dx.doi.org/10.1103/PhysRevD.95.103011
http://arxiv.org/abs/1612.09165
http://stacks.iop.org/1475-7516/2017/i=02/a=009
http://stacks.iop.org/1475-7516/2017/i=02/a=009
http://stacks.iop.org/1475-7516/2017/i=02/a=009
http://dx.doi.org/10.1103/PhysRevD.89.054021
http://dx.doi.org/10.1103/PhysRevD.89.054021
http://arxiv.org/abs/1312.4951
http://dx.doi.org/10.1007/JHEP06(2012)063
http://arxiv.org/abs/1204.6251
http://dx.doi.org/10.1103/PhysRevLett.115.092301
http://arxiv.org/abs/1612.07733
http://dx.doi.org/10.1088/0954-3899/43/12/124001
http://arxiv.org/abs/1606.08812

	Quantum Monte Carlo calculations of dark matter scattering off light nuclei
	Abstract
	Introduction
	Scalar interaction
	Nuclear Wave Functions
	Results
	Conclusions
	Appendix
	References


