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We present a new framework to treat the dissipation and fluctuation dynamics associated with
nucleon-nucleon scattering in heavy-ion collisions. The two-body collision processes are effectively
described in terms of the diffusion of nucleons in viscous nuclear media, governed by a set of Langevin
equations in momentum space. The new framework combined with the usual mean field dynamics
can be used to simulate heavy-ion collisions at intermediate energies. As a proof of principle, we
simulate Au + Au reactions and obtain results consistent with other existing codes under the same
constrained conditions. We also study the formation of fragments in Sn + Sn reactions at 50
MeV/nucleon, and results are discussed and compared with two other models commonly employed
for collisions.

I. INTRODUCTION

In heavy-ion collisions at modest energies, two nuclei
approach and collide to form a composite nuclear system.
At very low incident energies and moderate charges, the
system tends to remain fused and de-excites by emission
of a few nucleons and light clusters. The picture gains in
complexity as the incident energy increases, since more
energy is available for the system to populate a greater
volume of phase space leading up to a plethora of exit
channels. In violent collisions, the composite nuclear sys-
tem formed is highly excited, and its evolution can be en-
visioned to be very sensitive to the instabilities present in
the system. These instabilities may deform the shape of
the system in phase space in an exotic manner, resulting
in a breakup into multiple fragments.

The fragmentation phenomenon was experimentally
observed [1] as early as in the late 1970s. Since the
early 1990s, more experimental efforts have been devoted
to the study of intermediate-mass-fragment multiplicities
[2].

On the other hand, while different transport models
have been successfully applied to describe many one-
body observables, our understanding and treatments of
the fragmentation mechanism have yet to be reconciled.
The inclusion of fluctuations into transport theories is
expected to be of particular importance. It is worth
noting that heavy-ion collision experiments make obser-
vations and measurements over an ensemble of nearly
identically prepared colliding systems, and that experi-
mental observables reflect the distribution of all possible
outcomes of that ensemble. Angular cross sections, for
example, are directly obtained from the angular distri-
bution of the deflected particles, but not from any indi-
vidual, isolated event. On the contrary, a vast number
of the semi-classical transport models are deterministic
in nature. These models predict a single exit channel in
principle. This poses little trouble when the underlying
distribution of outcomes is sharp and narrow. Ensemble
averages from transport calculations also prove to con-
verge very well to one-body observables with only weak
dependence on channels, such as those concerning col-

lective flows [3, 4]. However, the configurations in mul-
tifragmentation are obviously heavily dependent on the
exit channels, and, in fact, on the intermediate chan-
nels as well. It requires the transport models to be able
to explore a wide range of dynamical trajectories. The
inclusion of fluctuations creates branching points in the
evolution of the system allowing for jumps among differ-
ent states including those susceptible to instabilities.

In general, there are two major types of transport mod-
els for simulating heavy-ion collisions. One type of ap-
proaches are essentially molecular dynamics of nucleons
represented by single-particle wave-packets, augmented
by a phenomenological two-body collision term of the
wave-packets [5–13]. The propagation and scattering of
localized wave-packets help preserve the many-body cor-
relations, and the stochastic treatment of the two-body
scattering introduces fluctuations. The other type of ap-
proaches aim at directly solving the Boltzmann-Uehling-
Uhlenbeck (BUU) equation, with the system character-
ized by a one-body phase space distribution function [14–
21]. Solving the BUU equation yields the deterministic
time evolution of the one-body distribution function lead-
ing to a single exit channel. In recognition of the impor-
tance of fluctuations, many efforts have been made to ex-
tend the Boltzmann framework, such as the derivation of
the Boltzmann-Langevin equation by Ayik and Gregoire
[22], the Stochastic Mean Field (SMF) model by Colonna
et al. [21], and recently the Boltzmann-Langevin-One-
Body (BLOB) dynamics by Napolitani and Colonna [14].
Meanwhile, the inclusion of few-body scatterings in the
pBUU model by Danielewicz [23] also describes the pro-
duction of light clusters with mass A < 4.

In the present article, we propose a simultaneous and
consistent treatment of the dissipation and fluctuation in
heavy-ion collisions, rather than a mere ad-hoc inclusion
of fluctuations. We recast the effects of two-body colli-
sions in terms of one-body diffusion processes. This is
achieved by replacing the collision integral in the Boltz-
mann equation by a set of Langevin equations, which
govern the seemingly random motion of particles in mo-
mentum space. The description of the beyond-mean-field
dynamics, i.e., the beyond-Vlasov dynamics, is analogous
to the classical Brownian motion as we know it, and hence
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we are tempted to name the new model after Brownian
motion. We present the formulation of the theory and
describe at length the implementation details in Sec. II.
In Sec. III, we demonstrate the applicability and po-
tential of our model by simulating two different types of
heavy-ion collisions, with the latter one focusing on frag-
mentation dynamics, and we compare our results with
other transport models. In the end, a summary is given
in Sec. IV.

II. FORMULATION OF THE MODEL

In this section, we will explain the formulation of the
Brownian motion model and discuss the details of the
implementation of the simulation code.

A. The Boltzmann framework

In semi-classical transport theories [24], the nuclear
system is often characterized by the one-body phase
space distribution function f(r,p, t). The time evolu-
tion of the distribution function f is approximated with
the Boltzmann equation,

∂f

∂t
+ {f,H} = Icoll. (1)

The self-consistent Hamiltonian H encompasses all in-
formation about the nuclear mean field interaction as
well as Coulomb interaction, while the residual two-
body interaction, mainly nucleon-nucleon scattering, en-
ters through the collision integral Icoll. The Boltzmann
equation provides us with a simple deterministic model to
study heavy-ion collisions theoretically. Numerical sim-
ulations under the Boltzmann framework can be carried
out by means of the test-particle method [24, 25].

B. The mean-field dynamics

Neglecting the collision integral in the Boltzmann
equation (1), we recover the so-called Vlasov equation,

∂f

∂t
+ {f,H} =

∂f

∂t
+

p

m
· ∇rf −∇rU · ∇pf = 0, (2)

where H = T + V and the mean field U = δV/δρ.
The Vlasov equation retains only one-body informa-

tion. The interaction between any individual particle and
the rest of the system is approximated by a mean-field
interaction. In practical calculations, the phenomenolog-
ical mean-field interactions are usually employed,

Un/p
(
ρ(r), δ(r)

)
= A

(
ρ(r)

ρ0

)
+B

(
ρ(r)

ρ0

)D
+

C

ρ
2/3
0

∇2

(
ρ(r)

ρ0

)
± 2Siso

(
ρ(r)

ρ0

)
δ(r), (3)

where δ = (ρn − ρp)/ρ is the isospin asymmetry and
parameters A, B, C, D, and Siso, summarized in Ta-
ble I, are fitted to reproduce nuclear matter properties
at normal density ρ0 = 0.16 fm−3: the binding energy
of 16 MeV/nucleon, the incompressibility of 240 MeV
and the symmetry energy of 30.3 MeV at normal density
ρ0[25, 26]. Spin dependence and momentum dependence
is ignored for simplicity in this parametrization.

A [MeV] B [MeV] C [MeV] D Siso [MeV]

-209.2 156.4 -6 1.35 18

TABLE I. Parameters for the mean-field interaction.

The Coulomb potential UCoul(ρch(r)) can be deter-
mined from the Poisson’s equation for electrostatics,

∇2UCoul = − 1

ε0
ρch(r). (4)

In the current model, we consider two species of parti-
cles only: neutrons and protons. The numerical scheme
of solving the Vlasov equation is adapted from the lat-
tice Hamiltonian method with test particles proposed by
Lenk and Pandharipande [25]. The coordinate space is
discretized into a cubic lattice with the lattice spacing l
= 1 fm. Each test particle has a triangular-shaped form
factor and contributes to the nearest eight lattice sites.

C. The dissipation and fluctuation dynamics

In heavy-ion collisions, nucleon-nucleon scattering acts
like a dissipative force, driving the system towards ther-
mal equilibrium. In accordance with the fluctuation-
dissipation theorem, the dissipation of the beam energy
heats up the system and is thus inevitably accompanied
by thermal fluctuations. The thermal fluctuations may
manifest themselves in terms of fluctuations in phase
space density, which are expected to be linked with mul-
tifragmentation observed in intermediate-energy heavy-
ion collisions. In this subsection, we aim to develop a
framework that offers a consistent and simultaneous de-
scription of the dissipation and fluctuation dynamics.

The collision integral tied to two-body scattering reads

Icoll =
g

h3

∫
d3pb

∫
dΩ dσab

dΩ vab[(1− fa)(1− fb)fa′fb′

− fafb(1− fa′)(1− fb′)], (5)

where the degeneracy factor is g = 4 for nucleons (when
no distinction is made between neutrons and protons; see
the discussion later), and vab is the relative velocity be-
tween nucleons a and b, and dσ/dΩ the nucleon-nucleon
cross section. The indices a′ and b′ denote the final states
of the colliding pair.

As the scattering energy increases, nucleon-nucleon
scattering peaks more sharply forward. One can reduce
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the collision integral Icoll (5) into a Fokker-Planck form
by making an expansion over the scattering angle θ (see
Appendix A for more details) [27],

Icoll → −
∑
i

∂

∂pia

{
fa ·

1

2

[
R̃ia + (1− fa)Ria

]}
+
∑
i,j

∂2

∂pia∂p
j
a

(
faD

ij
a

)
, (6)

where

Ria = − g

h3

∫
d3 pb fb Fab q

i
ab, (7)

R̃ia = − g

h3

∫
d3pb fb (1− fb)Fab qiab, (8)

Dij
a =

g

4h3

∫
d3pb fb(1− fb)Fab(q2

abδ
ij− qiabq

j
ab), (9)

with qab = pa − pb and

Fab = (πvab/2)

∫ 1

0

θ2 (dσab/dΩ) d cos θ. (10)

The beyond-mean-field dynamics, depicted tradition-
ally as two-body scattering processes, is transformed, by
the Fokker-Planck Eq. (6), into diffusion processes of nu-
cleons in the viscous nuclear system. The vector coeffi-
cients R and R̃, usually known as the drag coefficients,
are connected to the viscosity of the system. The tensor
coefficient D is referred to as the diffusion tensor, which
describes the anisotropic diffusion of particles.

Note that the cross section dσab/dΩ enters the equa-
tion through the function Fab, and hence has an effect
on all coefficients in the equation. Admittedly, only the
integrated effects of the cross section can be accounted
for, so the overall magnitudes of the coefficients do not
depend sensitively on the detailed angular dependence of
the cross section. The anisotropic diffusion is predomi-
nantly governed by the anisotropy of the momentum dis-
tribution of particles in the medium, as can be seen in
the definition of the diffusion tensor in Eq. (9). One, for
sure, can carry out the expansion to higher orders. The
resulted differential equation beyond second order, how-
ever, is not tractable with the aid of diffusion or Langevin
dynamics. Furthermore, similar expansions such as the
Kramers-Moyal expansion of the Boltzmann integral op-
erator in terms of differential operators beyond the sec-
ond order have known to be ill-behaved [28]. Therefore,
we stick to the second-order Fokker-Planck equation and
choose to put its validity to tests.

Consider an ensemble of systems with identical initial
conditions. In the presence of fluctuations, the evolution
of the ensemble will diverge. The Fokker-Planck equation
provides a mathematical description of the distribution
and ensemble-averaged behavior of these identically pre-
pared systems. Indeed, the Fokker-Planck approach has
been employed to study the motion of an ensemble of

Brownian particles, classical or quantal, in a medium at
constant temperature, as the stationary solution of the
Fokker-Planck equation yields the equilibrium distribu-
tion representing the correct statistics [29].

Inspired by the ideas of Brownian motion in a heat
bath, we intend to encapsulate the beyond-mean-field
dynamics altogether into the Brownian motion of nu-
cleons in the typically non-equilibrium nuclear medium,
through the Fokker-Planck Eq. (6). While the Fokker-
Planck equation is deterministic, one may simulate the
different dynamical trajectories of the system by use of
the corresponding Langevin equation. The differential
form of the nonlinear Langevin equation for nucleons un-
dergoing Brownian motion reads,

dpa =
1

2

[
R̃ + (1− fa)R

]
dt+ σdBt, (11)

where R and R̃ carry the same definitions and meanings
as in equations (6) and (7), σ is a 3×3 positive definite
matrix such that

Dij =
1

2

∑
k

σikσjk. (12)

Bt denotes a Guassian random process with properties

〈dBt〉 = 0, (13)

〈dBitdB
j
t 〉 = dt δij . (14)

This equation describes the momentum transfer, or the
“kick”, experienced by a nucleon due to its interaction
with the medium within a time interval ∆t. The first
term is dissipative and connected to the viscosity of the
nuclear medium, while the second term is stochastic and
gives rise to the fluctuations in the dynamics. In the
limit of thermodynamical equilibrium, coefficients in the
Langevin equation are related by the equilibrium temper-
ature, in a manner akin to the classical Einstein relation,
as is shown in Appendix B.

For the time being, we do not distinguish between
nn, pp, and np scatterings by employing a spin-isospin
averaged nucleon-nucleon cross section. We further re-
strict our attention to elastic scatterings by targeting col-
lisions at energies near or below pion production thresh-
old. Extensions to incorporate elastic and inelastic colli-
sions between different species can be made in the future
at little cost by adjusting the degeneracy factor g and
adopting the suitable differential cross sections dσab/dΩ.
More care needs to be taken for the change of species
though in the case of inelastic scatterings.

The Langevin equation meets our goal of treating the
dissipation and fluctuations in the dynamics both con-
sistently and simultaneously. We evolve the system by
application of the Langevin equation to every nucleon in
the system in addition to the mean-field dynamics. De-
tails of the numerical implementations will be discussed
in a subsequent subsection.
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D. Initialization with the Thomas-Fermi equations

For nucleons inside a stable nucleus, two-body scat-
terings are strongly suppressed by the Pauli blocking.
Hence, for any given mean-field potential, the initial con-
figuration of nucleons in phase space, ideally, should coin-
cide with the stationary solution to the Vlasov equation.
This solution amounts to that to the coupled Thomas-
Fermi equations [25],

Un
(
ρ(r), δ(r)

)
+

~2

2mn
k2
F

(
ρn(r)

)
= µn, (15)

Up
(
ρ(r), δ(r)

)
+UCoul +

~2

2mp
k2
F

(
ρp(r)

)
= µp, (16)

where UX(ρ, δ) is the self-consistent mean-field potential
as in Eq. (3), µX is known as the chemical potential and
kF is the Fermi momentum. The subscript X denotes
the particle species.

Owning to the surface term in the mean field,
the Thomas-Fermi equations are second-order ordinary
differential equations. They are to be solved with
the boundary conditions ρn/p(r → ∞) = 0 and
(dρn/p/dr)|r=0 = 0. One may solve them numerically
by employing Ansatzes for ρn/p(r) and adjusting µn/p
iteratively [17].

In this work, we propose a different method to solve
the coupled Thomas-Fermi equations. We rewrite the
equations by multiplying both sides by density ρX ,

hX
(
ρn(r), ρp(r)

)
ρX(r) = µXρX(r) (17)

with the single-particle hamiltonian hX = UX +
~2k2

F /2mX +UCoul δX,p. Eq. (17) has the same structure
as the Hartree-Fock equation, prompting us to tackle it
as an eigenvalue problem. Using a discretized position
basis, we can obtain a matrix representation for hX and
a vector representation for ρX ,

h
(X)
ij = 〈ri|ĥX |rj〉 = hX

(
ρn/p(ri), ρn/p(rj)

)
, (18)

ρ
(X)
i = 〈ri|ρX〉 = ρX(ri). (19)

Note that hX is not diagonal, because the derivatives in-
volved are computed in terms of finite differences in the
basis. In Eq. (17), ρX plays the role of the eigenvector
of hX and µX the eigenvalue. We use a self-consistent
iterative method [30] to find eigenvectors and eigenval-
ues for hn and hp. The pair of eigenvectors {ρn, ρp} in
the position basis corresponding to the smallest eigenval-
ues, i.e., lowest chemical potentials {µn, µp}, is chosen to
generate the fields hn/p(ρn, ρp) in the next iteration and
picked as the actual density profiles in the end.

We demonstrate this method by computing the density
profiles for a medium-sized nucleus 58Ni and a large-sized
nucleus 197Au using the mean-field potential with a K =
240 MeV mentioned above. The computed radial density
profiles are shown in Fig. 1. We note that density profiles
with the Thomas-Fermi approximation lacks the ripples

associated with shell effects in typical Hartree-Fock cal-
culations. The tails of the density profiles exhibit rapid
fall-offs, which is also typical of Thomas-Fermi calcula-
tions [30]. In practice, the unphysical fall-off of the tails
get mitigated by numerical sampling of test particles and
coarse graining, as is seen in the initial distributions at t
= 0 fm/c in Fig. 2.
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FIG. 1. (Color online) Density profiles of stable nuclei 58Ni
and 197Au obtained from solutions of the Thomas-Fermi equa-
tions.

E. Brownian motions of nucleon wave-packets

In this model, the beyond-mean-field residual-
interactions, between individual nucleons and the nuclear
medium they are locally immersed in, are presumed to
be dissipative and random, and governed by the pro-
posed Langevin Eq. (11). We refer to these momentum
and energy exchanges between particles and medium as
Brownian motions. In what follows, we will describe at
length the perspective on these Brownian motions and
their numerical implementation. Given the mesoscopic
nature of nuclear systems, physics and practical details
are entangled.
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1. Partition of test particles into nucleon wave-packets

While ensuring a sufficiently smooth coverage of the
phase space in the simulation of mean-field dynamics,
the large quantity of test particles used, typically Ntest
= 102 - 103 test particles per nucleon, have adverse ef-
fects on the fluctuation dynamics. The scatterings of
test particles supposedly representing the same nucleon
are uncorrelated, which would inevitably wash out most
of the fluctuations in the dynamics. This, to a large ex-
tent, explains why BUU-type approaches typically have
vanishingly small fluctuations compared with QMD-type
approaches, whose degrees of freedom are nucleons. Dif-
ferent attempts have been made over the years to restore
the nucleonic degrees of freedom in two-body scatterings
in the BUU framework [3, 14]. The main idea of them
is to agglomerate test particles adjacent in phase space
into so-called nucleon wave-packets and to move them
collectively as a whole.

We adopt a similar approach to enhance the effects of
fluctuations. In each time step, we partition the test par-
ticles into nucleon wave-packets and execute Brownian
motion with these nucleon wave-packets as the degrees
of freedom. The pre-partition is accomplished through
the k-means clustering algorithm [31] with a metric in
phase space parametrized in the following form,

d2 =
(ri − rj)

2

d2
r

+
(pi − pj)

2

d2
p

(20)

where subscripts i and j denote two points in phase space.
The parameters dr and dp address the compactness in the
coordinate and the momentum spaces respectively. We
run the k-means clustering algorithm to partition both
the neutron test particles and the proton ones separately.
The algorithm is set to terminate after several iterations,
and the values dr = 1.2 fm and dp = 130.5 MeV/c are
used. It is found in practice that the final results are not
sensitive to either the early termination of the clustering
algorithm or the values of the metric parameters.

After the pre-partition, the system is divided into N
neutron subspaces and Z proton subspaces. The pre-
partition is simple but somewhat arbitrary, and thus only
the centroids are to be used. We identify these centroids
as the scattering centers for the nucleons.

For each centroid (ri,pi) for which the local nucleon
density is above 0.1 fm−3, we consider a spherical region
centered at ri of radius R ∼ 2 fm. This value corre-
sponds roughly to the sum

√
σNN/π+

√
〈r2
ch〉, where the

nucleon-nucleon cross section σNN ' 40 mb and the root-
mean-square proton charge radius

√
〈r2
ch〉 ' 0.86 fm. R

can also be made density-dependent, with the sensible
choice of R(ρ) = [1.99 − 0.18ρ−

4
3 (ρ − ρ0)]fm. Inside the

spherical region, we search for test particles close to the
centroid (ri,pi) using the following phase-space metric:

d2 =
(ri − r′)2

σ2
r

+
(pi − p′)2

σ2
p

(21)

with σr = R and σp = ~/2R. This metric emphasizes the
compactness in momentum space, while connected to the
Heisenberg uncertainty principle. The Langevin Eq. (11)
is originally intended for point-like particles, and hence
wave-packets well-localized in momentum space are pre-
ferred. The Ntest test particles of the same species closest
to the centroid form the wave-packet to undergo Brow-
nian motion. The rest of the particles constitute the
medium, with which the wave-packet interacts.

2. Evaluations of the Langevin equation’s coefficients on a
lattice

The coefficients R, R̃ and D involve integrals folded
over the momentum space, which require the knowledge
of occupation at different momenta. To this end, we con-
struct a three-dimensional cubic lattice over the entire
momentum space inside each spherical scattering region
and we evaluate the occupation at different sites.

The lattice spacing Lp needs to be chosen with care
to faithfully reflect the actual spread and spacing of the
underlying test particles. We use the standard devi-
ation σwpp of the momentum of test particles belong-
ing to the nucleon wave-packet as a measure to con-
strain lattice spacing. We normally choose the spacing
Lp = max{1.2σwpp , ~/(2R)}, where R is the radius of the
spherical scattering region under consideration. With
such constraints, the values of the spacing Lp typically
fall between 100 MeV/c and 140 MeV/c, which ensures
a sensible coarse graining of the momentum space.

Occupation f(p) at each momentum lattice site is eval-
uated in the same fashion as spatial densities are on a
spatial lattice in mean-field dynamics simulations. Test
particles have a triangular-shaped form factor, contribut-
ing to the eight nearest lattice sites only. Integrals of R,
R̃ and D are computed as summations over all sites of
the three-dimensional momentum lattice.

3. Momentum transfer from the nuclear medium to the
nucleon wave-packet

With a reasonable time step size ∆t ∼ 0.25 - 0.5 fm/c,
the first term of the Langevin Eq. (11) can be readily cal-
culated. The stochastic term involves a matrix σ, which
needs to be extracted as the square root of the diffusion
matrix D. Note that, by the definition in equation (8), D
is a real symmetric positive semi-definite matrix. It fol-
lows that D can be diagonalized as D = OΛO>, where
Λ is a diagonal matrix and O an orthogonal matrix. We
then represent σ, cf. Eq. (A11), as

σ = OΛ
1
2 O>, (22)

where Λ
1
2 is diagonal whose diagonal elements are the

unique square roots of the corresponding diagonal ele-
ments in Λ. It can be easily verified that σ constructed
according to (22) satisfies (8).
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With a time step of size ∆t, the differential nota-
tion dBt is interpreted as a 3-dimensional random vec-
tor, whose components are independent Gaussian ran-
dom numbers. The underlying Gaussian distribution has
a mean equal to zero and a variance equal to ∆t.

In summary, the momentum transfer ∆p within a time
step ∆t in a spherical scattering region is simulated as

∆pa =
1

2

[
R̃ + (1− fa)R

]
∆t+ σ g(0,∆t) (23)

with g(0,∆t) being a random vector comprised of 3 inde-
pendent Gaussian random numbers sampled with mean
= 0 and variance = ∆t.

4. Recoil for conservation of momentum and energy

After a nucleon wave-packet is shifted in the nuclear
medium inside a spherical scattering region, the recoil
of the nuclear medium needs to be accounted for in or-
der to preserve the conservation of total momentum and
total energy. The interaction between the nucleon wave-
packet and the nuclear medium is reciprocal. Indeed,
by exchanging the subscripts a and b in the Langevin
Eq. (11), one obtains an expression for how the nucleon
wave-packet induces recoil of particles in the medium.
Thus, the recoil can be treated in principle precisely.

On the other hand, owing to the facts that the num-
ber of particles involved in the medium is large and that
the recoils are coupled in a nontrivial manner, we in-
stead adopt a collective and approximate treatment of
the recoil effects: the center of momentum of the nuclear
medium is shifted to conserve total momentum, and all
particles in the medium are scaled with respect to the
new center of momentum to conserve total energy.

Additionally, it is worth noting that the nuclear
medium almost always contains more than one nucleon.
The collective shift-and-scale adjustment, in effect, intro-
duces many-body correlations in the nuclear medium.

5. Pauli-blocking procedure

Within the scattering region, after the kick of the nu-
cleon wave-packet and the adjustment for recoil in the nu-
clear medium, we compute again the occupation over the
entire lattice in momentum space. The Brownian motion
is finalized only if none of the occupation at any lattice
site exceeds 1. Otherwise, we deem the Brownian motion
unphysical and revert all changes. This Pauli blocking
procedure proves to be effective. For single ground state
nuclei, over 97% of the attempted Brownian motions are
blocked in the current model prescription, and stability
of the nuclei are demonstrated in Fig. 2.

Fig. 2 shows the time evolution of the radial density
profiles for a single 58Ni and a single 197Au up to 200
fm/c in steps of 40 fm/c, simulated by the our Brownian
code under the same controlled conditions specified in
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FIG. 2. (Color online) Time evolution of radial density pro-
files for single nuclei 58Ni and 197Au in steps of 40 fm/c.

Ref. [26]. Ideally, the density distribution should remain
unchanged over time for single nuclei. In our case, the
density profiles show only small scale fluctuations over
the entire course of simulation. It indicates, in particular,
that numerical solutions of the Thomas-Fermi Eq. (15)
approximate the true solutions of the Vlasov Eq. (2)
reasonably well. Further, majority of the spurious large
momentum transfers are effectively blocked by the Pauli-
blocking procedure.

6. Summary of implementation of Brownian motions

In each time step, the occupied phase space is parti-
tioned into N + Z subspaces of roughly equal volume.
Scattering regions are constructed spherically around the
spatial centroids of each subspace. These regions are to
be examined successively in a random order. Within each
scattering region, a separation of the nucleon wave-packet
from the nuclear medium is made. The Langevin equa-
tion is evaluated on a 3-dimensional lattice in momentum
space, and the resulted momentum transfer is applied to
the nucleon wave-packet. In observance of the conserva-
tion laws, the recoil effects are taken into account through
an adjustment of the momentum distribution of particles
in the medium. A Pauli-blocking procedure is applied in
the end to preserve the Pauli exclusion principle.

III. RESULTS

In this section, we first demonstrate practical applica-
bility of our model to heavy-ion collisions by simulating
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the Au-Au collisions at both 100 MeV/nucleon and 400
MeV/nucleon at an impact parameter of b = 7 fm. We
study the nucleon rapidity distribution and the average
in-plane flow 〈px/A〉 and compare our simulation results
with those from other transport codes in the code com-
parison project of Ref. [26]. After confirming that our
model can yield reasonable results for one-body observ-
ables, we proceed to investigate its ability to describe
multi-fragmentation processes. To this end, we study
the time evolution of the systems: 112Sn + 112Sn and
124Sn + 124Sn at 50 MeV/nucleon at an impact param-
eter b = 0.5 fm. A preliminary comparison of results
with the Stochastic Mean Field (SMF) and the Antisym-
metrized Molecular Dynamics (AMD) models from Ref.
[32] is also made.

A. One-body observables for Au + Au system

Fluctuations associated with Brownian motions enable
our model to probe a broader range of intermediate and
final channels. It is of interest to study whether the di-
versity of intermediate and final channels may affect the
description of one-body observables. Our model is ap-
plied to simulate the Au + Au reactions at two inci-
dent energies, 100 MeV/nucleon and 400 MeV/nucleon.
These specific reactions were also studied and compared
in a transport code comparison project under controlled
conditions [26]. The same impact parameter b = 7 fm
as there is chosen. Identical mean-field interactions and
nucleon-nucleon cross sections as there are employed.

1. Rapidity distribution

The rapidity distribution in the final state gives a
Lorentz invariant measure of the degree of stopping of
nucleons attained in heavy-ion collisions [26]. The more
particles populate the mid-rapidity region in the center
of mass frame, the stronger the stopping effects are.

In Fig. 3, we display the final rapidity distributions
from our calculations accompanied by results of selected
BUU and QMD calculations from Ref. [26]. At low in-
cident energy 100 MeV/nucleon, there is a large amount
of filling of the mid-rapidity region, indicating a rela-
tively strong stopping. While all codes except for AMD
exhibit a shallow double-humped structure, differences
in details of the rapidity distributions are not negligi-
ble. This is probably tied to differences in treating Pauli
principles in different codes and to delicate competition
of mean-field interaction and many-body correlations at
this incident energy [26]. At higher incident energy of 400
MeV/nucleon, fewer particles populate the mid-rapidity
region compared to the outer regions and the double-
peaked feature is more pronounced, due to a weaker
stopping and shrinking Fermi momentum compared to
incident momentum per nucleon. General consistency is
found among most calculations, although nonrelativistic

0
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1000

-2 -1 0 1 2
y/ybeam

0

200

400

dN
/d

y

 Brownian
 pBUU
 SMF
AMD
 IQMD

100 MeV/u

400 MeV/u

FIG. 3. (Color online) Final rapidity distributions as a func-
tion of reduced rapidity for 197Au + 197Au at beam energies of
100 MeV/nucleon (upper panel) and 400 MeV/nucleon (lower
panel) at an impact parameter b = 7 fm. Solid curves, dashed
curves and the dashed-dot curve correspond to the Brownian
model, BUU-type models, and QMD-type models [26], respec-
tively.

models such as the Brownian motion model and AMD
predict mildly stronger stopping.

2. Average in-plane flow 〈px/A〉

Use of a finite impact parameter, b = 7 fm, in
this study, breaks the macroscopic rotational symme-
try around the beam axis in the system, and therefore
anisotropy appears in the transverse collective momen-
tum distribution. We focus on the average in-plane flow
〈px/A〉, simply known as the transverse flow, as a func-
tion of the reduced rapidity y/ybeam in the center of mass
frame. When quantified, the transverse flow is commonly
described in terms of an “S-shaped” curve. The slope at
the origin, commonly known as the “slope parameter”,
is of importance. Particles in the mid-rapidity region are
expected to come from the compressed region during the
collision, and thus the study of this flow parameter can
shed light on the behavior of the nuclear equation of state
beyond normal density.

In Fig. 4 we show the average in-plane flow for our
calculations together with results from selected trans-
port models from Ref. [26]. In all calculations, the ex-
pected S-shaped curves are produced at both energies.
The positive slopes at the origin indicate that the effects
of nucleon-nucleon scattering dominate over those of the
mean field. At 100 MeV/nucleon, the BUU-type models
clearly produce greater inflections than the QMD-type
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FIG. 4. (Color online) Final average in-plane flow as a
function of reduced rapidity for 197Au + 197Au collisions at
beam energies of 100 MeV/nucleon (upper panel) and 400
MeV/nucleon (lower panel) and an impact parameter b =
7 fm. Solid curves, dashed curves and the dashed-dot curve
represent the Brownian model, BUU-type models, and QMD-
type models [26], respectively.

models. The prediction from the Brownian motion model
lies between them. At 400 MeV/nucleon, it appears that
all five transport models yield very consistent results in
the mid-rapidity region.

The slope parameters at mid-rapidity can be extracted
through a linear fit in a small interval centered at the ori-
gin. The values of the slope parameters at two energies
for different transport simulations [26] are summarized in
Fig. 5. The error bars take into account the fitting un-
certainties only. On top of the simulation results, we also
added shaded bands to indicate regions in which calcu-
lations are considered to be statistically consistent with
majority of the BUU-type and QMD-type models. To
obtain the statistically consistent regions, we first com-
puted the

√
2σ-intervals centered at the mean values for

the BUU sample and the QMD sample independently. σ
stands for the standard deviation of the sample. The sta-
tistically consistent regions were taken to be the overlap
of the

√
2σ-intervals from the two samples. If we fur-

ther assume that the BUU sample and the QMD sample
follow an identical Gaussian distribution, the consistent
regions can also be interpreted as roughly 52% confidence
intervals. Note that throughout the statistical analysis,
results from the Brownian motion model were deliber-
ately excluded to avoid any possible bias. Nevertheless,
the slope parameters extracted from the Brownian sim-
ulations are found to be statistically consistent with ma-
jority of the other calculations.

The reassuring consistency of results between the
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FIG. 5. (Color online) Flow slope parameter for differ-
ent transport models [26] for 197Au + 197Au collisions at
beam energies of 100 MeV/nucleon (blue squares) and 400
MeV/nucleon (red triangles) at an impact parameter b = 7
fm. The error bars represent the fitting uncertainties. These
become invisible when they are smaller than the symbols. The
colored bands correspond to roughly 52% confidence intervals
from the statistics of calculations from both the BUU-type
and the QMD-type models. (See text for a more detailed
explanation.)

Brownian motion model and other current transport
models provides evidence that the one-body Brownian
motion picture can successfully capture the effects of two-
body scattering and mean field in heavy-ion collisions.

Last but not least, in analyzing results from the Brow-
nian motion model, we averaged the rapidity and the in-
plane flow over 32 independent events, and the averaged
results exhibit good parities as functions of the reduced
rapidity. It needs to be pointed out that the fluctua-
tion dynamics described by the Langevin Eq. (11) does
not automatically preserve forward-backward reflection
symmetry, and that parity symmetry breaking or other
types of symmetry breaking can be observed in individual
events. Since the “directions” of the symmetry break-
ings are essentially random, symmetry can be restored
by ensemble-averaging over independent runs. In fact,
these symmetry breakings, resulted from the broadening
of dynamical trajectories, can be crucial for the forma-
tion of fragments to be discussed in the next subsection.
For instance, an uneven break-up of two nuclei in sym-
metric central collisions will be likely associated with an
asymmetry in the rapidity distribution.

B. Fragmentation dynamics with Sn + Sn at 50
MeV/nucleon

In this subsection, we will demonstrate how the abil-
ity of our model to probe a plethora of intermediate and
final states is connected with the formation of interme-
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FIG. 6. (Color online) Density contours for nucleons projected onto the reaction plane in the reaction 112Sn + 112Sn at 50
MeV/nucleon at an impact parameter of b = 0.5 fm, at different times during the reaction. Results calculated with the
Brownian motion model are displayed in the first row of the panels. The bottom two rows show results from SMF and AMD
calculations [32]. The densities for the projected contours start at 0.07 fm−2 and consecutively increase by 0.1 fm−2.

diate mass fragments (IMF) in central heavy-ion colli-
sions. The systems we study are 112Sn + 112Sn and 124Sn
+ 124Sn at 50 MeV/nucleon at an impact parameter b
= 0.5 fm. These systems have already been studied by
Colonna et al. using both SMF and AMD [32]. We will
make a preliminary comparison between our simulation
and those in SMF and AMD. A density-dependent and
energy-dependent nucleon-nucleon cross section is used,

σNN (Elab, ρ) = σfree
NN (Elab) exp

[
− α ρ/ρ0

1 + Elab/E0

]
(24)

with α = 0.3, ρ0 = 0.16 fm−3, E0 = 150 MeV and a
maximum cuff-off at 150 mb. σfree

NN (Elab) is taken as the
cross section parametrization by Li and Machleidt at zero
density [33]. The evolution of the systems is followed up
to 280 fm/c after initial contact.

Fig. 6 shows the density contour plots from projecting
nucleons on the reaction plane for the 112Sn + 112Sn sys-
tem at different stages of the reaction calculated with
different transport models. All three models give a
qualitatively consistent description of the compression-
expansion dynamics, and cluster structures are formed in
the expansion phase. During the approach and compres-
sion up to 40 fm/c, calculations from the three models

with fluctuations and many-body correlation effects do
not appear to be distinguishable from what would be ex-
pected from conventional transport models without fluc-
tuations. The suppression in the role of fluctuations is
linked to the limited volume of phase space available for
the system to populate, since it is far from thermalized in
the early stage. At 120 fm/c, we can already observe, in
all simulations, that the expanding systems turn inhomo-
geneous. These inhomogeneities, which would not have
existed without fluctuations, provide seeds for fragmen-
tation, and there are cluster structures forming in the
core. As the system continues to expand, the lumps of
matter move away from one another and escape from the
central region. For all three models, sizable fragments
can be identified after 200 fm/c, and changes between
200 fm/c and 240 fm/c are sporadic and moderate. As
a result, we assume that the configurations have frozen
out by 240 fm/c, and we terminate the simulations at
280 fm/c.

The three models differ quite substantially in details
of the predictions for the expansion phase. In the Brow-
nian motion model calculations, the degree of stopping
is comparatively low and the system tends to expand
more along the beam direction. On the other hand, in
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AMD, the system expands quickly with a focus around
the x -direction, which indicates a very strong stopping
that is also seen in the Au-Au simulations. The rela-
tively isotropic and slow expansion in SMF can probably
be explained by the spinodal decomposition of a nearly
homogeneous source at low density [34]. We also count
the number of nucleons in the “gas” phase (ρ < 1

6ρ0) pre-
dicted by our model and compare the number to results
of SMF and AMD [35]. It is found that our model yields
more gas-phase nucleons than AMD, but only slightly
fewer than SMF.

Regarding the fragmentation mechanism in our model,
in-medium Brownian motions introduce branching points
in the dynamical trajectories and allow for “jumps”
among a greater range of intermediate and final config-
urations. These jumps, stemming from nucleon-nucleon
scatterings, are abrupt and discontinuous in time. The
Langevin Eq. (11), with its stochastic term introducing
discontinuities in time, serves the purpose. By solving the
Langevin equations, we attempt to simulate the abrupt
jumps from one n-body configuration to another. As the
deviations from the ensemble-averaged trajectory pre-
dicted by the Boltzmann Eq. (1) accrue from the jumps,
exotic configurations including those with fragmenta-
tion eventually become accessible. In the quantum-
mechanical picture, configurations are represented by su-
perpositions of Slater determinants. While mean-field
evolution is coherent in principle, the residual incoher-
ent many-body correlations, such as two-body scatter-
ing, result in decoherence and transitions between differ-
ent Slater determinants. Among the stochastic approx-
imations of the quantum many-body problems are the
AMD model [5, 36] and the Stochastic Time-Dependent
Hartree-Fock (STDHF) theory [37]. In treating the
jumps between different configurations as a stochastic
process, the Brownian motion model is conceptually con-
sistent with these quantal approaches.

A comparison of the IMF multiplicity between the
Brownian motion and the other two transport models for
124Sn + 124Sn is shown in Fig. 7. In our case, fragments
are identified with a simple coalescence algorithm with
a cut-off density ρc = 0.02 fm−3 [3]. The distribution is
obtained from 100 independent simulations.

For IMFs with charge Z > 2, our multiplicity distribu-
tion looks compatible with that from AMD. Both distri-
butions maximize around multiplicity = 7 or 8 and share
a similar spread. For larger IMFs with charge Z > 6,
our calculations yield a slightly lower multiplicity, while
still predicting essentially the same spread as the oth-
ers. Since our model, as well as SMF, predicts more free
nucleon emission than AMD, fewer nucleons are avail-
able in the “liquid” phase (ρ > 1

6ρ0) for the assembly of
IMFs. Moreover, due to the large number of free nucle-
ons and light fragments in our simulations, the effective
surface-to-volume ratio is also higher, which might lead
to spurious evaporation of test particles and hinder the
formation of fragments. Nonetheless, the Brownian mo-
tion model breaks through the limitations of traditional
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FIG. 7. (Color online) Distribution of IMF multiplicity ob-
tained from different models for the reaction 124Sn + 124Sn
at 50 MeV/nucleon at an impact parameter b = 0.5 fm. The
upper panel shows the multiplicity distribution of IMFs with
charge Z > 2 and the lower panel with Z > 6 [32].

Boltzmann transport framework and proves to have great
potential for the description of multifragmentation.

IV. SUMMARY AND DISCUSSION

In this paper, we have reformulated the beyond-mean-
field dynamics in heavy-ion collisions in terms of Brown-
ian motions of nucleons in the viscous, out-of-equilibrium
nuclear medium, as opposed to the typical two-body scat-
terings. The Brownian motions are, in effect, the mo-
mentum and energy exchange between a nucleon and the
nuclear medium it is immersed in. They are governed by
a set of Langevin equations consisting of a friction-like
term and a stochastic term. This approach describes the
dissipation and fluctuation dynamics consistently and si-
multaneously. Furthermore, each simulation generates a
unique dynamical trajectory, enabling us to probe differ-
ent exit channels and obtain the distribution of possible
outcomes of the ensemble.

The details of the numerical simulations, including a
new method to initialize stable nuclei from the Thomas-
Fermi approximation, have been presented. We have ap-
plied our model to the time evolution of isolated stable
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nuclei. The stabilities of the simulations and the nuclei
are well established.

To demonstrate that our model’s ability to describe
one-body observables is on par with that of other trans-
port models, we have studied the final rapidity distri-
bution and average in-plane flow in the reaction 197Au
+ 197Au at two incident energies and showed that our
results are comparable with those obtained from either
QMD-type models or BUU-type models [26].

We have also investigated formation of fragments in
heavy-ion collisions with our model and confirmed the
crucial role fluctuations play in seeding multifragmenta-
tion. We have repeated the calculations of Sn + Sn at E
= 50 MeV/nucleon, previously done with the SMF and
the AMD models [32]. As seen from the time evolution of
density contours for nucleons projected on the reaction
plane, and all three models depict a fragmented system
with similar general features. Regarding the distribution
of IMF multiplicity, We find that the yield of light IMFs
with Z > 2 in the Brownian motion model is comparable
to that in AMD, but our yield of large IMFs with Z > 6
is slightly lower than that in SMF or AMD.

So far, we have successfully demonstrated the abilities
and potential of the Brownian motion model to describe
various scenarios in heavy-ion collisions at intermediate
energies. Its ability to traverse different dynamical tra-
jectories makes it particularly suitable for the study of
multifragmentation, which is beyond the reach of many
traditional transport models. It is also superior to many
models with stochastic extensions in that it treats dis-
sipation and fluctuation on an equal footing. More ex-
plicit introductions of many-body correlations possibly
with connections to quantal expectation values are un-
der consideration. In the future, it is of great interest to
confront the optimized Brownian motion model to exper-
imental data. We have also in mind the goal of study-
ing the fragmentation mechanism. For example, we have
looked at whether and when the central region of a frag-
mented system enters the mechanically unstable region
and the findings seem to favor the spinodal decomposi-
tion mechanism. A more careful inspection is planned.

As a final note, while the Fokker-Planck/Langevin ap-
proach has been motivated here by the Boltzmann equa-
tion, one can think about circumventing the latter in
the future and deriving the coefficients for the equation
directly from microscopic theory, upon separating slow
coarse-grained nucleon motion from fast inter-nucleon
motion [38].

Appendix A: Fokker-Planck equation and Langevin
equation

In this appendix, we provide a summary of the deriva-
tion of the Fokker-Planck equation detailed in Ref. [27]
and discuss the corresponding Langevin equations of dif-
ferent forms.

Consider the following Boltzmann collision integral for

arbitrary statistics,

Icoll =
g

h3

∫
d3pb

∫
dΩ

dσab
dΩ

vab[f̃af̃bfa′fb′ − fafbf̃a′ f̃b′ ].

(A1)
fx is to be regarded as the shorthand notation for the one-
body phase distribution function f(px). f̃ = 1+λf with
λ = −1, 0, 1 corresponding to Fermi-Dirac, Boltzmann,
and Bose-Einstein statistics. g is the degeneracy factor.

For a pair of particles with momenta pa and pb, vab
is the relative velocity, and dσab/dΩ is the differential
cross section, where the scattering angle Ω is defined in
the center-of-mass frame of the pair. Final momenta are
denoted by primed subscripts.

In the center-of-mass frame, the initial state of the col-
liding pair is characterized by the relative momentum
qab = pa − pb and the total momentum Pab = pa + pb.
When only elastic collisions are under consideration, Pab

remains constant and qa′b′ = qab. It follows that the final
relative momentum qa′b′ is completely determined by the
scattering angle Ω = (θ, φ).

For a φ-independent and forward-peaked cross section,
we can first make the following expansion over the polar
angle θ at a fixed azimuthal angle φ, and then truncate
it up to the leading order term upon integration over φ,

f̃af̃bfa′fb′−fafbf̃a′ f̃b′ = f̃af̃b

[ ∞∑
n=0

θn

n!
∂n

∂θn (fafb)
]∣∣∣
θ=0

− fafb
[ ∞∑
n=0

θn

n!
∂n

∂θn (f̃af̃b)
]∣∣∣
θ=0

. (A2)

The zero-order term vanishes conveniently. Since
qa′b′ = qab(sinθ cosφ, sinθ sinφ, cosθ), the usual chain rule
gives

∂

∂θ
=
∑
i

∂qia′b′

∂θ

∣∣∣
θ=0

∂

∂qia′b′
, (A3)

where ∂qa′b′/∂θ|θ=0 = qab(cosφ, sinφ, 0). The integration
of ∂qa′b′/∂θ|θ=0 over φ is zero, so the leading order term
in Eq. (A2) is of second order.

It is easy to show that

∫ 2π

0

dφ
∂2

∂θ2

∣∣∣∣∣
θ=0

= π

(
−2
∑
i

qi
∂

∂qi
+q2

∑
ij

∆ij ∂2

∂qi∂qj

)
,

(A4)
where the subscript ab for q is suppressed for brevity and
∆ij = δij − qiqj/q2 is a projection operator onto the
plane perpendicular to qab.

Upon inserting the truncated expansion integrated
over φ into the Boltzmann collision integral Eq. (A1)
and noting that ∂/∂qiab = 1

2 (∂/∂pia − ∂/∂pib), one will
arrive at the following Fokker-Planck equation,

∂fa
∂t

= −∇pa
·
[1

2

(
R̃a+ f̃aRa

)
fa

]
+∇2

pa

(
Dafa

)
, (A5)
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where

Ria = − g

h3

∫
d3 pb fb Fab q

i
ab, (A6)

R̃ia = − g

h3

∫
d3pb fb f̃b Fab q

i
ab, (A7)

Dij
a =

g

4h3

∫
d3pb fbf̃bFab(q

2
abδ

ij− qiabq
j
ab), (A8)

and

Fab = (πvab/2)

∫ 1

0

θ2 (dσab/dΩ) d cos θ. (A9)

By assuming that the evolution of particle momentum
p is a Gaussian random process and that the evolution
of the momentum distribution f(p, t) follows the Fokker-
Planck Eq. (A5), one can write down the corresponding
single-particle Langevin equation of the Itô form[39, 40],

dp =
1

2

(
R̃ + f̃ R

)
dt+ σdBt, (A10)

where σ is a 3×3 positive definite matrix such that

Dij =
1

2

∑
k

σikσjk. (A11)

Bt denotes a Guassian random process with properties

〈dBt〉 = 0, (A12)

〈dBitdB
j
t 〉 = dt δij . (A13)

Here and in what follows, some subscripts may be
dropped whenever no confusion arises.

When the cross section dσab/dΩ is taken to be inde-

pendent of qab, one can verify that ∇pa ·D = 1
2R̃. Hence,

the Fokker-Planck Eq. (A5) has then an equivalent sim-
plified form,

∂f

∂t
= −∇p ·

(1

2
f̃ R f

)
+∇p · (D∇pf). (A14)

This form of the Fokker-Planck Eq. (A14) has the corre-
sponding Langevin equation of the Stranovich form[39,
40],

dp =
1

2
f̃ R dt+ σ ◦ dBt. (A15)

Note that the two forms of Langevin equations are equiv-
alent. For the purposes of numerical integrations, in the
Itô form, successive increments are evaluated at the be-
ginnings of each time step, while they are evaluated at
the mid-points of each time step in the Stranovich form.
Readers may refer to Ref. [39, 40] for a more detailed
discussion of the two forms of Langevin equations.

Appendix B: Generalized Einstein relation in
thermal equilibrium

Consider a system of particles of arbitrary statis-
tics characterized by a momentum distribution func-
tion f(p, t), whose evolution follows the aforementioned
Fokker-Planck equation,

∂f

∂t
= −∇p ·

[1

2
(1 + λf)Rf

]
+∇p · (D∇pf), (B1)

where λ = −1, 0,+1 correspond to fermions, classical
particles and bosons, respectively. The thermal equilib-
rium momentum distribution function feq(p;T ) at con-
stant temperature T is stationary, and hence should be
solutions to Eq. (B1) in the absence of external fields.

The two terms on the right hand side of Eq. (B1)
can be identified with divergences of the dissipative mo-
mentum current Jdiss = Ffricf = 1

2 (1 + λf)Rf and
the diffusive momentum current Jdiff = −D∇f . In
thermal equilibrium, at any arbitrary location p in mo-
mentum space, the net momentum current must vanish:

J
(eq)
diss (p) + J

(eq)
diff (p) = 0, i.e.,

J
(eq)
diss + J

(eq)
diff =

1

2
(1 + λfeq)Reqfeq −Deq∇feq

=
1

2
(1 + λfeq)Reqfeq

+Deqfeq(1 + λfeq)
p

mkBT

= 0, (B2)

which yields the generalized Einstein relation in thermal
equilibrium,

Deq p

mkBT
= −1

2
Req. (B3)

Note that the drift coefficient Req and the diffusion ten-
sor Deq are evaluated with the same equilibrium dis-
tribution feq at constant temperature T , and that this
generalized Einstein relation holds true for all types of
statistics. The relation can also be broken down into a
component-wise form,∑

j D
ij
eqp

j

−Rieq

=
mkBT

2
, (B4)

for i = 1, 2, and 3.
Direct numerical integrations of the coefficients by def-

initions in Eq. (A6) – (A8) have also been performed to
confirm the generalized Einstein relation in the thermal
equilibrium limit.
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