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Two-particle, pair-number correlation distributions on two-dimensional transverse momentum
(pt1, pt2) constructed from the particle production in relativistic heavy-ion collisions allow access to
dynamical processes in these systems beyond what can be studied with angular correlations alone.
Only a few measurements of this type have been reported in the literature and phenomenological
models, which facilitate physical interpretation of the correlation structures, are non-existent. On-
going effort at the Relativistic Heavy-Ion Collider (RHIC) will provide a significant volume of these
correlation measurements in the future. In anticipation of these new data two phenomenological
models are developed which describe 2D correlation distributions on transverse momentum. One
model is based on a collision event-by-event fluctuating blast wave. The other is based on event-
by-event fluctuations in fragmenting color-flux tubes and in jets. Both models are shown to be
capable of accurately describing the measured single-particle pt distributions for minimum-bias
Au+Au collisions at

√
sNN = 200 GeV. Both models are then applied to preliminary, charged-

particle correlation measurements on 2D transverse momentum. The capabilities of the two models
for describing the overall structure of these correlations, the stability of the fitting results with
respect to collision centrality, and the resulting trends of the dynamical fluctuations are evaluated. In
general, both phenomenological models are capable of qualitatively describing the major correlation
structures on transverse momentum and can be used to establish the required magnitudes and
centrality trends of the fluctuations. Both models will be useful for interpreting the forthcoming
correlation data from the RHIC.

PACS numbers: 25.75.-q, 25.75.Ag, 25.75.Gz

I. INTRODUCTION

Two-particle correlations constructed from the parti-
cles produced in high-energy, heavy-ion collision are af-
fected by partonic and hadronic dynamics throughout
the spatio-temporal evolution of the hot, dense colli-
sion system. These dynamics include soft and hard
interactions as predicted by Quantum Chromodynam-
ics (QCD), fragmentation and hadronization [1–3], par-
tonic/hadronic collective flow [4], plus others [5, 6]. For
symmetric, unpolarized collision systems (e.g. p+p,
Au+Au, Pb+Pb) near mid-rapidity, two-particle corre-
lations can be completely described using the four kine-
matic and angular variables pt1, pt2 (transverse momen-
tum), η1 − η2 (relative pseudorapidity1), and φ1 − φ2

(relative azimuthal angle) [7–9]. Correlation measure-
ments on 2D (η1 − η2,φ1 − φ2) angular space within 2D
bins on transverse momentum space (pt1, pt2) [10] should,
in principle, represent all the statistically accessible in-
formation. Unfortunately, the absolute normalization
of 2D angular correlations is poorly determined due to
the arbitrary multiplicity fluctuations arising from finite-
width multiplicity bins [11, 12].2 Measurements to date

1 Pseudorapidity is defined as η = − ln[tan(θ/2)], where θ is the
polar scattering angle relative to the beam direction.

2 A derivation of normalized 2D angular correlations of binned
total pt, using an angular scale-dependent mean-pt fluctuation
method, is given in [11, 12]. Application of this method to

of 4D, two-particle correlations [13–16] are therefore in-
complete.

In Ref. [17] it was shown that two-particle pair-number
correlation distributions on (pt1, pt2) can be derived from
measures of non-statistical mean-pt fluctuations and that
these correlations determine the average value (normal-
ization) of the 2D angular correlations in each (pt1, pt2)
bin, thus allowing the experimental determination of the
4D correlations to be completed. However, experimental
and theoretical efforts in correlation studies have mainly
involved angular correlations, while measurements and
analysis of pair-number correlations on (pt1, pt2) have re-
ceived much less attention. A few such measurements
have been reported by the NA49 Collaboration [18, 19],
the CERES Collaboration [20], and the STAR Collabo-
ration [7, 21, 22]. A much larger volume of preliminary
(pt1, pt2) correlation measurements by the STAR Collab-
oration exists [13, 14].

In addition to controlling the normalization of an-
gular correlations, the measurement and analysis of
(pt1, pt2) correlations allow access to independent dynam-
ical information beyond what can be gleaned from an-
gular correlations alone. For example, in the hydrody-
namic picture, event-wise fluctuations in global temper-
ature would not be manifest in angular correlations, but

normalize the pair-number angular correlations is problematic
because the finite multiplicity bin-width contributes directly to
event-wise multiplicity fluctuations in the angular bins.
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would produce a distinctive “saddle-shape” correlation
on (pt1, pt2) [19, 22]. In fragmentation based models with
jets, e.g. hijing [23], where event-wise fluctuations occur
in the angular positions and energies of the jets, analysis
of angular correlations can determine the average num-
ber of jet-related pairs of particles per event. Analysis
of (pt1, pt2) correlations can determine the variance of
the fluctuating number of jet-related pairs, an indepen-
dent quantity. Pair-number correlations on (pt1, pt2) in
jet production models are sensitive to event-wise dynam-
ical fluctuations in both the number and energy of the
jets, thus providing access to additional dynamical infor-
mation beyond that which can be studied with angular
correlations.

Of equal importance is the close connection between
number correlations on (pt1, pt2) and model-dependent
interpretation of single-particle pt spectrum data. In
conventional hydrodynamic or blast-wave models [24] pt
spectrum data are analyzed with the intent of determin-
ing physical properties of the heavy-ion collision pro-
duced medium, or quark-gluon plasma (QGP). These
properties include temperature, chemical potentials, and
radial flow. Often, such models do not include event-
wise fluctuations. They cannot produce correlations on
(pt1, pt2) and are therefore unphysical. The absence of
fluctuations affects the shape of the pt spectrum and
therefore the fits to the data, resulting in inaccurate mea-
sures of medium properties.

In high-energy minimum-bias p+p collisions a straight-
forward correspondence exists between angular and
(pt1, pt2) correlation structures for non-identified charged
particles as shown in Ref. [25]. Two correlation peaks
appear on (pt1, pt2) at lower and higher pt. Selecting
pairs in the lower pt peak results in angular correlations
consistent with longitudinal fragmentation and charge-
ordering [26] as described by the LUND color-flux tube,
or color-string model [1]. Selecting the higher pt pairs re-
sults in jet and dijet-like angular correlations which are
well described by pythia [2].

For more complex nucleus + nucleus collision systems,
interpreting the correlation structures on transverse mo-
mentum coordinates is less clear, as is understanding
the correspondences between correlation structures in
the two, respective subspaces. For example, in 2D an-
gular correlations [27, 28] an azimuthal quadrupole is
readily apparent, which is interpreted as pressure driven
elliptic-flow in the hydrodynamic picture. Peaked cor-
relations at relatively small opening angles are usually
interpreted as jets. Back-to-back correlations in rela-
tive azimuth are interpreted as dijets or other momentum
conserving processes. On the other hand, the correlation
structures which have been observed so far on (pt1, pt2),
a saddle-shape [22] plus broad peak from about 1 to
2 GeV/c [13, 14], are not so readily interpreted. Differ-
ent dynamical mechanisms, for example fluctuating jets
and fragmentation versus fluctuating temperatures and
radial flow, produce similar structures as will be shown
in this paper.

The purpose of the present work is to develop and test
two phenomenological models of relativistic heavy-ion
collisions, based on distinctly different dynamical frame-
works, which can be used to interpret the correlation
structures and provide an efficient means for determining
the nature and strength of the fluctuations, within each
framework, which are required to describe the data. The
required magnitudes and centrality trends of the vari-
ous fluctuations within each model can be compared to
that allowed by the corresponding theories, thereby test-
ing the applicability of each theoretical framework. The
phenomenologies presented here may help tease apart the
underlying dynamical mechanisms and help guide theo-
retical developments.

The first model is based on a fluctuating blast-wave
(BW) [29, 30]. The second is based on fluctuating, two-
component fragmentation (TCF) motivated by the suc-
cess of the Kharzeev and Nardi (KN) [31] “soft plus hard”
two-component interaction model. The general efficacy
and stability of the models are tested by fitting math-
ematical representations of preliminary correlation data
for Au+Au collisions at

√
sNN = 200 GeV from the STAR

Collaboration [13, 14]. Trends in the centrality depen-
dences of the several fluctuating quantities in the models
are presented and discussed.

This paper is organized as follows. The general method
for introducing dynamical fluctuations into the single-
and two-particle momentum distributions is presented in
Sec. II. Applications of this method for the BW and TCF
models are derived in Secs. III and IV, respectively, where
they are tested with respect to charged-particle pt spec-
tra data for Au+Au collisions at

√
sNN = 200 GeV. In

Sec. V both models are further tested by fitting (pt1, pt2)
correlation pseudodata. The efficacy of each model, as
well as the stability and centrality trends of the fluctuat-
ing quantities are also discussed in Sec. V. A summary
and conclusions are given in Sec. VI.

II. GENERAL FLUCTUATION MODEL

Single-particle distributions on binned coordinates are
constructed by counting all particles within a given ac-
ceptance in all collision events within a centrality class.
Two-particle distributions are similarly constructed using
all pairs of particles within the acceptance. If all particles
in all events are emitted from equilibrated sources having
the same uniform temperature T , using the simplest hy-
drodynamic picture for illustration, then the event-wise
single-particle and two-particle distributions are simply
the statistical samples of the same underlying parent dis-
tribution. In this case there are no correlations. To
generate correlations the parent distributions must vary
from event-to-event and/or within the source distribu-
tion of each event. An arbitrary ith particle is assumed
to be emitted from a region of the source having a local
temperature Ti. If the corresponding temperatures for an
arbitrary pair of particles in an event, e.g. Ti and Tj , fluc-
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tuate independently such that the average pair-wise fluc-
tuations about the mean temperature T̄ vanishes, where
〈(Ti−T̄ )(Tj−T̄ )〉i6=j = 0, then the correlations will again
vanish. Mean temperature T̄ is the average emitting tem-
perature for all particles in the event sample. Within this
model, non-vanishing correlations can only occur when
〈(Ti − T̄ )(Tj − T̄ )〉i 6=j 6= 0.

For the present application each phenomenological
model includes two independent sources of fluctuations
in the parent distributions, either (1) temperature and
transverse flow velocity, or (2) longitudinal color-flux
tube energy, and jet number and energy. In this sec-
tion, parameters P and Q are used to represent these
two parameter values.

We start with a binned, single-particle density distri-
bution on transverse momentum corresponding to an ar-
bitrary collision event j, given by ρj,pt ≡ nj,pt/δpt , where
nj,pt is the number of particles from the jth event in the
transverse momentum bin at pt (subscript pt is the bin
index) and δpt is the width of the bin. We then construct
the event average for the total number of events ε in a
centrality class, given by

ρ̄pt =
1

ε

ε∑
j=1

ρj,pt =
1

ε

ε∑
j=1

nj∑
i=1

κi:pt/δpt , (1)

where nj is the number of particles in event j and κi:pt =
1 if the ith particle is emitted into the bin at pt, and is
zero otherwise. Throughout this paper overlines denote
event averages or other mean values.

For the phenomenological models considered here we
assume that the production mechanisms are character-
ized by quantities P,Q, etc. whose values may vary
within each event and from one event to the next as
explained above. Each particle (i) in an event (j) is as-
sumed to be produced from a region of the source charac-
terized by discrete variables Pij , Qij . The density distri-
bution for event j generated by particles produced with
discrete, source variables P ′ and Q′ is given by

ρjP ′Q′,pt =
1

δpt

nj∑
i=1

[κi:pt ]Pij=P ′,Qij=Q′ (2)

where κi:pt = 1 if the source quantities for the ith particle
equal P ′ and Q′ and the particle is emitted into the bin
at pt; otherwise it is zero. The jth event distribution is
therefore

ρj,pt =
∑
P ′,Q′

ρjP ′Q′,pt (3)

and the event-averaged, binned distribution is given by

ρ̄pt =
1

ε

ε∑
j=1

∑
P ′,Q′

ρjP ′Q′,pt =
∑
P ′,Q′

1

ε

ε∑
j=1

ρjP ′Q′,pt . (4)

The present implementation of the phenomenological
models is in terms of the probability distributions for

particle emission from source regions having arbitrary
values P ′ and Q′. These distributions are introduced in
Eq. (4) using a series of particle sums given by (dropping
the primes)

NPQ ≡
∑
pt

ε∑
j=1

ρjPQ,ptδpt , (5)

NP ≡
∑
Q

NPQ (6)

N ≡
∑
P

NP , (7)

from which Eq. (4) becomes

ρ̄pt =
∑
P,Q

N

ε

NP
N

NPQ
NP

1

NPQ

ε∑
j=1

ρjPQ,pt . (8)

In Eq. (7)N is the total number of accepted particles pro-
duced in all collisions in the centrality class and N/ε ≡ N̄
is the mean multiplicity per-event. Ratio NP /N is the
fraction of all particles emitted from sources with fluc-
tuating parameter value P . Ratio NPQ/NP is the frac-
tion of all particles emitted from source regions with pa-
rameter value P in which the other fluctuating emission
quantity has value Q. For the models considered here
we assume that the source emission parameters P and Q
fluctuate independently of each other which allows the
simplifying approximation NPQ/NP ≈ NQ/N . The last
ratio in Eq. (8) defines a unit-normal, binned distribution
where

ρ̂PQ,pt ≡
1

NPQ

ε∑
j=1

ρjPQ,pt (9)

and
∑
pt
δpt ρ̂PQ,pt = 1. Throughout this paper the “hat”

symbol denotes a unit-normalized distribution.
In the BW and TCF models the source emission pa-

rameters and the outgoing particle momentum are repre-
sented with continuous variables. The continuum limits
of the above binned quantities are given by the following:

ρ̄pt → ρ̄(pt)

NP /N → dPf(P )

NQ/N → dQg(Q)

ρ̂PQ,pt → ρ̂(P,Q, pt)

where
∫
dptρ̂(P,Q, pt) = 1. The single-particle density is

given by

ρ̄(pt) = N̄

∫ ∫
dPdQf(P )g(Q)ρ̂(P,Q, pt). (10)

Similarly, the two-particle binned distribution3 for par-

3 Throughout this paper symbol ρ represents both single- and
two-particle distributions. The number of particle labels dis-
tinguishes the usage.
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ticles labelled 1 and 2 is given by

ρ̄pt1,pt2 =
1

ε

ε∑
j=1

N̄

nj

nj − 1

nj

∑
P1,Q1

∑
P2,Q2

ρjP1Q1,pt1ρjP2Q2,pt2

=
N̄ − 1

N̄

∑
P1,Q1

∑
P2,Q2

1

ε

ε∑
j=1

ρjP1Q1,pt1ρjP2Q2,pt2(11)

where factor (nj − 1)/nj normalizes each event to the
correct number of pairs of particles, counting both per-
mutations, factor N̄/nj eliminates statistical bias caused
by multiplicity variations within the centrality bin us-
ing the ∆σ2

pt:n mean-pt fluctuation quantity derived in
Ref. [17], and in the second line the ensemble of events
is restricted to have fixed multiplicity N̄ . In Eq. (11)
particle 1 is assumed to be emitted from a region of the
source where the production quantities have the values
P1 and Q1, and similarly for particle 2. Introducing pair
ratios, analogous to those in Eqs. (5)-(7), gives

NP1Q1P2Q2
≡

∑
pt1,pt2

ε∑
j=1

ρjP1Q1,pt1ρjP2Q2,pt2

× δpt1δpt2 (12)

NP1P2 ≡
∑
Q1,Q2

NP1Q1P2Q2 (13)

N(2) ≡
∑
P1,P2

NP1P2
, (14)

where Eq. (11) becomes

ρ̄pt1,pt2 =
N̄ − 1

N̄

∑
P1,P2

∑
Q1,Q2

N(2)

ε

NP1P2

N(2)

NP1Q1P2Q2

NP1P2

× 1

NP1Q1P2Q2

ε∑
j=1

ρjP1Q1,pt1ρjP2Q2,pt2 . (15)

In Eq. (14), N(2) = εN̄2 is the total number of pairs in the
event ensemble, including self-pairs, when all events have
fixed multiplicity. Assuming that fluctuation parameters
P and Q are independent, results in NP1Q1P2Q2/NP1P2 ≈
NQ1Q2/N(2). The last ratio in Eq. (15) factors into the
product of unit-normalized single-particle density distri-
butions ρ̂P1Q1,pt1 ρ̂P2Q2,pt2 . Clearly, if NP1P2

= NP1
NP2

and NQ1Q2
= NQ1

NQ2
, then the two-particle density in

Eq. (15) factors into a product of single-particle densities,
resulting in no correlations.

In the continuum limit ρ̄pt1,pt2 → ρ̄(pt1, pt2),
NP1P2

/N(2) → dP1dP2f(P1, P2), NQ1Q2
/N(2) →

dQ1dQ2g(Q1, Q2), ρ̂P1Q1,pt1 → ρ̂(P1, Q1, pt1) and
similarly for particle 2. The two-particle density in the
continuum limit is therefore

ρ̄(pt1, pt2) = N̄(N̄ − 1)

∫ ∫ ∫ ∫
dP1dP2dQ1dQ2f(P1, P2)

× g(Q1, Q2)ρ̂(P1, Q1, pt1)ρ̂(P2, Q2, pt2). (16)

In the following sections explicit functional models are
presented for the single-particle distributions and the
emitting source parameter distributions.

III. BLAST-WAVE MODEL WITH
FLUCTUATIONS

A. Single-particle distribution

The fluctuating blast-wave model is based on the
invariant phase-space source emission distribution of
Schnedermann, Sollfrank and Heinz (SSH) [29] and
as further developed by Tomás̆ik, Wiedemann and
Heinz [30]. In this model the invariant momentum dis-
tribution is calculated by integrating over the space-time
coordinates of the source function S(x, p), given by

E
d3N

dp3
=

d2N

2πmtdmtdy
=

∫
dx4S(x, p)

=

∫
τdτ

∫
dηs

∫
rdr

∫
dϕS(x, p), (17)

where x, p are four-vectors, E is the total energy of the
particle, mt =

√
p2
t +m2

0 is the transverse mass, and m0

is assumed to be the pion rest-mass. Space-time coor-
dinates τ , ηs, r, and ϕ are the proper time, source ra-
pidity defined by (1/2) ln [(t+ z)/(t− z)], transverse ra-
dius, and azimuthal angle, respectively. From Ref. [30]
Eq. (17) can be expressed at mid-rapidity (y = 0) as

E
d3N

dp3
=

τ0mt

4π2~3

∫ ∞
0

rdrG(r)eβµ0I0[βpt sinh ηt(r)]

×
∫ ∞
−∞

dηs cosh ηsH(ηs) exp[−βmt cosh ηt(r) cosh ηs]

(18)

where τ0 is the mean emission proper time, β = 1/T is the
inverse temperature, µ0 is the chemical potential, I0 is a
modified Bessel function, G(r) and H(ηs) are the trans-
verse and longitudinal-rapidity source distributions, and
ηt(r) is the transverse flow rapidity. The latter is defined
in terms of the transverse flow velocity vt(r), where

ηt(r) =
1

2
ln

(
1 + vt(r)

1− vt(r)

)
, (19)

vt(r) = tanh ηt(r), and the flow velocity profile is as-
sumed to follow a power-law distribution given by [32]

vt(r) = a0%
nflow , % ≡ r/R0, (20)

whereR0 is the transverse radius parameter of the source.
In deriving Eq. (18) Bjorken boost invariant expan-

sion [30, 33] was assumed, which is conventional in BW
models, where longitudinal flow rapidity equals ηs. The
source distribution was assumed to be uniform on az-
imuth, e.g. no cos(2φ) dependence, because the final-
state particle-pair yield in the present application is in-
tegrated over relative azimuth intervals of either π or
2π where such correlations average to zero. We also as-
sumed the following in order to simplify the model, to
focus on the dominant sources of fluctuations in the pt
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distribution, and to simplify the numerical integrations:
(1) the Maxwell-Boltzmann limit for the emission func-
tion, (2) a constant chemical potential µ(r) ≈ µ0, (3) a
constant source distribution G(r) from r = 0 to maxi-
mum radius R0, and (4) the shape of source distribution
H(ηs) is taken from measured dNch/dη distributions. For
the latter, H(ηs) is taken to be symmetric about ηs = 0
for symmetric collision systems and is represented by a
modified Woods-Saxon distribution given by

H(ηs) = H(|ηs|) = Ns
1 + w|ηs|2

1 + exp[(|ηs| − ηsr)/ηst]
,(21)

where Ns is a normalization constant and parameters w,
ηsr (source range) and ηst (source end-point thickness)
were fitted to the dNch/dη distributions for minimum-
bias Au+Au collisions at

√
sNN = 200 GeV reported by

the PHOBOS Collaboration [34]. Parameter values w =
0.02, ηsr = 3.45 and ηst = 0.73 approximately describe
the shapes of these data at each measured centrality.

For applications to correlations on transverse momen-
tum it is beneficial to display results on transverse rapid-
ity, given by yt = ln[(pt + mt)/m0] at mid-longitudinal
rapidity, where pt = m0 sinh(yt). Plotting the correla-
tions on transverse rapidity, rather than pt, enhances the
visual access to correlation structures at both lower and
higher pt. In addition, transverse rapidity is an addi-
tively boost-invariant coordinate which facilitates studies
of transverse fragmentation, i.e. jets. The single-particle
distribution on yt at y = 0 (longitudinal mid-rapidity) is
given by

d2N

dytdη
= 2πpt

dpt
dyt

dy

dη

(
d2N

2πmtdmtdy

)
= 2πp2

t

(
d2N

2πmtdmtdy

)
(22)

where mtdmt = ptdpt, and η = limm0→0 y is pseudora-
pidity. Jacobians dpt/dyt and dy/dη equal mt and pt/mt,
respectively, at mid-rapidity. The quantity in parenthe-
ses in Eq. (22) is either taken from experiment or calcu-
lated in the blast-wave model.

A collection of collision events within a centrality bin
can be expected to have fluctuating properties due to
fluctuating initial-conditions [35, 36] and the stochastic
nature of the system evolution from the initial impact to
final kinetic decoupling. Within the context of the BW
model we would therefore expect the source geometry,
freeze-out temperature, and transverse flow to fluctuate
from event-to-event. Furthermore, due to non-uniform
initial conditions, the temperature and flow fields within
each collision environment might also vary relative to the
smooth, analytic distribution assumed in Eq. (18). Fluc-
tuations in τ0, G, H, µ0, β and ηt are therefore possible.

To account for these fluctuations we calculate the en-
semble average of event-wise fluctuating BW distribu-
tions for non-identified, charged-particles within mid-
rapidity acceptance ∆η [e.g. ∆η = 2 for the STAR Time
Projection Chamber (TPC) tracking detector [37]]. The

measured and BW model charged-particle density distri-
butions are related as follows,

ρ̄ch(yt) = ∆η
d2Nch,exp

dytdη

= ∆η
1

ε

ε∑
j=1

d2NBW,j

dytdη
+ δρ̄(yt)

≡ 1

ε

ε∑
j=1

ρBW,j(yt) + δρ̄(yt)

≡ ρ̄BW(yt) + δρ̄(yt), (23)

where the measured charged-particle distribution is in-
troduced in the first line. In Eq. (23) the summation
includes ε collision events within a centrality event-class
and δρ̄(yt) is the residual between the BW model and the
spectrum data. Quantities ρ̄ch(yt) and ρ̄BW(yt) give the
event-average number of charged-particles per yt bin and
are normalized to the measured number of charged par-
ticles produced within the acceptance, yt ∈ [ytmin

, ytmax
],

∆η and 2π in azimuth.
Event averaging over τ0 and µ0 do not affect the shape

of the distribution ρ̄BW(yt), and calculations show that
fluctuations in G(r), or in radius R0, and in H(ηs) pro-
duce minor effects relative to those generated by fluc-
tuations in β and ηt(r). We therefore fix τ0, µ0, G(r)
and H(ηs) and only allow β and ηt(r) to fluctuate from
event-to-event as well as within the source distribution
of each collision. Flow fluctuations are introduced by al-
lowing the transverse flow rapidity to fluctuate about its
nominal value where in the following calculations ηt(r)
in Eq. (19) is replaced with ηt0ηt(r), where ηt0 is a ran-
dom variable sampled from a peaked distribution whose
variance is an adjustable parameter.

The BW distribution in Eq. (23), with fluctuating tem-
perature and transverse flow, is given by

ρ̄BW(yt) = N̄

∫
dβf(β, β̄, qβ)

×
∫
dηt0g(ηt0, η̄t0, σηt)ρ̂(β, ηt0, yt) (24)

using the steps in Sec. II, where fluctuations in inverse
temperature and transverse flow rapidity sample the
probability densities f(β, β̄, qβ) and g(ηt0, η̄t0, σηt), re-
spectively. Both are assumed to be peaked distributions
whose mean and variances are determined by parameters
β̄, qβ , η̄t0 and σηt .

In applying the blast-wave model with fluctuating β
and ηt0 it was assumed that the regions of the source
where β and ηt0 are greater than, or smaller than the re-
spective means, are uniformly and randomly distributed.
With this assumption the summations in Eq. (8), for ar-
bitrary values of β and ηt0, uniformly sample the entire
source volume such that the resulting invariant momen-
tum distribution is given by Eq. (18) when calculated
with those specific β and ηt0 values. Calculations of the
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emitted particle pt spectrum from sources with either cor-
related β and ηt0 fluctuations, or with position correlated
β, ηt0 fluctuations require microscopic models or Monte
Carlo simulations, e.g. epos [35] and nexspherio [38],
both of which are well beyond the scope and intent of the
present phenomenological study.

In Ref. [22] it was shown that the transverse momen-
tum spectrum data from relativistic heavy-ion collisions
can be accurately described for pt < 5 GeV/c when the
inverse temperature β of a Maxwell-Boltzmann (MB) dis-
tribution, exp[−β(mt−m0)], is convoluted with a gamma
distribution. The unit-normal gamma distribution is
given by

fγ(β, β̄, qβ) =
qβ

β̄Γ(qβ)

(
βqβ
β̄

)qβ−1

e−βqβ/β̄ (25)

where β̄ is the mean and 1/qβ is the relative variance
σ2
β/β̄

2. The above convolution integral gives [22]∫ ∞
0

dβfγ(β, β̄, qβ)e−β(mt−m0)

=
[
1 + β̄(mt −m0)/qβ

]−qβ , (26)

a Levy distribution [39].

The transverse flow rapidity scale parameter was as-
sumed to follow a similar peaked distribution except with
a suppressed long-range tail which helps the numerical in-
tegrations converge. The distribution was chosen to be a
modified Gaussian given by

g(ηt0, η̄t0, σηt) = Ngηt0 exp

[
−1

2

(
ηt0 − η̄t0
σηt

)2
]
(27)

where η̄t0 = 1 (fixed) and Ng normalizes the distribution
to unity over the domain ηt0 ∈ [0,∞].

The final form of the fluctuating blast-wave single-particle distribution is given by

ρ̄BW(yt) = N̄

∫ ∞
0

dβfγ(β, β̄, qβ)

∫ ∞
0

dηt0g(ηt0, η̄t0, σηt)ρ̂BW(β, ηt0, yt) (28)

where

ρ̂BW(β, ηt0, yt) = Nmtp
2
t

τ0R
2
0G0∆η

2π~3

∫ 1

0

%d%eβµ0I0[βpt sinh ηt(%)]

∫ ∞
−∞
dηs cosh ηsH(ηs)e

−βmt cosh ηt(%) cosh ηs . (29)

Constant N ensures that ρ̂BW(β, ηt0, yt) is normalized to unity in the domain yt ∈ [ytmin , ytmax ]. To compare with
experiment, Eq. (29) was calculated at the yt bin centers. In Eq. (29) the ηs integration was done numerically for
discrete values of βmt cosh ηt(%) and saved for later interpolation during the 3D numerical integration over variables β,
ηt0 and %. Integration limits and step sizes were studied to ensure sufficiently accurate convergence in the calculated
yt spectrum relative to the statistical errors in the data. The fit parameters in the single-particle BW model are β̄
and qβ in Eq. (25), a0 and nflow in Eq. (20), and σηt in Eq. (27) where N̄ is taken from data. These fit parameters
control the mean temperature and transverse flow profile plus the temperature and flow fluctuations.

The blast-wave model was applied to the charged par-
ticle pt spectra data for Au + Au minimum-bias colli-
sions at

√
sNN = 200 GeV measured by the STAR Col-

laboration [40] for collision centralities 0-5%, 5-10%, 10-
20%, 20-30%, 30-40%, 40-60% and 60-80%. These data
were fitted within the yt range from 1.34 to 4.36, cor-
responding to pt from 0.25 to 5.5 GeV/c. Three sets
of fits were done in which (1) the full BW model was
used where the five parameters above were freely varied,
(2) a non-flowing (a0 = 0), thermal fluctuation model
was used, and (3) a non-fluctuating, pure BW model was
used where qβ = σηt = 0 while β̄, a0 and nflow were freely
varied. Best fits were based on minimum chi-square.

Quantitative descriptions of the data were obtained

for all centralities using the full blast-wave. Examples
are shown in Fig. 1 for the 60-80%, 20-30% and 0-5%
centralities where fits produced by the full BW, the non-
flowing thermal fluctuation BW, and the non-fluctuating
BW are shown by the solid, dashed and dotted curves,
respectively. The BW model fit parameter values for all
centralities and for each of the three model scenarios are
listed in Table I. The residuals, δρ̄(yt) in Eq. (23), for
the full BW model fits are of order 5% or less throughout
the yt and centrality ranges studied here.

The full BW model accurately describes the data over
the entire yt range considered in this analysis. The non-
flowing, thermal fluctuation BW model overestimates the
mode (peak position) but accurately describes the data
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at larger yt. The non-fluctuating BW model overesti-
mates the peak position by an even larger amount and
underestimates the data at low yt less than 1.5 and at
the largest yt bin considered here.

Typical, non-fluctuating blast-wave model fits to pt
spectrum data produce results where the temperature
decreases and the average flow velocity increases with
centrality [24]. In the present BW model application,
the average flow velocity increases slightly with central-
ity, but the fitted temperature also increases. It should
be noted that in the present application the fitting is per-
formed over a larger pt range than is usually addressed
with blast-wave models [24] and the additional effects of
fluctuations are included.

The results in Table I illustrate the risk associated
with relying on non-fluctuating models to infer physical
properties of the medium. The temperatures and trans-
verse flow velocities inferred with the non-fluctuating
BW model fits are approximately twice and one-half,
respectively, the values inferred with the full, fluctuat-
ing BW model. At a minimum, event-wise fluctuating
BW models, or event-by-event hydrodynamic models,
e.g. epos [35] and nexspherio [38], should be used in
such analyses. Ideally, both the spectrum and correlation
data should be fit simultaneously.

B. Two-particle distribution

Two-particle distributions were calculated by summing
over all pairs of particles from the same collision (same-
event pairs denoted “se”) for all events within a given
centrality range. In the BW model, arbitrary pairs are
emitted from two, arbitrary regions of the source which
are characterized by inverse temperature and transverse
flow rapidity parameters (β1, ηt01

) and (β2, ηt02
), re-

spectively. Correlations arise when the distributions of
(β1, ηt01) versus (β2, ηt02) are correlated [22] (see Sec. II).
Correlated fluctuations between β and ηt0 are not con-
sidered here; only (β1, β2) and (ηt01 , ηt02) correlated fluc-
tuations are included in the present model, both for com-
putational simplicity and in lieu of credible models of 4D
(β1, ηt01 , β2, ηt02) correlated fluctuations.

The two-particle, same-event BW density distribution,
using Eqs. (11) and (23), is given by

ρ̄BW,se(yt1, yt2) =
N̄ − 1

N̄

1

ε

ε∑
j=1

[ρBW,j(yt1) + δρ̄(yt1)]

× [ρBW,j(yt2) + δρ̄(yt2)]

=
N̄ − 1

N̄

1

ε

ε∑
j=1

[ρBW,j(yt1)ρBW,j(yt2) + ρBW,j(yt1)δρ̄(yt2)

+ρBW,j(yt2)δρ̄(yt1) + δρ̄(yt1)δρ̄(yt2)] . (30)

The event averages in the second and third terms are
calculated as in the preceding subsection. The last term
is simply [(N̄ − 1)/N̄ ]δρ̄(yt1)δρ̄(yt2). The first term can

be expanded as in Sec. II and is given by

ρ̄′BW,se(yt1, yt2) ≡ N̄(N̄ − 1)

∫ ∫
dβ1dβ2f(β1, β2)

×
∫ ∫

dηt01
dηt02

g(ηt01
, ηt02

)

×ρ̂BW(β1, ηt01
, yt1)ρ̂BW(β2, ηt02

, yt2). (31)

In the absence of temperature correlations f(β1, β2) is
simply a product of gamma distributions for particles 1
and 2. This uncorrelated product of gamma distributions
can be expressed in terms of the sum and difference vari-
ables [22] βΣ = β1 + β2 and β∆ = β1 − β2, and is given
by

fγ(β1, β̄, qβ)fγ(β2, β̄, qβ) = fγ(βΣ, 2β̄, 2qβ)f̃(βΣ, β∆, qβ),

(32)

where

f̃(βΣ, β∆, qβ) =
Γ(2qβ)

Γ(qβ)2

1

22(qβ−1)

1

βΣ

(
1− β2

∆

β2
Σ

)qβ−1

(33)

and Γ is the gamma function. Parameters β̄ and relative
variance σ2

β/β̄
2 = 1/qβ were determined by fitting the

single-particle distributions (Table I).
When the source temperatures at arbitrary emission

sites are correlated, the 2D distribution of β1 and β2

values for all particle pairs in the event collection has
positive covariance as shown in the diagram in Fig. 2.
Correlated temperature emission can be introduced in
Eq. (33) by allowing the relative variances along the βΣ

and β∆ directions to independently vary. We therefore
define

f(β1, β2) ≡ fγ(βΣ, 2β̄, 2qβΣ)f̃(βΣ, β∆, qβ∆
). (34)

The correlation data will be fitted by adjusting the rel-
ative variances along the βΣ and β∆ directions, σ2

βΣ,∆
,

as shown in Fig. 2. The shifts in the relative variances
are defined by parameters ∆(1/q)Σ and ∆(1/q)∆, respec-
tively, where

∆(1/q)Σ = 1/qβΣ − 1/qβ

∆(1/q)∆ = 1/qβ∆
− 1/qβ . (35)

If ∆(1/q)Σ > ∆(1/q)∆, then the β emissions are cor-
related and if ∆(1/q)Σ < ∆(1/q)∆, then they are anti-
correlated. Results are more conveniently reported as the
combinations

∆(1/q)Vol ≡ [∆(1/q)Σ + ∆(1/q)∆]/2

=
(σ2
βΣ
− σ2

β)

2β̄2
+

(σ2
β∆
− σ2

β)

2β̄2

∆(1/q)cov ≡ [∆(1/q)Σ −∆(1/q)∆]/2,

=
σ2
βΣ
− σ2

β∆

2β̄2
(36)
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TABLE I: Blast-wave fit model parameters for the 200 GeV Au+Au minimum-bias pt spectrum data from STAR [40] for the
full BW model, the non-flowing BW, and the non-fluctuating BW as explained in the text. Data were fitted in the yt range
from 1.34 to 4.36 using 30 data points at each centrality. Temperature (T in GeV) equals 1/β. Average transverse flow velocity
v̄t equals 2a0/(nflow + 2) in units where c = 1.

Centrality Full BW No Flow BW No Fluct. BW

(%) T (GeV) qβ a0 nflow σηt v̄t
χ2

DoF
T (GeV) qβ

χ2

DoF
T (GeV) a0 nflow v̄t

χ2

DoF

0-5 0.110 20.2 0.68 0.49 0.051 0.55 2.10 0.172 16.1 2.38 0.184 0.76 5.8 0.20 6.54
5-10 0.112 19.8 0.66 0.47 0.065 0.53 1.92 0.169 15.6 2.23 0.180 0.76 5.0 0.22 5.45
10-20 0.110 18.7 0.68 0.57 0.033 0.53 1.34 0.166 14.8 2.04 0.180 0.77 5.2 0.21 4.00
20-30 0.105 17.5 0.70 0.60 0.018 0.54 1.01 0.162 14.1 1.66 0.186 0.78 7.0 0.17 4.12
30-40 0.103 16.7 0.70 0.64 0.043 0.53 1.26 0.157 13.5 1.85 0.172 0.80 5.5 0.21 4.72
40-60 0.100 15.3 0.47 0.04 0.38 0.46 0.64 0.144 12.2 1.15 0.172 0.82 7.5 0.17 3.00
60-80 0.082 12.9 0.75 0.89 0.02 0.52 0.56 0.129 11.1 1.08 0.162 0.84 8.2 0.16 3.13

t
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FIG. 1: Fluctuating blast-wave model fits to the 200 GeV Au+Au minimum-bias pt spectrum data from STAR [40] showing
only the 60-80%, 20-30% and 0-5% centrality results. Yields are shown as quantity dNch/dyt versus transverse rapidity yt
as defined in the text, assuming pseudorapidity acceptance ∆η = 2. Linear (upper row) and semi-log (lower row) plots are
shown for the same data and curves to allow visual access to both lower and higher yt fit results. Fit results assuming the full,
non-flowing, and non-fluctuating BW models are shown by the solid, dashed and dotted curves, respectively, as explained in
the text.

where ∆(1/q)Vol measures the overall (volume) change
in width of the 2D (β1, β2) distribution and ∆(1/q)cov

indicates the covariance.
Similarly, the transverse flow rapidity scale parameter

2D distribution can be written as a product of the single-
particle distributions g(ηt0, η̄t0, σηt). The product can

be expressed in terms of sum and difference variables
ηt0Σ,∆

= ηt01
± ηt02

, and the variances along ηt0Σ
and

ηt0∆
can be varied in order to fit the correlation data.

The resulting correlated, transverse-flow rapidity scale
parameter distribution is given by

g(ηt01
, ηt02

) ≡ g2(ηt01
, ηt02

, η̄t0, σηtΣ , σηt∆) = Ng2
ηt01

ηt02
exp

−1

2

(ηt0Σ − 2η̄t0√
2σηtΣ

)2

+

(
ηt0∆√
2σηt∆

)2
 , (37)

whereNg2
normalizes the 2D distribution to unity, the widths are defined as σηtΣ ≡ σηt+∆ηt/2 and σηt∆ ≡ σηt−∆ηt/2,

η̄t0 is fixed to 1, and parameter σηt was determined by fitting the single-particle distributions (Table I).
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FIG. 2: Diagrammatic representation of a 2D scatter plot of
the inverse temperatures (β1 and β2) for all pairs of parti-
cles (1,2) emitted from all events in a typical centrality bin.
The dashed circle (solid ellipse) represents the 1-σ contour of
an uncorrelated (correlated) distribution. The mean and 1σ
width of the uncorrelated distribution are denoted by β̄ and
σβ . Widths and changes in widths along the βΣ and β∆ direc-
tions for the correlated distribution are denoted by σβΣ , δσΣ

and σβ∆ , δσ∆, respectively.

Using Eqs. (29), (34) and (37) in Eq. (31) gives the 4D integration result

ρ̄′BW,se(yt1, yt2) = N̄(N̄ − 1)

∫ ∫
dβ1dβ2fγ(βΣ, 2β̄, 2qβΣ)f̃(βΣ, β∆, qβ∆)

∫ ∫
dηt01dηt02g2(ηt01 , ηt02 , η̄t0, σηtΣ , σηt∆)

× ρ̂BW(β1, ηt01
, yt1)ρ̂BW(β2, ηt02

, yt2). (38)

The same numerical integration ranges and step sizes used for the single-particle BW calculation were used in the
numerical integration in Eq. (38).

C. Two-particle correlation

By definition, the two-particle correlations contained
in the two-particle, BW distribution in Eq. (38) equal
the difference between it and the product of marginals,
where

ρ̄BW,marg(yt1) ≡ 1

N̄ − 1

∫
dyt2ρ̄

′
BW,se(yt1, yt2) (39)

with normalization
∫
dyt1ρ̄BW,marg(yt1) = N̄ . To en-

sure consistency with the single-particle measurements
we also require the marginal of the entire two-particle
distribution in Eq. (30) to equal the measured charge
distribution ρ̄ch(yt) in Eq. (23). However, in order to

fit the correlation data the variances in the inverse tem-
perature and transverse flow rapidity, ∆(1/q)Vol,cov and
∆ηt , were freely varied resulting in marginals which may
not precisely equal ρ̄BW(yt) in Eq. (23). This condition
requires an adjusted residual δρ̄′(yt) defined by

δρ̄′(yt) ≡ ρ̄ch(yt)− ρ̄BW,marg(yt). (40)

The adjusted residual is normalized such that∫
dytδρ̄

′(yt) = 0 because both ρ̄ch and ρ̄BW,marg

are normalized to N̄ . Acceptable BW correlation
model fits should not only describe the correlation
data but should maintain a small residual such that
δρ̄′(yt)� ρ̄ch(yt).

The complete two-particle distribution, whose marginal equals the measured single-particle charge distribution,
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must be adjusted from the original form in Eq. (30). The adjusted distribution is given by

ρ̄BW,se(yt1, yt2) = ρ̄′BW,se(yt1, yt2)

+
N̄ − 1

N̄
[ρ̄BW,marg(yt1)δρ̄′(yt2) + ρ̄BW,marg(yt2)δρ̄′(yt1) + δρ̄′(yt1)δρ̄′(yt2)] , (41)

where the pair normalization factor (N̄ − 1)/N̄ from Eq. (30) was applied to the last three terms. The uncorrelated
reference pair distribution is defined as the product of marginals of ρ̄BW,se(yt1, yt2) in Eq. (41), which is given by

ρ̄BW,ref(yt1, yt2) =
N̄ − 1

N̄
[ρ̄BW,marg(yt1)ρ̄BW,marg(yt2) + ρ̄BW,marg(yt1)δρ̄′(yt2) + ρ̄BW,marg(yt2)δρ̄′(yt1)

+δρ̄′(yt1)δρ̄′(yt2)] =
N̄ − 1

N̄
ρ̄ch(yt1)ρ̄ch(yt2) (42)

where the pair normalization factor (N̄ − 1)/N̄ must also be applied to the reference as shown in Ref. [17]. The
per-pair normalized correlation is finally given by

∆ρ̄BW

ρ̄BW,ref
(yt1, yt2) ≡ ρ̄BW,se(yt1, yt2)− ρ̄BW,ref(yt1, yt2)

ρ̄BW,ref(yt1, yt2)
=
ρ̄′BW,se(yt1, yt2)− N̄−1

N̄
ρ̄BW,marg(yt1)ρ̄BW,marg(yt2)

ρ̄BW,ref(yt1, yt2)
.

(43)

D. Correlation prefactor

The final BW correlation quantity to be compared with
data includes a prefactor corresponding to that applied
to the data [14]. In general, the purpose of a correlation
prefactor is to replace the pair ratio in Eq. (43), which
is required in data analysis to correct for efficiency and
acceptance, with a quantity better suited to the study
of specific scaling trends, e.g. binary scaling, per-trigger
scaling, etc. A prefactor may also be required by the
specific charge-pair combinations used, and the relative
pseudorapidity and/or azimuthal angle selections.

In the present model the specific purposes of the cor-
relation prefactor are: (1) To convert the number of cor-
related pairs per final-state pair quantity in Eq. (43)
to a number of correlated pairs per final-state parti-
cle ratio as in Pearson’s correlation coefficient [14, 41].
(2) To scale this “pairs per singles” ratio to account
for the fact that only one-half of the available charged-
particle pairs are included when selecting only the away-
side pairs whose relative azimuth angle |φ1−φ2| exceeds
π/2. (Away-side pairs were selected for the analytical
model fitting in Ref. [13], and in the present analysis,
in order to suppress contributions from HBT correla-
tions [22].) (3) To provide an overall normalization which
facilitates tests of binary scaling in the correlation struc-
tures. The last requirement can be achieved by using
the soft-QCD process particle yield, as estimated in the
Kharzeev-Nardi [31] two-component model. In the KN
model, soft-QCD yields are proportional to Npart, where
Npart is the number of participant nucleons in the heavy-
ion collision. If the number of correlated pairs in the nu-
merator is proportional to the number of binary nucleon
+ nucleon (N+N) interactions, Nbin, then the resulting

correlation quantity will be proportional to Nbin/Npart.
Ratio Nbin/Npart is proportional to centrality measure
ν ≡ Nbin/(Npart/2) [27]. Correlation structures which
scale with Nbin will linearly increase with centrality mea-
sure ν, and can therefore be readily identified.

For the present study we use a charge-independent (CI,
all charge-pair combinations), away-side azimuth (AS,
|φ1 − φ2| > π/2), soft-process particle production pref-

actor, PAS−CI
Fac,soft(yt1, yt2). The final correlation quantity is

given by

∆ρ̄BW√
ρ̄soft

(yt1, yt2) ≡ PAS−CI
Fac,soft(yt1, yt2)

∆ρ̄BW

ρ̄BW,ref
(yt1, yt2)

(44)

where the prefactor is defined and calculated in Appendix
A and the last quantity is given in Eq. (43).

IV. TWO-COMPONENT FRAGMENTATION
MODEL WITH FLUCTUATIONS

A. Single-particle distribution

The two-component fragmentation model presented
here is based on the two-component multiplicity produc-
tion model of Kharzeev and Nardi [31], discussed briefly
in the preceding section. In this model particle produc-
tion is assumed to be dominated by two processes which
scale with either Npart or Nbin. The relevance of this
model in the description of the peaked correlation struc-
tures on (pt1, pt2) from p+p collisions was discussed in
Refs. [7, 25]. In the KN model the particle yield N within
some (η, φ) acceptance is given by

N = npp(1− xKN)Npart/2 + nppxKNNbin (45)
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where npp = 4.95 is the charged-particle yield in
√
s =

200 GeV non-singly diffractive, minimum-bias p+p col-
lisions at mid-rapidity within acceptance ∆η = 2, full
2π azimuth and pt > 0.15 GeV/c [42]. Parameter xKN

is approximately 0.1 [42] for charged-particle production
in
√
sNN = 200 GeV minimum-bias Au+Au collisions

within the preceding acceptance.
In the present application we assume the Npart-scaling

production derives from soft-QCD, longitudinal fragmen-
tation of color-flux tubes [36]. Similarly, the Nbin-scaling
production corresponds to semi-hard (few GeV) and hard
(few tens of GeV) QCD, transversely fragmenting par-
tons, or jets. For the present application the Nbin-scaling
production is dominated by the lower energy, semi-hard
part of the spectrum [3]. Fluctuations are included in the
following: (1) the pt-distribution shape, e.g. overall slope
parameter βcs, for the charged-particle production from
each longitudinally fragmenting color-string [1, 36]; (2)
the energy of each semi-hard scattered parton and result-
ing jet; (3) the relative number of “soft” and “semi-hard”
produced particles per event.

For a collection of collision events within a centrality
bin, the mean charged-particle yield in this model is given
by

ρ̄ch(yt) = ρ̄s(yt) + ρ̄h(yt) + δρ̄(yt) (46)

for “soft,” “hard,” and residual components, respectively.
The soft-component production occurs via fragmentation
of longitudinal color-strings [1] which are assumed to pro-
duce MB pt distributions with fluctuating slope parame-
ter βcs. As in the BW model, we assume the probability
distribution of parameter βcs is given by a gamma distri-
bution, such that

ρ̄s(yt) = N̄s

∫
dβcsfγ(βcs, β̄cs, qβcs)ρ̂s(βcs, yt) (47)

using the steps in Sec. II, where unit-normalized den-
sity ρ̂s(βcs, yt) ∝ exp[−βcs(mt − m0)]. The resulting
Levy distribution in Eq. (47) can be equated to the soft-
production particle spectrum estimated in Appendix A,
given by

ρ̄s(yt) = ∆η
d2Nch,soft

dytdη
. (48)

The mean multiplicity N̄s in Eq. (47) is determined by
the parameters in Table V in Appendix A.

The semi-hard component yield is produced by frag-
menting partons (jets) whose total energy fluctuates from
jet-to-jet. The jet energy is represented in terms of the
maximum possible transverse rapidity, ymax, of its final-
state fragment particles. The probability distribution of

ymax is given by QCD power-law distribution ĝ(ymax),
defined in Ref. [3] and given below. The fragment distri-
bution on yt for given jet parameter ymax is ρ̂h(ymax, yt),
which is also defined below. Using the steps in Sec. II, the
event-average semi-hard single-particle yield distribution
is given by

ρ̄h(yt) = N̄h

∫ ∞
0

dymaxĝ(ymax)ρ̂h(ymax, yt)

≡ ρ̄[g](yt), (49)

where in the last line we define the convolution integral
with symbol ρ̄[g](yt) for later use.

Quantity ĝ(ymax) is the probability distribution for
producing particles from a jet with maximum fragment
rapidity ymax in a N+N collision. In Ref. [3] this quantity
is given by a QCD power-law distribution with low mo-
mentum cut-off, multiplied by a quadratic yield increase
factor (ymax − ymin)2 where ymin is an empirical fitting
parameter given in Ref. [3]. The quadratically increas-
ing yield results from the approximate shape invariant
evolution of the distribution of jet fragments observed at
LEP in inclusive e+ + e− → jet(Q2) +X production over
a wide range of jet energies [3, 43]. Probability distribu-
tion ĝ(ymax) is therefore proportional to [3]

ĝ(ymax) ∝
1

2
σdijet(nQCD − 2)

{
tanh

(
ymax − ycut

ξcut

)
+ 1

}
×e−(nQCD−2)(ymax−ycut)(ymax − ymin)2, (50)

where σdijet = 2.5 mb at
√
s = 200 GeV, and from Ref. [3]

nQCD = 7.5, ymin = 0.35, and low momentum cut-off
parameters are ycut = 3.75 and ξcut = 0.1.

Particle distribution ρ̂h(ymax, yt) is proportional to the
distribution deduced in Ref. [3] for e+ + e− → jet + X
multiplied by a low momentum jet-fragment suppression
factor determined by analyzing the jet fragment distri-
butions from p + p̄ → jet + X collisions [44]. Quantity
ρ̂h(ymax, yt) from Ref. [3] is proportional to

ρ̂h(ymax, yt) ∝ tanh

(
yt − y0

ξy

)
uλ−1(1− u)ω−1

B(λ, ω)
(51)

for ymax ≥ yt ≥ y0, where the last factor is a normalized
beta distribution with

u ≡ yt − ymin

ymax − ymin
, u ∈ [0, 1]. (52)

Quantity B(λ, ω) = Γ(λ)Γ(ω)/Γ(λ + ω) where Γ is the
gamma function.
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Collecting terms, the above semi-hard process single-particle distribution becomes

ρ̄h(yt) = N̄hNh
∫ ∞

0

dymax
1

2
σdijet(nQCD − 2)

{
tanh

(
ymax − ycut

ξcut

)
+ 1

}
× e−(nQCD−2)(ymax−ycut)(ymax − ymin)2 tanh

(
yt − y0

ξy

)
|yt≥y0

uλ−1(1− u)ω−1

B(λ, ω)
|ymin≤yt≤ymax

(53)

where Nh normalizes the sum of ρ̄h(yt) over all yt bins to N̄h. Quantities in Eq. (53) are calculated at the mid-points
of the yt bins when comparing with data.

The two-component fragmentation model was applied
to the charged-particle pt spectrum data discussed in
Sec. III. The semi-hard process particle production
model in Eq. (53) was fitted to the difference distribu-
tion ρ̄ch(yt) − ρ̄s(yt) in the yt range from 1.34 to 4.36
as before by varying parameters nQCD, the jet produc-
tion cut-off ycut, the soft-fragment cut-off y0 = ξy, and
fragment distribution parameters λ and ω in Eq. (51).
Better fits were achieved by variation of the shape of the
fragment distribution, via parameters λ and ω, than were
obtained by varying the cut-off parameter y0. The latter
parameter was subsequently fixed to zero.

Best fits were attained via χ2-minimization. Quanti-
tative descriptions of the semi-hard component spectrum
at the maximum peak and in the higher momentum tails
were achieved for each centrality. Example fits to ρ̄ch(yt)
are shown in Fig. 3 for the 60-80%, 20-30% and 0-5%
centralities. The TCF model parameters are listed for
all centralities in Table II. Parameter nQCD increases
slightly and smoothly with centrality, increasing above
the value (7.5) estimated in Ref. [3]. Jet production cut-
off parameter ycut is approximately constant and larger
than the value (3.75) in Ref. [3]. The modifications of the
fragment distribution (beta distribution in Eq. (51)) rel-
ative to the nominal shape from Ref. [3] are also shown in
the lower row of panels. The trends imply a softening of
the fragment distribution (suppression at higher pt) cou-
pled with a suppression at lower-momentum relative to
that observed in e+ +e− → jet + X, which was discussed
in Ref. [3] and which quickly develops with increasing
collision centrality. The residuals vary from ≤ 2% to
≤ 4% of the charged-particle distribution from peripheral
to most-central collisions, respectively, for yt < 3. The
residuals increase in relative magnitude at larger yt > 3,
varying from ≤ 3% to ≤ 7% of the charged-particle dis-
tribution from peripheral to most-central collisions, re-
spectively.

Conventional, theoretical applications of the TCF
framework include event-wise fluctuations which cause
the pt spectra to vary event-by-event resulting in non-
zero correlations on transverse momentum. The Monte
Carlo code hijing [23], which combines the LUND
model [1] and pythia [2], includes fluctuating parti-
cle production from fragmenting color-strings and mini-
jets. ampt [45] incorporates event-wise fluctuating initial
conditions from hijing, then includes stochastic parton
propagation and interactions followed by hadronization.

TABLE II: TCF model fit parameters for the 200 GeV
Au+Au minimum-bias pt spectra data from STAR [40] within
∆η = 2 units acceptance. Data were fit in the yt range from
1.34 to 4.36 using 30 data points at each centrality. Fit qual-
ity was insensitive to soft-fragment cut-off parameter y0 which
was subsequently set to zero.

Centrality(%) N̄s N̄h nQCD ycut λ ω χ2/DoF
0-5 649.2 479.5 9.1 4.3 5.6 6.9 1.632
5-10 555.1 354.9 9.0 4.3 5.9 7.0 1.823
10-20 433.1 256.7 8.55 4.35 5.95 7.3 1.042
20-30 308.4 160.0 8.35 4.4 6.2 7.6 0.957
30-40 215.2 98.8 8.1 4.45 6.25 7.85 1.266
40-60 110.8 53.4 7.6 4.3 4.7 6.4 0.665
60-80 36.1 16.6 7.15 4.25 3.5 5.7 0.410

B. Two-particle distribution

In the two-component fragmentation model the two-
particle distribution is generated by emissions from mul-
tiple color-strings and from multiple jets in each heavy-
ion collision. These processes are characterized by pt
slope parameters βcs1 and βcs2 and by jet parameters
ymax1

and ymax2
for arbitrary particles 1 and 2, respec-

tively. Correlations arise when the event-average proba-
bility distributions on (βcs1 , βcs2) and (ymax1

, ymax2
) are

correlated. For example, a pair of particles emitted from
the same color-string, or from the same jet, are correlated
in the sense that they share the same βcs or ymax, respec-
tively. In the present application correlated fluctuations
between color-string βcs and jet ymax are not included
as these are defined to be independent processes in this
model. The two-particle same-event pair-distribution in
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FIG. 3: Fluctuating TCF model fits to the 200 GeV Au+Au minimum-bias pt spectrum data from STAR [40] (see text)
showing only the 60-80%, 20-30% and 0-5% centrality results. Combined soft plus semi-hard process yields are shown as
quantity dNch/dyt versus transverse rapidity yt, assuming pseudorapidity acceptance ∆η = 2. Linear (upper row) and semi-log
(middle row) plots are shown for the same data and model fits to allow visual access to the fit quality in both the lower and
higher yt ranges. Modifications to the fragment distribution for each centrality are shown in the lower row of panels where the
nominal (solid lines) [3] and fitted (dashed lines) normalized beta distributions are plotted versus transverse rapidity scaling
variable u in Eq. (52).

this model is given by

ρ̄TCF,se(yt1, yt2) =

N̄ − 1

N̄

1

ε

ε∑
j=1

[ρs,j(yt1) + ρh,j(yt1) + δρ̄(yt1)]

× [ρs,j(yt2) + ρh,j(yt2) + δρ̄(yt2)] (54)

=
N̄ − 1

N̄

1

ε

ε∑
j=1

{ρs,j(yt1)ρs,j(yt2) + ρh,j(yt1)ρh,j(yt2)

+ (ρs,j(yt1)ρh,j(yt2) + ρs,j(yt2)ρh,j(yt1))

+δρ̄(yt1) (ρs,j(yt2) + ρh,j(yt2))

+δρ̄(yt2) (ρs,j(yt1) + ρh,j(yt1)) + δρ̄(yt1)δρ̄(yt2)}
≡ ρ̄ss + ρ̄hh + ρ̄sh + ρ̄hs + ρ̄δ (55)

The color-string term, ρ̄ss, can be expanded as in

Sec. II, where

ρ̄ss(yt1, yt2) ≡ N̄ − 1

N̄

N(2)s

ε

∫ ∫
dβcs1dβcs2f(βcs1 , βcs2)

× ρ̂s(βcs1 , yt1)ρ̂s(βcs2 , yt2). (56)

The average number of soft-particle pairs is

N(2)s

ε
= N̄2

s + σ2
s (57)

where σ2
s is the variance of the event-wise fluctuation

in the number of particles emitted by color-string frag-
mentation. Correlated distribution f(βcs1 , βcs2) is the
same as in Eq. (34) and ρ̂s(βcs, yt) is the unit-normalized
MB distribution introduced in Eq. (47). The integral in
Eq. (56) is given in Ref. [22] in terms of single-particle
MB distributions on transverse mass mt, where single-
particle distributions on kinematic variables pt, mt and
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yt are related by

d2N

dytdη
= 2πpt

dpt
dyt

d2N

2πptdptdη
= 2πptmt

d2N

2πmtdmtdη
(58)

where dpt/dyt → mt at mid-rapidity. The resulting two-
particle distribution is given by

ρ̄ss =
N̄ − 1

N̄

(
N̄2
s + σ2

s

)
NssJ

(
1 +

β̄csmtΣ

2qβcsΣ

)−2qβcsΣ

×

[
1−

(
β̄csmt∆

2qβcs∆ + β̄mtΣ

)2
]−qβcs∆

≡ N̄ − 1

N̄

(
N̄2
s + σ2

s

)
ρ̂2D−Levy(yt1, yt2). (59)

where Nss is a normalization factor and J =
4π2pt1mt1pt2mt2 is the Jacobian which transforms the
2D distribution on transverse mass to transverse rapid-
ity. The unit-normalized 2D Levy distribution is de-
fined in the last line of Eq. (59) which is calculated
at the mid-points of the yt bins when comparing to
data. Also in the preceding equation kinematic vari-
ables mtΣ = mt1 + mt2 − 2m0 and mt∆ = mt1 − mt2

were introduced. Relative variance difference quantities
∆(1/q)csΣ,∆ and ∆(1/q)cs,Vol,cov are used in the fitting
in analogy with similar quantities defined in Eqs. (35)
and (36).

The hard-scattering term ρ̄hh in Eq. (55) is similarly
expanded as

ρ̄hh(yt1, yt2) =
N̄ − 1

N̄

N(2)h

ε

∫ ∫
dymax1

dymax2

×ĝ(ymax1
, ymax2

)ρ̂h(ymax1
, yt1)ρ̂h(ymax2

, yt2)(60)

where the mean number of hard-scattering particle pairs
is N̄2

h + σ2
h, where σ2

h = σ2
s when event multiplicities

are constrained to fixed total N̄ . The unit-normalized,
single-particle distribution ρ̂h(ymax, yt) was defined in
Eq. (51).

For the correlated distribution ĝ(ymax1
, ymax2

), a sim-
plified functional form was assumed in order to reduce
computational demands. The simplified function, ĝ2

combines an uncorrelated (factorized) component and a
fully correlated (diagonal) component defined by

ĝ2(ymax1
, ymax2

) = (1− ζ)ĥ(ymax1
)ĥ(ymax2

)

+ ζb̂(ymax1
)δ(ymax1

− ymax2
), (61)

where 0 ≤ ζ ≤ 1 is a fitting parameter, δ is the Dirac
delta-function,

b̂(ymax1) = lim
ymax2

→ymax1

ĝ′(ymax1)ĝ′(ymax2), (62)

and ĝ′(ymax) has the same form as ĝ(ymax) in Eq. (50),
but can have different parameter values. In taking the
limit in the above equation the product of the two hy-
perbolic tangent cut-off functions in both instances of
ĝ′ is approximated by a single cut-off function with
variable parameter y?cut. In addition, exponential argu-
ment 2(nQCD − 2)(ymax − ycut) is re-written as (n?QCD −
2)(ymax−y?cut) where n?QCD is freely varied in the fitting.

The correlated portion of ĝ2(ymax1 , ymax2) becomes

b̂(ymax1
)δ(ymax1

− ymax2
) =

Np
1

2

{
tanh

(
ymax1

− y?cut

ξcut

)
+ 1

}
×e−(n?QCD−2)(ymax1−y

?
cut)(ymax1

− ymin)4

×δ(ymax1
− ymax2

) (63)

with normalization constant Np. Correlations are gener-
ated in this model when 0 < ζ ≤ 1 and may be modified
by allowing n?QCD 6= 2(nQCD − 1) and/or y?cut 6= ycut

where nQCD and ycut are determined by fitting the single
particle pt spectra described in Sec. IV A.

It is essential that the single-particle projection
(marginal) of ρ̄hh equal the single-particle, semi-hard
component ρ̄h(yt) (Eq. (49)) in order to maintain equal-
ity between the single-particle projection of the full, two-
particle distribution in Eq. (55) and the measured charge
distribution. This can be accomplished by requiring that∫

dymax2
ĝ2(ymax1

, ymax2
) = ĝ(ymax1

), (64)

which in turn requires that function ĥ(ymax) in Eq. (61)
be determined by

ĥ(ymax) =
[
ĝ(ymax)− ζb̂(ymax)

]
/(1− ζ), ζ < 1(65)

as parameters n?QCD and y?cut in b̂(ymax) vary.

Substituting the above quantities into Eq. (60), where
ĝ(ymax1

, ymax2
) −→ ĝ2(ymax1

, ymax2
), results in the

purely hard-scattering contribution to the same-event
pair-distribution given by
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ρ̄hh(yt1, yt2) =
N̄ − 1

N̄
(N̄2

h + σ2
s)

[
(1− ζ)

∫
dymax1

ĥ(ymax1
)ρ̂h(ymax1

, yt1)

∫
dymax2

ĥ(ymax2
)ρ̂h(ymax2

, yt2)

+ζ

∫
dymaxb̂(ymax)ρ̂h(ymax, yt1)ρ̂h(ymax, yt2)

]
≡ N̄ − 1

N̄
(N̄2

h + σ2
s)
[
(1− ζ)ρ̂[h](yt1)ρ̂[h](yt2) + ζρ̂2D[b](yt1, yt2)

]
, (66)

where ρ̂[h] and ρ̂2D[b] in the last line are defined by the
integrals in the first two lines of the equation. As usual,
the above quantities are calculated at the yt bin mid-
points.

The color-string, hard-scattering cross terms do not
contribute to the correlations when βcs and ymax fluctu-
ations are independent. These terms are readily given
by

ρ̄sh =
N̄ − 1

N̄
[1− σ2

s/(N̄sN̄h)]ρ̄s(yt1)ρ̄[g](yt2) (67)

using Eqs. (47) and (49) where the event-averaged num-
ber of “string-jet” pairs equals (N̄sN̄h − σ2

s) if the event
multiplicity is fixed. Cross term ρ̄hs is calculated by in-
terchanging labels 1 and 2 in Eq. (67).

The remaining terms include products of the residual
δρ̄(yt) with either ρ̄s, ρ̄[g] or itself, and are collected into
one term given by

ρ̄δ ≡
N̄ − 1

N̄

{
δρ̄(yt1)

[
ρ̄s(yt2) + ρ̄[g](yt2)

]
+δρ̄(yt2)

[
ρ̄s(yt1) + ρ̄[g](yt1)

]
+δρ̄(yt1)δρ̄(yt2)} . (68)

Combining terms ρ̄ss, ρ̄hh, ρ̄sh, ρ̄hs and ρ̄δ gives ρ̄TCF,se

in Eq. (55).

C. Two-particle correlation and prefactor

The single-particle projection (marginal) of the two-
particle distribution in Eq. (55) is given by

ρ̄TCF,marg(yt1) =
1

N̄ − 1

∫
dyt2ρ̄TCF,se(yt1, yt2)

= N̄s

∫
dyt2ρ̂2D−Levy(yt1, yt2) + ρ̄[g](yt1) + δρ̄(yt1).(69)

If |∆(1/q)cs,Vol| � 1, then the integral of ρ̂2D−Levy over
yt2 is accurately given by ρ̄s(yt1)/N̄s. The per-pair nor-
malized correlation quantity is given by

∆ρ̄TCF

ρ̄ref
(yt1, yt2) =

ρ̄TCF,se(yt1, yt2)− N̄−1
N̄

ρ̄TCF,marg(yt1)ρ̄TCF,marg(yt2)

ρ̄ref(yt1, yt2)
,

(70)
analogous to Eq. (43) for the blast-wave, where ρ̄ref is
defined as the product of marginals [see Eq. (42)]. It is
given by

ρ̄ref(yt1, yt2) =
N̄ − 1

N̄
ρ̄TCF,marg(yt1)ρ̄TCF,marg(yt2).

(71)

Using the soft-process prefactor in Appendix A for the
charge-independent, away-side azimuth pair correlations
gives the final correlation for the two-component frag-
mentation model:

∆ρ̄TCF√
ρ̄soft

(yt1, yt2) = PAS−CI
Fac,soft(yt1, yt2)

∆ρ̄TCF

ρ̄ref
(yt1, yt2).

(72)

Finally, it is instructive to expand ∆ρ̄TCF(yt1, yt2) in
terms of the separate sources of correlations built into
the model. Inserting Eqs. (59) and (66)-(69) into ∆ρ̄TCF

in Eq. (70) gives

∆ρ̄TCF(yt1, yt2) =
N̄ − 1

N̄

[
(N̄2

s + σ2
s)
(
ρ̂2D−Levy(yt1, yt2)− ρ̄s(yt1)ρ̄s(yt2)/N̄2

s

)
+ (N̄2

h + σ2
s)
(
(1− ζ)ρ̂[h](yt1)ρ̂[h](yt2) + ζρ̂2D[b](yt1, yt2)− ρ̂[g](yt1)ρ̂[g](yt2)

)
+σ2

s

(
ρ̄s(yt1)/N̄s − ρ̂[g](yt1)

) (
ρ̄s(yt2)/N̄s − ρ̂[g](yt2)

)]
. (73)
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Soft string-fragmentation induced correlations are rep-
resented in the first term and are controlled in the
model via relative covariance parameter ∆(1/q)cs,cov ≡
(1/2)[∆(1/q)csΣ − ∆(1/q)cs∆] = (1/qβcsΣ − 1/qβcs∆)/2,
where the correlations scale with (N̄2

s + σ2
s). The semi-

hard scattering, correlated fragmentation contributions
are represented in the second term and are controlled
by parameter ζ ∈ [0, 1] and modulated by the two-
particle, correlated semi-hard scattering probability dis-

tribution parameters y?cut and n?QCD in function b̂(ymax)

[see Eq. (63)]. The semi-hard scattering correlations
scale with (N̄2

h + σ2
s). The semi-hard scattering versus

soft string-fragmentation multiplicity fluctuation vari-
ance, σ2

s , independently generates correlations when the
soft and semi-hard particle distribution shapes differ as
given by the third term in Eq. (73).

V. PHENOMENOLOGICAL MODEL
CORRELATION RESULTS

The BW and TCF models were fitted to analytical rep-
resentations of preliminary (yt1, yt2) charged-particle cor-
relation data from STAR [13, 14] described in Appendix
B. We refer to these representations as “pseudodata.”
The fitting results are shown and discussed with respect
to the efficacy of each model and the stability and sys-
tematic centrality dependencies of the model parameters.
The centrality trends of the BW and TCF fitting param-
eters and some implications of those trends are discussed
in the following subsections.

A. Blast-wave model description of correlations

The AS-CI correlation pseudodata were fitted with the
fluctuating blast-wave model in Eq. (44) using fit param-
eters ∆(1/q)Vol and ∆(1/q)cov in Eq. (36) plus the trans-
verse flow correlation parameter ∆ηt introduced just af-
ter Eq. (37). Other parameters of the model including
β̄ = 1/T , qβ , a0, nflow and σηt were determined by fit-
ting the single-particle pt spectrum data (see Table I) and
were kept fixed. Fit parameters and statistical fitting er-
rors are listed in Table III. Pseudodata, BW model fits,
and residuals (pseudodata - model) are shown for three
example centrality bins (60-80%, 20-30% and 0-5%) in
Fig. 4. The results show smooth, monotonic centrality
dependence from most-peripheral to most-central. The
general features of the correlation structures, e.g. saddle-
shape and peak near (yt1, yt2) = (3, 3), are qualitatively
reproduced by the model, however the (3,3) peak ampli-
tude is underestimated by about 20-30%. Residuals are
somewhat smaller than the data overall, differing mainly
at lower yt and near the (3,3) peak.

The best determined fit parameter (smallest uncer-
tainty) is the inverse temperature co-variation ∆(1/q)cov

which is always positive, corresponding to positive cor-
relations in the temperature fluctuations, and which dis-

plays a monotonic decrease with centrality. Of the three
fit parameters, ∆(1/q)cov has the smallest relative errors
and displays the smoothest centrality trend. The over-
all (β1, β2) distribution expansion/contraction parameter
∆(1/q)Vol tends to decrease (i.e. reduced fluctuations)
with more-central collisions. It has larger, relative er-
rors and greater variability than ∆(1/q)cov. The trans-
verse flow rapidity correlation fit parameters ∆ηt are non-
negative, indicating positive flow correlations, but have
relatively large uncertainties and erratic centrality de-
pendence meaning that correlated transverse flow fluctu-
ations are poorly determined with these fits.

An essential requirement of the BW correlation model
is that the single-particle pt distribution be preserved
throughout the fitting process. In the BW model small,
non-zero values of ∆(1/q)Vol, which are beneficial in fit-
ting the correlations, cause the marginal of the two-
particle distribution [Eq. (39)] to differ from the single-
particle BW model fit to the pt spectrum data. For the
present fits however the projections were consistent with
the single-particle BW fits to within a few percent for all
centralities except the most-peripheral 60-80% for yt ≥ 3.

It is interesting to examine the degree of correlation in
the inverse temperature and transverse flow rapidity sam-
pled by arbitrary pairs of particles. Ratio σ2

β/β̄
2 is the

relative variance of the inverse temperature distribution
[Eq. (25)] for the single-particle distribution in Eq. (24).
Defining δσΣ,∆ as the change in widths of the two-particle
(β1, β2) distribution [see Fig. 2] along the βΣ,∆ = β1±β2

directions, respectively, where δσΣ,∆ ≡ σβΣ,∆ − σβ , we
estimate the average, relative expansion or contraction
of the (β1, β2) distribution as

δσΣ + δσ∆

2β̄
≈ (
√
qβ/2)∆(1/q)Vol, (74)

assuming δσΣ,∆/β̄ � 1. Similarly, the average, relative
co-variation in the (β1, β2) distribution is estimated by

δσΣ − δσ∆

2β̄
≈ (
√
qβ/2)∆(1/q)cov. (75)

The average, relative co-variation in the two-particle,
transverse flow rapidity is equal to ∆ηt/(2σηt). These
three quantities are listed in Table III. The results show
that, within this fluctuating BW model and for these
AS-CI pseudodata, thermal fluctuation widths vary from
about +2% increased overall fluctuation relative to that
for single-particle production in peripheral collisions to
about −0.4% (reduced fluctuations) in most-central col-
lisions. The relative covariance decreases monotonically
with centrality from about 0.4% to 0.1% from peripheral
to most-central collisions. Transverse flow covariances
are non-negative but display large variability with re-
spect to collision centrality, showing no clear trend in
these fitting results. These small, relative changes in
widths of the inverse temperature and flow fluctuations
imply that intra-event β, ηt0 fluctuation magnitudes ex-
ceed the mean differences in the inter-event fluctuations
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as discussed in Ref. [22]. In other words, event-to-event
fluctuations in the mean temperature and transverse flow
are small relative to fluctuations within each collision sys-
tem.

The BW model fits to the pt spectrum data provide
an estimate of the variance in the distribution of inverse
pt-slope parameters, e.g. temperature in the BW ap-
proach. It is informative to compare these empirical
fluctuation magnitudes to that expected for fully equi-
librated (uniform temperature), relativistic hadron-gas
models at kinematic decoupling, or “freeze-out,” when
event-wise fluctuations in participant nucleon number
alone are included. In relativistic hadron-gas models the
energy density ε is proportional to the freeze-out temper-
ature to the fourth power [46], ε ∝ T 4. In hydrodynamic
models the total energy available for hydrodynamic ex-
pansion among the interacting partons is proportional to
the number of participant nucleons. At mid-rapidity the

energy density is therefore proportional to N
1/3
part [33]. In

hydrodynamic models the energy density at freeze-out
includes both thermal and collective modes, but it is still

reasonable to assume that T 4 ∝ N
1/3
part. Event-wise fluc-

tuations in Npart among collisions having the same cen-
trality, for example as defined by the impact parameter
or multiplicity, produce temperature fluctuations which,
in turn, produce two-particle correlations on transverse
momentum.

Numerical estimates can be carried out using the BW
fit values for temperature from Table I and Npart from

Table V. A proportionality constant, α = ∂T 4/∂N
1/3
part ≈

0.000015 GeV4 is estimated from the results if the most-
peripheral bin is excluded. The resulting relation

∂Npart

∂T
= 12T 3N

2/3
part/α ≈

δNpart

δT
, (76)

where δNpart and δT represent event-wise fluctuations,
can be used to estimate the variance in the fluctuating
global temperature at freeze-out caused by event-wise
fluctuations in Npart. In terms of inverse temperature
β = 1/T , the relative variance of fluctuations in β for a
collection of similar events (e.g. same impact parameter)
is given by

〈(δβ/β̄)2〉 =
σ2
β

β̄2
=

1

qβ
=
[
(12/α)2T 8N

1/3
part

]−1

, (77)

where brackets “〈 〉” denote an average over events,
β̄ = 〈β〉, and the Poisson limit, 〈(δNpart)

2〉 = Npart, was
assumed. Using the BW fitted temperatures in Eq. (77)
and the above value of α, results in relative variances
which are more than 3-orders of magnitude smaller than
1/qβ in Table I. The co-variations in relative variance,
∆(1/q)cov from the 2D BW model fits, are two-orders of
magnitude larger than the above limit in Eq. (77).

Both the β-fluctuations required to describe the single-
particle pt distributions and the (β1, β2) covariances re-
quired to describe the correlations are much larger than
what can be accounted for with statistical fluctuations

in Npart. The present results imply that much stronger,
dynamical fluctuations are required in hydrodynamic ap-
proaches and that β-fluctuations within each collision
event are much larger than event-wise fluctuations in
mean-β. Furthermore, the dynamical fluctuation effects
must persist, to some extent, until kinetic freeze-out and
cannot be completely dissipated, implying that final-
state temperatures at kinetic freeze-out cannot be uni-
form. These results impose significant constraints on
the initial-state, on the effective partonic interactions in
transport models, and on the parameters controlling hy-
drodynamic expansion.

B. Two-component fragmentation model
description of correlations

The AS-CI correlation pseudodata were fit with the
TCF model described in Sec. IV with parameters
∆(1/q)cs,Vol,cov = (1/2)[∆(1/q)csΣ ± ∆(1/q)cs∆] [see
Eqs. (36) and (59)], semi-hard multiplicity fluctuation
variance σ2

h = σ2
s in Eq. (57), semi-hard scattering cor-

relation amplitude ζ in Eq. (61), and b̂(ymax) probability
distribution parameters y?cut and n?QCD in Eq. (63). Other
parameters of the TCF model were determined by fitting
the single, charged-particle pt spectra data as discussed
in Sec. IV, or were taken from Ref. [3].

Ambiguities occurred in the χ2-minimization proce-
dure in which discrete solutions were found for the color-
string fragmentation parameter ∆(1/q)cs,cov correspond-
ing to a normal saddle-shape correlation (positive value)
as in Ref. [22], or an inverted saddle-shape (negative
value). An inherent assumption of the TCF model is that
hadron fragments produced by the same color-string will
sample a pt distribution with an overall slope (βcs) whose
value randomly fluctuates about a mean, resulting in a
normal saddle shape correlation with ∆(1/q)cs,cov > 0.
Furthermore, it was found that acceptable descriptions of
the correlations required relatively small absolute mag-
nitudes for both ∆(1/q)cs,Vol and ∆(1/q)cs,cov, simi-
lar to, or smaller than the corresponding 2D BW pa-
rameters in Table III. To adhere to these restrictions
on ∆(1/q)cs,Vol,cov and stabilize the χ2-minimization we
fixed the ∆(1/q)cs,Vol,cov parameters to the fitted val-
ues given in Ref. [14] (see Appendix B). With the soft-
component thus constrained, the correlation pseudodata
were readily described by varying the remaining semi-
hard scattering parameters σ2

s , ζ, y?cut and n?QCD.
The model fits and residuals are compared with the

correlation pseudodata in Fig. 5, and the fit parameters
are listed in Table IV. Smooth, monotonic trends in the
residuals and good, overall descriptions of the pseudodata
were achieved. The fitted peak amplitudes at (yt1, yt2) ≈
(3, 3) are about 10% below the pseudodata. Color-string
fragmentation parameters ∆(1/q)cs,Vol [14] are negative,
indicating a slight, overall contraction in the widths of
the distribution of pt-slope parameter βcs. This reduction
is sufficiently small such that the marginals of the two-
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TABLE III: Blast-wave correlation model fit parameters to the 200 GeV Au+Au (yt1, yt2) AS-CI correlation pseudodata.
Statistical fitting errors are listed in parentheses. Relative expansion/contraction and relative co-variations in the thermal and
transverse expansion parameters are also listed as explained in the text.

Cent.(%) ∆(1/q)Vol ∆(1/q)cov ∆ηt
χ2

DoF
δσΣ+δσ∆

2β̄

δσΣ−δσ∆
2β̄

∆ηt
2σηt

0-5 -0.00162(38) 0.000500(4) 0.000400(135) 12.39 -0.00364 0.00112 0.0039
5-10 -0.00055(20) 0.000600(23) 0.0±0.0009 14.46 -0.00122 0.00133 0
10-20 -0.00106(25) 0.000650(8) 0.00175(54) 26.64 -0.00229 0.00141 0.0265
20-30 -0.00160(43) 0.000850(21) 0.0±0.0026 26.29 -0.00335 0.00178 0
30-40 -0.00100(39) 0.00110(4) 0.0±0.0022 19.63 -0.00204 0.00225 0
40-60 +0.0020(6) 0.00140(5) 0.0±0.0008 18.09 +0.00391 0.00274 0
60-80 +0.0100(4) 0.00210(5) 0.0030(61) 11.19 +0.018 0.00377 0.075

particle distributions remain within 1% of the charged-
particle distributions over the full yt range [1.0,4.5] for
all centralities from 0-80%. Parameters ∆(1/q)cs,cov from
Ref. [14] monotonically decrease from peripheral to most-
central collisions as was also found for the BW model fits
(Table III) where similar numerical values were found.
Semi-hard scattering parameters σ2

s and ζ monotonically
increase and decrease, respectively, from peripheral to
most-central collisions, while parameters y?cut and n?QCD
remain approximately constant with centrality. From the

definition of the jet energy correlation function b̂(ymax)
in Eq. (63) we expect n?QCD ≈ 2(nQCD − 1) in the weak
correlation limit. The fitted values of n?QCD vary from
about 11 to 12 which are smaller than this estimated
range that varies from 12 to 16 using the values for nQCD

in Table II. This indicates that the distributions of cor-
related, semi-hard scattering maximum fragment rapidi-

ties, represented by distribution b̂(ymax), are weighted
toward larger ymax values (more energetic jets) than the
corresponding single-particle distribution ĝ(ymax). Or,
in other words, positively correlated jet fragment pairs
are more likely to be associated with higher-energy jets,
rather than lower. Overall, these results demonstrate
that the TCF model is capable of providing qualitative
descriptions of correlation data on transverse momentum
resulting in smooth, monotonic centrality dependence in
each of the fitting parameters.

In Eq. (73) contributions to the correlated pair distri-
bution ∆ρ̄TCF(yt1, yt2) were separated into color-string
fragmentation, semi-hard parton fragmentation, and
semi-hard multiplicity fraction fluctuations. Neglecting
the relatively small centrality dependence in the shape
of the single-particle distribution ρ̂[g](yt), the centrality
dependence of the last contribution in Eq. (73) is approx-
imately proportional to hard-scattering multiplicity vari-
ance σ2

h = σ2
s . The centrality dependence of σ2

s from Ta-
ble IV is approximately described by a power-law where

σ2
s ≈ 0.17N1.19

bin (78)

for the centrality range 0-60%. This distribution some-
what exceeds binary scaling. The second contribution
in Eq. (73) can be expanded in powers of ζ, which to

leading-order is given by the combination of terms

N̄ − 1

N̄
(N̄2

h + σ2
s)ζ

×
[(
ρ̂2D[b](yt1, yt2)− ρ̂[b](yt1)ρ̂[b](yt2)

)
+
(
ρ̂[g](yt1)− ρ̂[b](yt1)

) (
ρ̂[g](yt2)− ρ̂[b](yt2)

)]
,

(79)

where ρ̂[b] is defined in analogy to Eq. (49) and using
Eq. (65) is given by

ρ̂[b](yt) ≡
∫ ∞

0

dymaxb̂(ymax)ρ̂h(ymax, yt)

=
1

ζ

[
ρ̂[g](yt)− (1− ζ)ρ̂[h](yt)

]
. (80)

If the small centrality dependences of ρ̂[g](yt) and ρ̂[b](yt)
are neglected, the number of correlated pairs in this con-
tribution is approximately proportional to (N̄2

h + σ2
s)ζ ≈

N̄2
hζ. From Table IV we find that for the 0-40% more-

central collisions, where ζ becomes smaller, the depen-
dence of (N̄2

h + σ2
s)ζ can be approximated by

(N̄2
h + σ2

s)ζ ≈ 0.43N1.44
bin . (81)

Thus we find that empirical descriptions of the AS-CI
correlation pseudodata, in terms of the TCF model, are
consistent with a scenario in which the number of corre-
lated particle-pairs from semi-hard scattering and frag-
mentation processes increases smoothly with centrality
and at a rate somewhat in excess of N+N binary scaling.

The contributions of the three terms in Eq. (73) for
the 60-80%, 20-30% and 0-5% centrality bins are shown
in Fig. 6 in comparison with the correlation pseudo-
data. For the pure color-string fragmentation contribu-
tion, parameters σ2

s and ζ were set to zero. For the
pure semi-hard multiplicity fluctuation result, parame-
ters ∆(1/q)cs,Vol, ∆(1/q)cs,cov and ζ were set to zero. For
the pure semi-hard fragmentation result, ∆(1/q)cs,Vol,
∆(1/q)cs,cov and σ2

s were set to zero. The results accu-
rately represent the contributions of the first two terms
in Eq. (73) to the extent that σ2

s � N̄2
s and σ2

s � N̄2
h

which are true at the 1% amount or better (see Tables II
and IV), except for the 60-80% results. The color-string
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FIG. 4: Fluctuating blast-wave model fits to the 200 GeV Au+Au away-side, charge-independent two-particle correlation
pseudodata described in Appendix B for selected centralities 60-80%, 20-30% and 0-5% in rows of panels from upper to lower,
respectively. The left-hand column shows the pseudodata, the fitted model results are shown in the middle column, and the
residuals (pseudodata - model) are presented in the right-hand column.

fragmentation contributes from about 20% of the pre-
dicted correlation peak amplitude at (yt1, yt2) ≈ (3, 3) in
most-peripheral collisions to about 9% in most-central.
The semi-hard scattering contributions [last two terms
in Eq. (73)] together account for the remaining 80% to
91% of the predicted correlation peak in 60-80% and 0-
5% centrality bins, respectively. The semi-hard parton
fragmentation contribution (ζ > 0) dominates the corre-
lation peak at (3,3) in more-central collisions.

VI. SUMMARY AND CONCLUSIONS

The study of relativistic heavy-ion collisions has
greatly benefited from the plethora of two-particle cor-
relation measurements and analysis over many years [6].
The vast majority of these correlation studies has focused
on angular correlations. On the other hand, complemen-
tary correlation measurements on 2D transverse momen-
tum are relatively scarce in the literature. In our opin-
ion the scientific impact of the correlations on transverse
momentum which do exist has been diminished by the
lack of available theoretical predictions and the absence
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TABLE IV: Two-component fragmentation correlation model fit parameters to the 200 GeV Au+Au (yt1, yt2) AS-CI correlation
pseudodata. Statistical fitting errors are in parentheses.

Cent.(%) ∆(1/q)cs,Vol ∆(1/q)cs,cov σ2
s ζ y?cut n?QCD

χ2

DoF

0-5 -0.000285(47) 0.000415(60) 620(87) 0.042(2) 4.06(4) 11.4(1.3) 11.3
5-10 -0.000333(62) 0.000475(72) 540(64) 0.051(3) 4.08(5) 11.8(1.8) 13.5
10-20 -0.000382(62) 0.000535(70) 310(39) 0.061(2) 4.12(4) 11.5(1.4) 22.7
20-30 -0.000449(115) 0.000631(68) 190(17) 0.072(3) 4.16(6) 11.6(2.2) 22.7
30-40 -0.000635(144) 0.000876(92) 115(11) 0.102(4) 4.22(9) 11.8(3.8) 17.0
40-60 -0.001106(492) 0.001452(110) 31(7) 0.158(6) 4.06(11) 11.6(4.8) 13.8
60-80 -0.001964(1440) 0.002556(157) 51(9) 0.44(3) 4.18(18) 11.6(7.4) 9.4

of phenomenologically based interpretations.
To address this deficiency we developed two phe-

nomenological models based on fundamentally different
frameworks for describing the dynamical evolution of the
heavy-ion collision system. The first is based on hy-
drodynamic expansion as parametrized in the blast-wave
model in which pair-wise correlated fluctuations in the
temperature and transverse flow at kinematic freeze-out
are included in order to generate two-particle correlations
in the final state. The second model is based on soft-
QCD, longitudinal color-string fragmentation and semi-
hard QCD, transverse scattering and fragmentation in
which fluctuations occur in the energies of the color-
strings and in the four-momentum transfer in the QCD
scatterings, as well as in the relative numbers of particles
produced via soft and semi-hard processes.

We demonstrated that both models are capable of
quantitatively describing the measured charged-particle
pt spectra produced in

√
sNN = 200 GeV Au+Au

minimum-bias collisions. Using analytic representations
of preliminary two-particle correlations on 2D transverse
rapidity from the STAR Collaboration [13, 14], we fur-
ther demonstrated that both models are capable of qual-
itatively describing the correlations, resulting in smooth,
monotonic centrality dependent trends in most of the
model parameters. The phenomenological model param-
eters and their resulting centrality trends can be inter-
preted in terms of the dynamical processes inherent in
each model.

The results of this “proof of principle” study already
provide some new physical insight and impose constraints
on the two dynamical frameworks considered here. In the
hydrodynamic, BW approach we found that statistical
fluctuations in the number of participant nucleons from
event-to-event, as the sole source of final-state fluctua-
tions in the pt distribution, are much too small to account
for the observed correlation structures. Much larger, dy-
namical fluctuations are required whose effects must per-
sist until kinetic freeze-out, thus restricting the degree
of dissipation in the collision medium. The BW results
also imply that the magnitudes of intra-event tempera-
ture fluctuations far exceed the inter-event fluctuations
in the mean temperature. This result may, for example,
limit the allowed spatial scale for local, thermodynamic
equilibrium in such models.

In the two-component fragmentation approach we

found that the semi-hard scattering and fragmentation
induced correlations required to describe the data ap-
pear to exceed binary scaling which suggests additional,
multi-parton dynamics are required in the initial-state or
during fragmentation within the dense medium. We also
found that in more-central collisions the peak correlation
structure at (yt1, yt2) ≈ (3, 3) is dominated by semi-hard
parton fragmentation (minijets).

The connection between physical properties of the
heavy-ion collision medium, e.g. temperature and flow
velocity, inferred from analysis of single-particle pt spec-
trum data, and event-wise fluctuations was emphasized.
Using the BW model we showed that fluctuations in the
temperature and transverse flow affect the inferred, mean
temperature and flow velocity by as much as a factor of
two. Physical parameters inferred from fits to spectrum
data using models without fluctuations are questionable.

The BW and TCF phenomenological models developed
here can be used in future analyses of two-particle corre-
lation measurements on transverse momentum or trans-
verse rapidity to facilitate physical interpretation of the
correlation structures and to better constrain theoreti-
cal models. Both phenomenologies can be used to esti-
mate the magnitude and type of fluctuations required,
within their respective frameworks, to describe correla-
tion data. The magnitudes and centrality trends of those
required fluctuations can be compared to the capabilities
of theoretical models for producing such fluctuations. In
this way, phenomenological analysis of two-particle cor-
relations on transverse momentum may enable more in-
formed estimates of the validity of different theoretical
approaches for understanding relativistic heavy-ion colli-
sions.

Acknowledgements

The authors would like to thank Professor Thomas
Trainor of the Univ. of Washington for many informative
discussions relevant to this work and Professor Rainer
Fries of Texas A&M University for discussions related to
the blast-wave model. This research was supported in
part by the Office of Science of the U. S. Department of
Energy under Grants No. DE-FG02-94ER40845 and No.
DE-SC0013391.



21

t1
y1

2
3

4
t2

y

1
2

3
4

s
o

ft
ρ

/
ρ

∆

­0.1

0

0.1

0.2

 

t1
y1

2
3

4
t2

y

1
2

3
4

­0.1

0

0.1

0.2

 

t1
y1

2
3

4
t2

y

1
2

3
4

­0.1

0

0.1

0.2

 Pseudodata, 60−80% TCF Model Fit Residual

(a) (b) (c)

t1
y1

2
3

4
t2

y

1
2

3
4

s
o

ft
ρ

/
ρ

∆

­0.2

0

0.2

0.4

0.6

 

t1
y1

2
3

4
t2

y

1
2

3
4

­0.2

0

0.2

0.4

0.6

 

t1
y1

2
3

4
t2

y

1
2

3
4

­0.2

0

0.2

0.4

0.6

 20−30%

(d) (e) (f)

t1
y1

2
3

4
t2

y

1
2

3
4

s
o

ft
ρ

/
ρ

∆

­0.5

0

0.5

1

 

t1
y1

2
3

4
t2

y

1
2

3
4

­0.5

0

0.5

1

 

t1
y1

2
3

4
t2

y

1
2

3
4

­0.5

0

0.5

1

 0−5%

(g) (h) (i)

FIG. 5: Same as Fig. 4 except for the TCF model.

Appendix A

The soft-reference prefactor for away-side pairs and all
charged particles is given by

PAS−CI
Fac,soft ≡

1√
2

d2Nch

dyt1dη1

d2Nch

dyt2dη2[
d2Nch,soft

dyt1dη1

d2Nch,soft

dyt2dη2

]1/2 (82)

where the distributions are calculated at the mid-points
of each yt-bin and factor 1/

√
2 accounts for using only

away-side pairs. In this equation the charged particle
distribution was parametrized with a Levy distribution

where

d2Nch

dytdη
= 2πpt

dpt
dyt

[
d2Nch

2πptdptdη

]
=

2πptmtAch

[1 + (mt −m0)/(Tchqch)]
qch . (83)

Fit parameters Ach, Tch and qch for the 200 GeV Au+Au
spectra data reported by the STAR Collaboration [40]
were determined in the yt range from 1.34 to 4.36, cor-
responding to pt ∈ [0.25, 5.5] GeV/c, and are listed in
Table V. The Npart scaling, Kharzeev and Nardi soft-
QCD process spectrum was also parametrized with the
Levy distribution and is given by,

d2Nch,soft

dytdη
=

2πptmtAsoft(Npart/2)

[1 + (mt −m0)/(Tsoftqsoft)]
qsoft

. (84)
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FIG. 6: Separate contributions to the fluctuating TCF model fits to the 200 GeV Au+Au away-side, charge-independent
two-particle correlation pseudodata for selected centralities 60-80%, 20-30% and 0-5% in rows of panels from upper to lower,
respectively. The left-hand column of panels shows the pseudodata. Fluctuation contributions from color-strings, semi-hard
multiplicity production, and semi-hard fragmentation are shown in the second, third and fourth columns of panels, respectively,
as explained in the text.

The number of participants for 200 GeV Au+Au
minimum-bias collisions was estimated in Ref. [27] and
interpolated to the present centrality bins (see Table V).
A method for estimating the Npart scaling, soft-QCD pro-
cess spectrum was presented in Ref. [42]. In the present
analysis the soft-QCD distribution was estimated by ex-
trapolating the STAR [40] and PHENIX [47] Collabora-
tions’ pt spectra data in each pt bin to the ν → 1, N+N
collision limit and fitting the resulting distribution with
the Levy model in Eq. (84). The resulting fits gave Asoft

= 5.81 (c/GeV2), Tsoft = 0.169 GeV, and qsoft = 13.8.

Appendix B

Analytic representations of preliminary charged par-
ticle correlations on (yt1, yt2) are described here and in
Refs. [13, 14]. Preliminary, charged-particle correlations
on (yt1, yt2) in the range yt ∈ [1.0, 4.5] for minimum-
bias Au+Au collisions at

√
sNN = 200 GeV from the

STAR Collaboration were reported by Oldag [13, 14].
The same-event and mixed-event pair densities were both

TABLE V: Levy model fit parameters to the STAR Collab-
oration 200 GeV Au+Au minimum-bias charged particle pt
spectra data in Ref. [40] in the range yt ∈ [1.34, 4.36]. Also
listed are the number of participant nucleons, number of bi-
nary N+N collisions, and centrality measure ν [27]. The es-
timated soft-process pt spectrum Levy model parameters in
Eq. (84) are: Asoft = 5.81 (c/GeV2), Tsoft = 0.169 GeV, and
qsoft = 13.8.

Centrality ν Npart Nbin Ach Tch qch
(%) (c/GeV2) (GeV)
0-5 5.95 350.3 1042 1154.8 0.2176 17.41
5-10 5.50 299.5 824 935.8 0.2167 17.15
10-20 4.98 233.7 582 724.2 0.2129 16.00
20-30 4.34 166.4 361 503.4 0.2090 15.09
30-40 3.75 116.1 218 350.3 0.2036 14.28
40-60 2.87 59.8 85.7 205.76 0.1882 12.49
60-80 1.97 19.5 19.2 77.96 0.1695 11.06

normalized to the total number of pairs as this analysis
predates the methods developed in Ref. [17]. The data
were fitted with a 2D-Levy distribution [Eq. (59)] plus
a constant offset and a 2D Gaussian. The correlations
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described with this model include all away-side, charged-
pair combinations. The AS angular selection eliminates
the enhanced correlation structure along the yt1 = yt2
main-diagonal caused by quantum correlations between
identical bosons [5] as discussed in [22]. The analytical
fitting function is given by

∆ρ
√
ρsoft
|AS−CI = PAS−CI

Fac,soft

(
ρ̂data

2D−Levy − ρ̂2D−mix

ρ̂2D−mix

)
+A0 +A1e

−y2
t∆/2σ

2
∆e−(ytΣ−2yt0)2/2σ2

Σ (85)

where the 2D-Levy distribution is the same as in Eq. (59)
with parameters β0, qΣ and q∆ in Ref. [14] replacing
parameters β̄cs, qβcsΣ and qβcs∆ in Eq. (59). The cor-
responding variance difference quantities are given by
∆(1/q)Σ,∆ = 1/qΣ,∆ − 1/qfluct. Also in Eq. (85) we in-
troduced sum and difference variables ytΣ,∆ = yt1 ± yt2.
The marginal of ρ̂data

2D−Levy is given by

ρ̂marg(yt1) =

∫
dyt2ρ̂

data
2D−Levy(yt1, yt2) (86)

and the mixed-event reference ρ̂2D−mix(yt1, yt2) is the
product of marginals for particles 1 and 2.

The 2D-Levy distribution alone did not produce satis-
factory descriptions of the data and was supplemented
with a constant offset (A0) plus a 2D Gaussian. Fit
parameters ∆(1/q)Σ,∆, qfluct, A0, A1, yt0, σ∆ and σΣ

were interpolated from the trends plotted in Fig. 5.14 of
Ref. [14], at the mid-points of the centrality bins stud-
ied here. The 2D Gaussian widths along the difference
direction yt∆ exceeded the corresponding widths along
ytΣ. Physically, for the AS correlations, this could be
caused by initial-state transverse momentum, KT , in the
parton-parton collision frame which would impart more

pt to the fragments of one jet than the other, resulting in
a broadening along yt∆ when averaged over many dijets.
Such additional, initial-state dynamics could be included
in both the BW and TCF models but, for simplicity,
was not accounted for in this initial “proof-of-principle”
model study. The width σ∆ in the pseudodata was there-
fore set equal to σΣ.

The correlation pseudodata were assigned statistical
errors corresponding to the number of pairs per bin
expected for the 9.5 million, 200 GeV minimum-bias
Au+Au collisions in the data volume reported in [14], for
the observed charged-particle pt, η distributions in cen-
trality bins 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-
60% and 60-80%, for single-particle acceptance |η| ≤ 1,
pt ≥ 0.15 GeV/c, full 2π azimuth, and assuming sym-
metric correlations with respect to ±|yt1 − yt2|. The lat-
ter symmetrization is valid when particles 1 and 2 are
taken from the same collection of particles, for exam-
ple all charged particles. This step was implemented by
counting each unique particle pair in both bins with coor-
dinates (yt1, yt2) and (yt2, yt1). For diagonal bins (yt, yt),
only the yt1 ≥ yt2 half was used for calculating the sta-
tistical errors. Typical statistical errors (for yt ≤ 3) in
more-central collisions vary from approximately 1% to
3% relative to the correlation amplitude at the peak near
(yt1, yt2) = (3, 3). The errors increase to the range 3% to
5% in more-peripheral collisions. The pseudodata were
generated in each (yt1, yt2) bin by sampling a Gaussian
distribution whose mean equals the calculated value in
Eq. (85) and whose width parameter (σ) was equal to the
estimated statistical error. The correlation pseudodata
were binned on a uniform 25×25 2D grid for yt ∈ [1.0, 4.5]
corresponding to pt ∈ [0.16, 6.3] GeV/c. Pseudodata
were generated for (yt1, yt2) bins with yt1 ≥ yt2, and
then copied to the (yt2, yt1) bin.
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