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A recent article [1] proposed a modification of the cross section formula used in practical cal-
culations of compound nucleus reactions. We discuss the main concepts and approximations of
statistical reaction theory and conclude that the standard practical implementations of the cross
section formula remain the preferred choice.

Although statistical reaction theory has played a
prominent role in nuclear physics since its beginnings in
the 1930s, it has only come to maturity in the 1980s with
the development and analytic solution [2, 3] of the statis-
tical model based on the Gaussian orthogonal ensemble
(GOE) description of the underlying compound nucleus
Hamiltonian. We shall refer to this model as the GOE
theory of compound nucleus reactions. The analytic so-
lution for the average compound-nucleus reaction cross
section in the GOE theory requires the evaluation of a
complicated three-dimensional integral that depends on
the parameters of the model, and in practice simplified
formulas are often implemented. The most common such
simplified treatment is the Hauser-Feshbach plus width-
fluctuation-correction formula, discussed in detail below.

Ref. [1] proposed a modification to this formula but
did not test its performance with respect to the underly-
ing GOE theory. In this work, we benchmark both the
standard and modified formulas against the GOE theory.
We find that the standard formula is in good agreement
with the GOE theory, while the modified formula devi-
ates from the GOE theory at larger values of the coupling
parameters.

The average compound-nucleus reaction cross section
σ̄c,c′ to scatter from channel c to channel c′ can be ex-
pressed in terms of the fluctuating part of the S-matrix

σ̄c,c′ = σ0|δc,c′ − Sc,c′ |2 , (1)

where σ0 = πgc/k
2
c is the maximum inelastic cross sec-

tion for incoming relative momentum kc in a two-body
entrance channel c, and gc is a statistical spin factor in
this channel. We assume N internal states described by
an hermitean Hamiltonian H coupled to Λ open chan-
nels. The coupling constants Wµ,c between the internal
states µ (1 ≤ µ ≤ N) and channels c (1 ≤ c ≤ Λ) form an
N ×Λ real matrix W . The unitary S matrix is expressed
in terms of an hermitean K matrix

S =
1− iK
1 + iK

, (2)
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where the K matrix is given by

K = πWT 1

E −H
W . (3)

In the GOE theory, H is chosen to be a random matrix
that belongs to the GOE and the average over energy
is replaced by an average over the ensemble. Expressed
in the basis of eigenstates µ of H, the coupling ampli-
tudes Wµc are characterized by channel-dependent Gaus-
sian distributions in the limit of large N . We define the
partial width amplitude of an eigenstate µ to decay into
a channel c by

γµc =
√

2πWµc . (4)

A dimensionless coupling parameter xc in channel c is
defined by

xc =
π

2D
〈γ2
c 〉 , (5)

where D is the mean level spacing in the middle of the
GOE spectrum, and 〈γ2

c 〉 is the mean square partial width
amplitude in channel c

〈γ2
c 〉 =

1

N

∑
µ

γ2
µc . (6)

The ensemble-average S-matrix elements can be ex-
pressed in terms of xc (see Eq. (65) in Sec. V of Ref. [3])

〈Sc,c′〉 = δc,c′
1− xc
1 + xc

. (7)

The physical parameters are the transmission coefficients
defined by

Tc = 1− |〈Sc,c〉|2 . (8)

We note that in the presence of direct reactions, the av-
erage S matrix is not diagonal and the transmission co-
efficient in channel c is usually approximated by Tc =
1 −

∑
c′ |〈Sc,c′〉|2. A rigorous method to treat the effect

of direct reactions is to use the Engelbrecht Weidenmüller
transform [4].
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FIG. 1. Transmission coefficient Tc for an incoming channel
c in the GOE model with six equivalent reaction channels as
a function of xc. Solid line: Eq. (9). Solid circles: results
obtained by sampling H from the GOE.

Using Eq. (7), we have

Tc =
4xc

(1 + xc)2
. (9)

Relations (7) and (9) hold for any values of the cou-
pling parameters xc. Thus the GOE theory is highly
constrained; the complete structure of the average S-
matrix elements at a fixed energy is determined by the
the transmission coefficients Tc. Given the set of Tc, the
average compound-nucleus reaction cross sections can be
expressed in closed form by the three-dimensional inte-
gral derived in Ref. [2]. Alternatively, these cross sections
can be calculated numerically by sampling the Hamilto-
nian matrix H from the GOE and using Eqs. (3), (2),
and (1) as was done in Refs. [5, 6]. This latter approach
is demonstrated in Fig. 1, which shows the incoming
channel transmission coefficient Tc for a reaction with
six equivalent channels as a function of xc. The numeri-
cal results obtained by sampling H from the GOE (solid
circles) are in excellent agreement with the analytic ex-
pression (9) (solid line).

However, the main practical codes implementing sta-
tistical reaction theory follow the historical development
of the theory and compute compound-nucleus reaction
cross sections in two steps [7]. The first step is to eval-
uate the Hauser-Feshbach (HF) formula for the average
cross sections or branching ratios, assuming that the rel-
ative decay probability in each channel is proportional to
Tc

σ̄HF
ab = σ0

TaTb∑
c Tc

. (10)

The average partial decay widths 〈Γc〉 may also be used
as the input parameters (instead of Tc), but as discussed
below, this is more indirect approach. In the second step

in constructing the practical formula, the HF cross sec-
tion is corrected by a factor Wab, known as the width-
fluctuation correction (WFC)

σ̄ab = σ̄HF
ab Wab . (11)

Since the complete GOE theory depends only on the pa-
rameters xc (or alternatively Tc), the WFC factor Wab

can be calculated in terms of these parameters (e.g., us-
ing the triple integral formula of Ref. [2]). A particularly
accurate approximation toWab is Moldauer’s formula [8]
with a particular parametrization of the number of de-
grees of freedom νc in channel c in terms of the transmis-
sion coefficients (see, e.g., Ref. [5]).

In Ref. [1], the average partial widths of the reso-
nances 〈Γc〉 were taken as the parameters of the statis-
tical theory. In principle, these partial widths can be
calculated from the pole expansion of the S matrix, and
the total width can be determined by the imaginary part
of the S-matrix poles Eµ in the complex energy plane,
Γµ = −ImEµ/2. In the weak-coupling limit where xc are
small in all channels, the relation between 〈Γc〉 and xc is

〈Γc〉
D
≈ 2

π
xc . (12)

As discussed in Ref. [1], average partial widths can
be measured in the unresolved resonance region where
Eq. (12) no longer holds. It would be useful to relate the
average partial widths to the transmission coefficients in
order to test optical model parameterizations of the lat-
ter. This will be addressed in the framework of the GOE
theory in future work. Here we use the parameters xc
defined by Eqs. (4) and (6), or alternatively Tc, as the
independent parameters of the statistical theory.

Ref. [1] proposed a modification of the HF+WFC for-
mula (11) by replacing Tc in Moldauer’s formula by a
certain function fc of Tc. The proposed formula has the
structure

σ̄mod
ab = σ0

Tafb∑
c fc
Wab(~f) . (13)

Here ~f = (f1, . . . , fΛ) and

Wab(~f) =

(
1 + δab

2

νa

)
×
∫ ∞

0

dz
∏
c

(
1 +

2fcz

νc
∑
c′ f
′
c

)−δac−δbc−νc/2

,(14)

where νc is the number of degrees of freedom in channel c.
In particular, the authors of Ref. [1] find that the choice

fc =
Tc√

1− Tc
(15)

permits a better agreement with experiment in one of the
reactions they studied.

To determine whether this modified formula provides
better fits to cross sections of the statistical GOE the-
ory when the coupling parameters xc vary between the
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weak coupling limit xc � 1 and xc = 1, we consider a
two-channel compound nucleus reaction with similar pa-
rameters to Example C of Ref. [5]. In our calculation we
use the same definition of the WFC as in Refs. [1, 5].

We first vary the transmission coefficient Ta in one
channel from zero to one, setting Tb = 0.26 in the second
channel. The results are shown in Fig. 2a, where the ratio
of the cross section computed using fc in Eq. (15) to the
cross section calculated in the GOE theory is compared
with a similar ratio but using the standard formula for
the WFC in which fc = Tc. We observe that this ratio
is close to 1 for the standard choice of variables fc =
Tc (solid black circles). This is not surprising since the
particular parameterization of the WFC was obtained
by fitting such ratios. If we use fc as in Eq. (15), we
obtain the higher cross section ratios shown in solid red
circles, indicating deviations from the GOE theory as xa
increases from its value at xa = 0.1.

Next, we make a similar comparison by varying Tb
while setting Ta = 0.39. The results are shown in Fig. 2b.
Again, the standard choice fc = Tc gives very good agree-
ment with the GOE theory, while the choice in Eq. (15)
leads a reduction in the ratio at higher values of xb. Thus
choosing a different parametrization for fc does not im-
prove the fits without making a compensating change in
the parametrization of the WFC factor W.

We close with some remarks on the superradiance phe-
nomenon. In statistical reaction theory, superradiance
refers to the development of broad resonances with sim-
ple structure for xc > 1. However, these resonances do
not affect the average cross sections of the statistical the-
ory [3]. From Eq. (9), we see that the transmission coeffi-
cients Tc (9) are invariant the transformation xc → 1/xc.
Since the analytic solution of the GOE theory depends
only on Tc, changing from xc < 1 to 1/xc at which super-
radiance occurs does not change the GOE theory cross
section.

In conclusion, we advocate using the statistical GOE
theory as far a possible in analyzing compound-nucleus
reaction cross sections.
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FIG. 2. Ratio of entrance channel cross section calculated
from Eqs. (13) and (14) to the GOE statistical theory cross
section for the two-channel example described in the text.
Black circles: fc = Tc; Red circles: fc = Tc/

√
1− Tc. Pan-

els (a) and (b) show the ratios as a function of xa and xb,
respectively.
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