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Asymptotic normalization coefficients (ANCs) are fundamental nuclear constants playing impor-
tant role in nuclear reactions, nuclear structure and nuclear astrophysics. In this paper a connection
between ANCs and resonance widths of the mirror states is established. Using Pinkston-Satchler
equation the ratio for resonance widths and ANCs of mirror nuclei is obtained in terms of the Wron-
skians from the radial overlap functions and regular solutions of the two-body Schrédinger equation
with the short-range interaction excluded. This ratio allows one to use microscopic overlap functions
for mirror nuclei in the internal region, where they are the most accurate, to correctly predict the
ratio of the resonance widths and ANCs for mirror nuclei, which determine the amplitudes of the
tails of the overlap functions. If the microscopic overlap functions are not available one can express
the Wronskians for the resonances and mirror bound states in terms of the corresponding mirror
two-body potential-model wave functions. A further simplification of the Wronskians ratio leads to
the equation for the ratio of the resonance widths and mirror ANCs, which is expressed in terms
of the ratio of the two-body Coulomb scattering wave functions at the resonance energy and at the
binding energy [N. K. Timofeyuk, R. C. Johnson, and A. M. Mukhamedzhanov, Phys. Rev. Lett.
91, 232501 (2003]. Calculations of the ratios of resonance widths and mirror ANCs for different
nuclei are presented. From this ratio one can determine the resonance width if the mirror ANC is
known and vice versa. Comparisons with available experimental ratios are done.

PACS numbers: 21.10.Jx, 21.60.De,25.40.Ny, 24.10.-i

I. INTRODUCTION

The asymptotic normalization coefficient (ANC) is a fundamental nuclear characteristics of bound states [1, 2]
playing an important role in nuclear reaction and structure physics. The ANCs determine the normalization of the
peripheral part of transfer reaction amplitudes [1, 2] and overall normalization of the peripheral radiative capture
processes [3—6]. In the R-matrix approach the ANC determines the normalization of the external nonresonant radiative
capture amplitude and the channel radiative reduced width amplitude [7-9]. In [10, 11] relationships between mirror
proton and neutron ANCs were obtained.

Pairs of nuclei B; and Bs are mirror nuclei if the number of protons Z; of nucleus B; equals the number of
neutrons Ny of By and the number of protons of By Zs equals the number of neutrons Ny of Bj, such that the
mass number of both nuclei is the same (A = Ny + Z; = No + Z3). The experimental data from mirror nuclei show
charge symmetry of the nuclear force. It is assumed that charge symmetry rather than full charge independence is
involved because mirror nuclei have the same number of p — n pairs.

However, the ANCs are important characteristics not only of the bound states but also resonances, see [9]. The width
of a narrow resonance can be expressed in terms of the ANC of the Gamow wave function or of the R-matrix resonant
outgoing wave. That is why the relationship between the ANCs of mirror bound states [10, 11] can be extended to
the relationship between resonance widths and ANCs of the mirror nuclei. The calculated resonance widths and the
ANCs themselves depend strongly on the choice of the nucleon-nucleon (NN) force but the ratios of the resonance
widths and the ANCs for mirror pairs should not depend on the choice of the NN force. This observation is based
thus far entirely on the calculations using detailed models of nuclear structure. It follows naturally as a consequence
of the charge symmetry of nuclear forces. Mirror nuclei have the same quantum numbers of mirror states (for more
detailed discussion of mirror symmetry see [12]).

Another important for the present paper feature of the mirror nuclei is a similarity of the internal mirror wave
functions. Let us consider a mirror pair in two-body potential model, which is used in the present paper: By = (a1 A1)
in the resonance state and the loosely bound nucleus Bz = (a2 A2). The mirror resonance state is obtained by the
replacement of one of the neutrons by a proton. The additional Coulomb interaction pushes the bound-state level
into a resonance level. The resonance and binding energy of the mirror states are significantly smaller than the depth
of the nuclear potential. The Coulomb interaction is almost a constant in the nuclear interior. Hence, in the nuclear
interior, which all that matters to determine the ratio of the resonance width and the ANC of the mirror state, the
radial behavior of the mirror wave functions is very similar and they differ only by normalization. In the external
region the resonant and bound-state wave functions differ.

The first attempt to relate the resonance width and the ANC of the mirror nuclei was done in [10]. In this paper,
the relationship between the resonance widths and the ANCs is established based on the Pinkston-Satchler equation



used in [11] for the ANCs of the mirror bound states. The obtained ratio of the resonance width and the ANC of the
mirror bound state is expressed in terms of the ratio of the Wronskians containing the overlap functions of the mirror
resonance and bound states in the internal region where the radial behavior of the mirror overlap functions is very
similar and can be calculated quite accurately using ab initio approach. If these overlap functions are not available,
as an approximation they can be replaced by the mirror resonance and bound state wave functions calculated using
the two-body potential model with the same potentials for the resonance and bound states. Assuming that the radial
behavior of the mirror resonant and bound-state wave functions is identical in the nuclear interior one can replace
the Wronskian ratio for the resonance width and the ANC of the mirror bound state by the equation derived in [10],
which does not require a knowledge of the internal resonant and bound-state wave functions.

Connection between the ANC and the resonance width of the mirror resonance state provides a powerful indirect
method to obtain information which is unavailable directly. If, for instance, the resonance width is unknown it can be
determined through the known ANC of the mirror state and vice versa. For example, near the edge of the stability
valley neutron binding energies become so small, that the mirror proton states are resonances. Using the relationship
between the mirror resonance width and the ANC the resonance width can be determined. Also loosely bound states
a + A become resonances in the mirror nucleus o + B, where charge Zpe > Zse. Using the method developed here
one can find one of the missing quantities, the resonance width of the narrow resonance state or the mirror ANC. In
what follows the system of units in which i = ¢ =1 is used throughout the paper.

II. ANC AND RESONANCE WIDTH
A. ANC as residue of S matrix

The ANC enters the theory in two ways [1]. In the scattering theory the residue at the poles of the elastic scattering
S matrix corresponding to bound states can be expressed in terms of the ANC:
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Here, C5, s 75 18 the ANC for the virtual decay of the bound state B(aA) in the channel with the relative orbital
angular momentum (g of @ and A, the total angular momentum jp of a and total angular momentum Jp of the
system a + A, kq4 is the relative momentum of particles a and A.

2
ks, = ZaZae faa (3)

RaA
is the Coulomb parameter for the bound state B = (a A), kaa = V2 aaEaa is the bound-state wave number,
€p = Mg +ma — mp is the binding energy for the virtual decay B — a + A, Z; e and m; is the charge and mass of
particle ¢, and pqa is the reduced mass of @ and A. Note that the singling out the factor ¢i™ M4 in the residue makes

the ANC for bound states real.
Equations (1) and (2), which were proved for the bound states in [13-18], can be extended for resonance states.

B. Connection between ANC and resonance width

The proof of the connection between the residue in the resonance pole of the elastic scattering S matrix and the
ANC of the resonance state is not trivial. In this section is presented a general proof of the connection of the residue
in the pole of the S;, (kq4) matrix element with the ANC | which is valid both for the bound states and resonances.
The potential is given by the sum of the short-range nuclear plus the long-range Coulomb potentials. Taking into
account that the residue of the elastic scattering S matrix in the resonance pole is expressed in terms of the resonance
width, one can obtain a connection between the ANC and the resonance width.

Let me consider two spinless particles ¢ and A with relative momentum k:g A = 2 taa Eqa, relative energy E,4 and
the reduced mass 4,4 in the partial wave [p at which the system B = a + A has a resonance or a bound state. The
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radial wave function ¥y, 1, (1) = satisfies the Schrdodinger equation in the partial wave [p:
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Here V(r) = VN (r) + VY(r), V¥(r) is the short-range nuclear potential and V¢ (r) is the long-range Coulomb one.
For potentials satisfying the condition limo r?V(r) =0
T

Uy 4l (1) ~ rletl, r — 0. (5)

Now one should take the derivative over k,4 from the left-hand-side of Eq. (4), multiply the result by wug, 41, (7)
and subtract from it Eq. (4) multiplied by Oug, ,1, ()/Okaa. Integrating the obtained expression from r = 0 until
r = R and taking into account Eq. (5) one gets
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Taking R so large that ug, .1, (R) can be replaced by its leading asymptotic term one gets the elastic scattering
wave function

Ukyalp (R) ~ élB [eip - (_1)lB Sl;l (kaA)e_ip] ) (7)

where p = kgaR — Nga In 2k a R, nga = W is the Coulomb parameter of the a + A system,

Sig(kaa) = o2t [of, (kaa)+67Y (kaa)] .

is the elastic scattering S-matrix element, Ug (kqa) and (553]\7 (kqa) are the Coulomb and Coulomb-modified nuclear
scattering phase shifts in the [p-th partial wave, C 5 is a constant , which is in the pole of the S-matrix is related to
the corresponding ANC (i, see Egs (14) and (15) below. Note that the scattering wave function wuy, ,;, at large R
at real momentum k,4 contains ingoing and outgoing waves and is not normalizable in the entire space.

Assume that the elastic scattering S, (kq4)-matrix element has a first order pole at k,4 = kp with the residue
Ay corresponding to the bound state k, = ikq4 or to the resonance k), = k,qr) = Kkaa(0) — Imky4 (r), where
kaa 0y = Rekqa (r):
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where g;,, (kqa) is a regular function at ko4 = kp.
Substituting Eqs (7) and (9) into the right-hand-side of Eq. (6) and performing the differentiation over k,4 and R
and taking k,4 = k, one gets
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Here p, = kpR — 1, In(2k, R). On the left-hand-side under the integral sign we have the function u%plB (r), which is
regular at r = 0 (see Eq. (5)).

Note that at the pole kqa = kp Sl;l (kp) = 0 and one can see from Eq. (7) that in the external region the wave
function wuy,, (R) satisfies the radiation condition:

Ukplp (T) = élB eipp. (11)

For the bound state k, =i ka4 and

r>Rn 00 —K Ar—nbs In(2kqa 7
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where Ry is the a — A nuclear interaction radius. For the resonance state k, = koa(r) and Uy, , 15 (r) is the
resonance Gamow wave function with the resonance energy E,4(R):
r>Ry . r—=00  _ap( /g ik r—in'™ In(2k )
= — ~ aA aA(R) Naa” M 2Raa(R) T
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The constant C,, is related to the ANC Cj, as Cj, = e "/2C),, where 1, =, Z“Z*}CM For the resonances
y

one has

is the a + A Coulomb parameter of the resonance.

Ciy = e Naal? Cig (14)

and for the bound states

ClB :eiﬂ'ng‘;ﬂc@' (15)

Note that Cj,,, which is real for the bound states, is the standard definition of the ANC for the bound states and will
be used in this paper for the bound states.

For the bound states the asymptotic of the bound-state wave function is exponentially decaying and the bound-
state wave function can be normalized. The Gamow wave function of the resonance state asymptotically oscillates
and exponentially increasing. To normalize the Gamow wave function one can use Zeldovich regularization procedure
[17] which is a particular case of the more general Abel regularization:
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For the bound state one can take under the integral sign 8 = 0 and obtain the usual normalization procedure.
For the resonance state one can take the limit 8 — 0 only after performing the integration over r. Note that
Zel’dovich normalization was introduced for exponentially decaying potentials. In Appendix is shown that Zel’dovich
regularization procedure works even for the Coulomb potentials.

For any finite R one can rewrite Eq. (16) as

R [eS)
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Assume that R is so large that one can use the asymptotic expression (11) and Eq. (81) of Appendix. It leads to
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Comparing Eqgs (10) and (18) one arrives to the final equation, which expresses the residue in the pole of the elastic
scattering S-matrix in terms of the ANC:

Ay, = =2t CE (19)
Equation (19) is universal and valid for bound state poles and resonances. In terms of the standard ANC Cj,, the

residue in the resonance pole is

20+1 —nn®) ~2
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and for the bound state is given by Eq. (2).

Now it will be shown how to relate the ANC C, 5 to the resonance width I'p 4 . Here the following definitions are
used:

Eaa®r) = koary)/21aa) = Eaa@) —iTaa/2,  Eaa) = [k3a@) — mkaa(r))?]/(2 ptaa),
TCoa =2koa00) Imkaqa(r)/taa- (21)



One can write

megt (kaa + kp)(kaA - k;)

Siahan) = 100 AT, (22)
where 5?; is the non-resonant scattering phase shift. At k, = k,a(z) and at ko — kqa(r)

AlB(kaA) _ —QikaA(R) 5 [(1 + 72)1/4 + (1 + 72)71/4]71 ez‘[2 6f};’t(kaA(R))—1/2 arctan('y)], (23)
vT=3 }g::(o) . Equation (23) expresses the residue of the S-matrix elastic scattering element in terms of the resonance

energy and the resonance width for broad resonances.
Recovering now all the quantum numbers one gets for a narrow resonance (7 << 1) up to terms of order ~ =
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where 'y a1y gz 75 1S the resonance width, 5fB inJn (k9 ,) is the potential (non-resonance) scattering phase shift at
the real resonance relative momentum k,4 (o). This equation is my desired equation, which relates the ANC of the
narrow resonance to the resonance width.

The residue in the resonance pole with recovered all the quantum numbers is

J . ~
Az]ij = —*le ! (CfAzB iB JB)Q' (25)

For the Breit-Wigner resonance (Imk, 4 (r) << Rekoa (r) = Kaa(0)) Eq. (25) takes the form
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where 1,40y = Za Za €2 tan/kan (0)- In terms of the resonance width the residue of the elastic scattering S-matrix
element in the resonance pole is
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III. ANCS AND OVERLAP FUNCTIONS

Equations obtained in the previous section, which express the residues of the S-matrix elastic element in terms
of the ANCs of the bound states and resonances, provide the most general and model-independent definition of the
ANCs. From other side, in the Schrodinger formalism of the wave functions the ANC is defined as the amplitude of
the tail of the overlap function of the bound state wave functions of B, A and a. The overlap function is given by

Toa(raa) =< |pB(&a, &, Tan) >
= Y <JaMa jem,|JsMp >< JoMalgmuglism;, > Yigm,, (Faa) Iaa 5 15 (Tan). (28)
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Here

e = Z < JAMya jpmjy|JpMp >< JoMylgmi,|jpmi, > Aea{pa(€a) va(€a) iy mi, Taa)}  (29)

ijmlBMAMa

is the two-body a + A channel wave function in the jj coupling scheme, < j1 my ja ma|jm > is the Clebsch-Gordan
coeflicient, /Ala A 1s the antisymmetrization operator between the nucleons of nuclei a and A; ¢;(&;) represents the
fully antisymmetrized bound state wave function of nucleus ¢ with &; being a set of the internal coordinates including
spin-isospin variables, J; and M; are the spin and its projection of nucleus i. Also r,4 is the radius vector connecting
the centers of mass of nuclei a and A, Toa = roa/rea, Yig e, (f4q) is the spherical harmonics, and T4 15575 (7 44)
is the radial overlap function. Notations of the spins and angular momenta are given in section ITA. The summation
over lp and jp is carried out over the values allowed by the angular momentum and parity conservation in the virtual
process B — A+ a.



The radial overlap function is given by

Toa 1pjs J5(Tan) =< Aaa{pa(8a) 0a(8a) Yig m, Far)} ©5(as Lai Taa) >
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Eq. (30) follows from a trivial observation that, because g is fully antisymmetrized, the antisymmetrization operator

A 2
Agqa can be replaced by the factor ( ) . In what follows, in contrast to Blokhintsev et al (1977), I absorb this factor
a

into the radial overlap function.
The tail of the radial overlap function (ro4 > Raa) in the case of the normal asymptotic behavior is given by

b
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Formally the radial resonance overlap function for the Breit-Wigner resonance in the external region (ro4 > Ru4)
can be obtained from Eq. (31) by the substitution ka4 = —ikqa (r):
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This asymptotic behavior agrees with the asymptotic behavior of the resonant Gamow wave function given by Eq.
(13).

IV. R-MATRIX WAVE FUNCTIONS

Because the microscopic overlap functions for mirror resonances and bound states are not available, in this paper I
use internal resonance and bound-state wave functions calculated in the the potential model. If the mirror symmetry
holds the bound-state and resonance wave functions of the mirror states should be very similar in the internal region
where the resonance wave functions are real. However, both wave functions differ in the external region where the
bound state wave functions exponentially decrease while the resonance wave functions at the resonance energies
exponentially increase (see section III). In the Wronskian method, which is developed in this paper, one needs the
wave functions in the internal region in which it is very convenient to use the R-matrix method. In the R-matrix
method the resonant wave functions are normalized to unity in the internal region. The border of this region is
determined by the point at which the radial derivative of the internal resonant wave function is equal to zero. If the
resonant wave function has a few nodes, the border of the internal region is determined by the last point at which
the radial derivative of the resonant wave function vanishes. To make the bound-state wave functions close to the
resonant wave functions the former are also renormalized to unity in the internal region.

In the R-matrix approach the resonant wave function is considered at the real part of the resonance energy F, 4 (o)-
In this approach the internal wave function at real energies is real and behaves similarly to the bound state-wave
function of the mirror state. At the R-matrix channel radius R., and E,x = E, A(0) the internal wave function
coincides with the external one and is proportional to the outgoing wave Oy, (kqa(0), Ren). Below I present the
internal and external R-matrix wave functions considering single-level, single-channel case. Again, for simplicity, the
particles are assumed to be spinless.

I start from the external R-matrix wave function at the partial wave [, which is given by [11, 19]

ex . 27 * i N
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is the elastic scattering S-matrix at F,4 near the real resonance energy Fg4(o)- UZC]; is the Coulomb scattering phase

shift and 5{135 is the R-matrix hard-sphere scattering phase shift:

~2ists _ Gip(Kaa, Ren) — i Fip (Kaa, Ren)

- ) 36
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Fip(kaa,raa) and Gig(kaa,raa) are the regular and singular Coulomb solutions, R, is the R-matrix channel radius.
The outgoing wave is given by

—ioC
Oy (kan,ran) = (Gip(kaa,ran) + i Fiy(kaa,ran)) e 7. (37)

At rq, = Rep,
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Oy (kaa, raa) can be expressed it terms of the Whitteker function:

OZB (kaAv TaA) = i_lB e Mad/2 W—inaA,lB+1/2(_2 } kaA TaA)- (39)

At 144 = Rep, and Ega = EaA(O)
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The R-matrix internal resonant wave function in the partial wave [p, in which the resonant is present, at energy
E, 4 near the resonance is given by

(int)(+) 27 kaa  —ifsls T, D (L
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The R-matrix internal resonant wave function ¢l(;"t)(kaA,raA) can be found as a solution of the Schrodinger
equation with the two-body Woods-Saxon V,4 potential. The R-matrix method will be used below for mirror
resonance and bound states. I consider the loosely bound states which become the mirror resonances by replacing
one of the neutrons by a proton. The considered binding energies and real energies of the mirror resonances are
significantly smaller than the depth of the potential. That is why both mirror solutions of the Schrodinger equation
should be very similar in the internal region where both solutions are real.

At rqa = Rep and Eqa = Eaa0) (see Eq. (A(10)) from [11] in which the reduced width amplitude should be
expressed in terms of the resonance width ) follows that

,U/G,A FZB

e sl 0y, (kaa(o), Ren)- (42)
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Thus at the real part of the resonance energy F,4 = FE, A(0) and rqoa = R.n the internal radial wave function

qﬁlmt)( Rcp) is proportional to the outgoing wave Oy (kqa(0), Ren). Equation (42) is also follows from the matching of
the internal and external wave radial wave function, see below.

Taking into account Eq. (24) and that in the R-matrix approach the potential scattering phsse shift is ¢;, =
— (6" — 6f ) one gets
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At roa = Rep and Eqa = Eq4(0) one gets
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Thus at 744 = Rep, and Eqa = Eq4(0) one gets matching of the internal and external R-matrix wave functions

Xl(;mt)(-i_)kaA(O)u Rch) = X(Znt)(Jr) (kaA(O) ) Rch) (45)
and both wave functions are proportional to the outgoing wave O, (koa, Ren)-
I can write the radial overlap function Ioa iy 5 75 (kaA(O)u R.p) in terms of the outgoing wave Oy, (kaA(O) , Rep) and
the Whittaker function:
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As one can see, the calculated in the R-matrix resonant radial overlap function at the channel radius r,4 = Ren
and Eq,a = E,4(0) is proportional to the the square root of the resonance width. It makes convenient to use the
R-matrix method to determine the ratio of the resonance width and the bound-state ANC of the mirror states using
the Wronskian method developed below.

V. CONNECTION BETWEEN BREIT-WIGNER RESONANCE WIDTH AND ANC OF MIRROR
RESONANCE AND BOUND STATES FROM PINKSTON-SATCHLER EQUATION

A. ANC and Pinkston-Satchler equation

In [11] the relationship between the mirror proton and neutron ANCs was derived using the Pinkston-Satchler
equation [20, 21]. Here I extend this derivation to obtain the ratio for the resonance width and the ANC of the mirror
bound state in terms of the Wronskians, which follows from the Pinkston-Satchler equation.

First, using Pinkston-Satchler equation I derive the equation for the ANC of the narrow resonance state, which
contains the source term [6, 22]. This derivation is valid for both bound and resonance state. That is why following
[11] T start from the Schrodinger equation for the resonance scattering wave function at the real part E ,4(g) of the
resonance energy :

(B — Ta—Toy—Toa— Va— Va—Vaa)¥(€a,Eq; tan) = 0. (47)

Here, ﬁ is the internal motion kinetic energy operator of nucleus 4, fa 4 is the kinetic energy operator of the relative
motion of nuclei ¢ and A, V; is the internal potential of nucleus i and V, 4 is the interaction potential between a and

A, Eq) = Eqa() — €a — €4 is the total energy of the system a + A in the continuum. The operator Fy) — fA —

Ty —Toa — Vo — Va—Vaa in Eq. (47) is symmetric over interchange of nucleons of a and A, while W(&,,&a;144) is
antisymmetric, €; is the total binding energy of nucleus i. Hence, by multiplying the Schrédinger equation (47) from
the left by

AN\ /2 -
( ) > < JaMa jemjs|JpMp >< JoMalpmis|jpmjs > Yy, (Taa) 0a(€a)pala); (48)
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where the antisymmetrization operator A,4 in Eq. (48) is replaced by ( > , I get the equation for the radial
a

overlap function with the source term Qi ;jz.7.7475(Taa) [22]:

(EaA(O) — Ty — Vi — UaCA) I 1y s a5 (Tan) = Qupjpgaiats (Tan)- (49)

Here Tra , is the radial relative kinetic energy operator of the particles a and A, Vl‘;f”" is the centrifugal barrier for
the relative motion of a and A with the orbital momentum [p. For charged particles it is convenient to single out the
channel Coulomb interaction U, (r,4) between the centers of mass of nuclei a and A.



The source term is given by

Qipjptatas(Taa) = > < JaMa jemj,|JeMp >< JoMalpmu,|jpm, >
TTLijlBMAMa
AN\ /2
X <a> / dQPaA < Sﬁa(ga) @A(gA”VaA - UaCAD/l;;mlB (i-\aA)\I/(é.avé.A; raA) > (50)

The integration in the matrix element < 4 (£4) a(€a)|[Vaa — US|V

[ (Taa)U(€a;€a;T04) > in Eq. (50) is carried
out over all the internal coordinates of nuclei a and A.

Owing to the presence of the short-range potential operator Vo4 — U, aCA (potential V, 4 is the sum of the nuclear
VA and the Coulomb V&, potentials and subtraction of U, removes the long-range Coulomb term from V1) the

source term is also a short-range function. Then Eq. (49) for the radial overlap function can be rewritten as

Roa

1
Ioa lpjs JB (kaA(O)v raA) = / dT‘;A T:zA GIC; (raAa T;A; EaA(O)) QlBjBJaJAJB (T;A)v (51)
0

RaA

where R, 4 is the a — A nuclear interaction radius. In the R-matrix approach R,4 can be replaced by the channel
radius R.p, which can be varied.

Equation (51) is of fundamental importance because it allows one to express the radial overlap function in terms
of the internal wave function of the nucleus B.

The partial Coulomb two-body Green function is given by [23]

o (kaa, Taa <) fli(Jr)(kaA, TaA>)
LC(+) ’

152}

GlCB (Taa,Tha; Eaa) = =2 jiaa (52)

where 7q4<« = min{rea,r, 4} and 74> = max{rqa,r,4}. The Coulomb regular solution gpﬁs (kaa, Taa) of the
partial Schrodinger equation at real momentum kg4 is

1 c(-)
—|L
2ikea In
=Bt ethaarar By (Ip + 1+ inaa, 21p + 25 —2i kaa Taa)
eia’ﬁg EB (kaAu TaA)

kaA

(kaA) flCB(+)(kaAu TaA) - LC(+)(kaA) fli(_)(kaAu TaA)

9016;3 (kaAa TaA) = s

= e 2 L (e a) , (53)

where

I'(l 1 i N, . ) .
—neasz LUB + 14 i0a) (2koaron) BTt etkaaras \ Bi(lp +14in,4,2lp +2; —i2keaTan),

el
e %5 Fiy(kga,rqn) =€

2T (2l 4+ 2)
(54)
al(j; is the Coulomb scattering phase shift. Also
lCB(i)(kaAv TaA) =e" Maa/2 W:Fi Na A, lB+1/2(:F2 ikaA TaA) (55)
are the Jost solutions (singular at the origin 7,4 = 0),
1 . F(2 Ilp+2)
LC(:I:) ka _ TNaa/2 ,timlp/2 56
tn (ko) = e ¢ T(p +1+ina0) (56)
are the Jost functions.
Iit is convenient to introduce the modified Coulomb wave function
o}
- SDl (kaAa TaA)
G5 (kaa, raa) = —Eo 2~ (57)

LC(+) (kaA)

5]

which will be used from now on instead of cpl(’; (kaa, Tad)-
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Let me use now the R-matrix method in which I replace R,4 by Rcp. Then assuming in Eq. (51) roa = Rep, + 0
and taking into account Eq. (46) and (55) I get

Rch
~ —q hs 7UC a -
ClB = i_lB € [JZB ZB] \/kMA?) FaAlBjBJB = 2 [iqA / dr:zA T‘;A SDIC; (kaA(O)u T:zA) QlBjBJaJAJB (T‘;A). (58)
aA(0
0
Using Egs. (53) and (57) one gets
Rch
—ishs aA aA
€ O \/kﬂ FaAlBjBJB =2 kM / dT;A T;A FlB (kaA(O)v Tzle) QlBjBJaJAJB (r:lA)' (59)
aA(0) aA(0)

This equation provides the ANC or resonance width of the narrow resonance, which may depend on the channel radius
R.n. Here I am interested in the ratio of the resonance width and the square of the ANC of the mirror resonant and
bound state. Below will be checked the sensitivity of this ratio to the variation of the channel radius.

B. ANC in terms of Wronskian

The advantage of Eq. (59) is that to calculate the ANC one needs to know the microscopic resonant wave functions
only in the nuclear interior where the ab initio methods like the no-core-shell-model [24-26], and the coupled-cluster
method [27] are more accurate than in the external region. That is why Eq. (59) is so important if microscopic
resonant wave functions are available. Now I will show that the radial integral in Eq. (59) can be transformed into
the Wronskian at r,4 = R,4. The philosophy of this transformation is the same as in the surface integral formalism
[5, 11].

First, let us rewrite

VaA _ UaCA =V 4+ ‘/l;entr _ Va _ VA _ ‘/l;entr _ UaCA (60)

and take into account equations

(Eaa) = To — Ta = Tr,1) 31, (kan(0)s 7aa) Pa(€a) pa(§a) = (UL + V™ + Vi + Va) @1, (kaa(0)s Taa) $a(la) pa(€a)

(61)
and
(EaA(O) - Ta - TA - TTQA) < YleLB (i‘\aA)|\I](§a7 §A; Tga > = (VaA + Va + VA + Vﬁ:ntr) < leBmLB (i‘\aA)|\I](§a, gA; ToA >,
(62)

where Tra 4 is the radial kinetic energy operator.

Then we get

Raa
CE, I ipJp = — 2 HaA / draa raa ¢f, (kaa)s Tan) Quajsteiats (Taa) = —2faa
0
1/2 Raa
X Z < JaMy ijjB|JBMB > JaMalelB|ijjB > <CL> / dTaATaA¢EB(kaA(O)7TaA)
ijmlBMAMa 0
by by by = = = N
X / erTaA < (pa(ga) <PA(§A)|TraA + T+ Ta-Toe—Ta— TTaA|YT;3mLB (raA) \Ij(gaugA;raA) >
=—2paa Y. <JaMa jem,|JpMp >< JoMalpmi,|jgm;, >
TTLijlBMAMa
AN 12 Rqa o — = . N
X a / drearaa Pig (kaA(O)u raA) / dQI‘aA < (pa(ga) SDA(gA”TraA - TT@AD/IBmLB (I‘aA)\I’(ﬁaafA;I‘aA) >
0
i P < —
= - 2,UfaA / draaraa Pig (kaA(0)7 TaA) (TTCLA - T’I"aA) Tan I j JB (kaA(O)v TaA)- (63)
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Here R,4 is the a — A nuclear interaction radius. In the R-matrix approach R,4 can be replaced by the channel
radius R., which can be varied.
Taking into account that

R d df (z) dg(z)
1@ (o = L) gt = 2 (9t0) Ly 2220 (64
we arrive at the final expression for the ANC of the resonance state in terms of the Wronskian:
Cly s s = WHaa 1 5 75 (Kaa(0)s Tan), 35y (Faa(0)s Tan)] N (65)
where the Wronskian
WIlaa 15 5 15 (Tan)s @1 (Kaa(o)s Tan)]
— L 1y 3 10 (Fanto)s 7o) dgf (kaa(o)s Tar) 57 (kuno)s Tan) dloa 1 js 75 (Kaa(o), raA)' (66)

drea drea

I would like to underscore that Eq. (65) has been derived by transforming the internal integral into the Wronskian
at the channel radius R.,. Note that at too small radii R, the Wronskian W[I,a 1, jg J5(Taa), nglC}; (kaa(0)> Taa)]
depends on the radius but the sensitivity to the radius decreases as R, increases.

There is another more direct derivation of Eq. (65) . We know that the Wronskian calculated for two independent
solutions of the Schrédinger equation is a constant [23]. In the R-matrix approach the internal radial overlap function
ToA s jp Js (kaA(O), TaA) at a4 — Rep behaves like the Whittaker function, see Eq. (46), and is given by

C
le(+) (kaA(O) ) raA)
Rch '

_ B
Toa i s 5 (kaa)s Tar) = Conty jn Jn

(67)

This Whittaker function is a singular solution of the radial Schrédinger equation. @g (kqaa(0)> Taa) is an indepen-

dent regular solution of the same equation. Taking into account that W[fli(ﬂ(kaA(o), Tad), fli(_)(kaA(O)u rea)] =
—2ikya(0) and Eq. (53) one gets at 1,4 = Rep

~C ~
W[IGA lpjB JB (kaA(O)v TaA), Pip (kaA(O)v TaA)] I = fA IpjJB" (68)
aA—ch
Note that the constancy of the Wronskian only applies to local potentials. But here one needs this only at large
distances, where zero potentials are local anyway.
I will demonstrate that the Wronskian W(laa 15 s 75 (Kaa(0), Tad)s @5, (Kaa(0)> Tan)] depends on R, and
T

aA=Raa
reaches a constant value, which is equal to the ANC of the resonance state, when R, increases.

My idea is to use Eq. (65) to calculate the Wronskian W(la 15 s 75 (Kaa(0)> Tan)s @5 (Kaa(o)s Tan)] at the
reA=RaA
channel radii which are smaller than the radius of nucleus B = (aA), and gradually increase R, until the Wronskian

reaches its constant value. In the nuclear interior the contemporary microscopic models can provide quite accurate
overlap functions. The sensitivity to the variation of the channel radius of the ratio of the ANCs of the resonance and
mirror bound state is significantly weaker than that of the individual ANCs (or, equivalently, of the resonance width
and the bound state ANC) of the mirror states.

VI. RATIO OF RESONANCE WIDTH AND ANC OF MIRROR BOUND STATE
A. Three different equations

In this part three different equations for the ratio of the resonance width and the ANC of the mirror bound state
are presented. Let By = (a1 A1) and By = (az A2) be mirror nuclei. Then the quantum numbers in both nuclei are
the same. We also assume that the channel radius R, is the same for both mirror nuclei. The ratio of the ANCs of
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the mirror resonance and bound states is given by the ratio of the corresponding Wronskians. Taking into account
Eq. (65) one gets for the ratio of the resonance width and the bound state ANC for mirror states:

‘ 2

. ~C
FalAl I in Jp B 2Ea1A1(0) ‘W[IU&AI IpjB JB (ka1A1(0)7 ra1A1)7 Pip (kalA1(0)7 Tai Ay )]

TalAlchh (69)
Hay Ay 7

B
(Oa22A2 IjB JB )2

2
W[IazAz Il jB JB (KG2A2a TazAz)v @[C}; (Z.HazAza Tag Ay )])
Tag Ay =Rcn
where Eq, 4, (0) and pia4 are expressed in MeV. Equation (69) allows one to determine the resonance width if the ANC
of the mirror bound state isBknown and vice versa.
o )
To calculate the ratio ;;A#]BJBZ one needs the microscopic radial overlap functions. If these radial overlap

. . (Ca2 A2 LB ]B JB . . .
functions are not available then one can use a standard approximation for the overlap functions:

L al)2
IalAl lBjB JB (kalAl(O); TaA) ~ SlllAl Pa1A1 lg i JB (kalAl(O)a TalAl)v (70)
 al/2
IazAz lpjB JB (’iazsz raA) ~ SagAg PazAs I jp JB ('%azsz TazAz)v (71)

where S, 4, and S,, 4, are the spectroscopic factors of the mirror resonance and bound states (a1A4;) and (az4s),
respectively. ©a, 4, 15 jp J5 (Kay A, (0), TayA,) I8 a real internal resonant wave function calculated in the two-body model
(a1 A1) using some phenomenological potential, for example, Woods-Saxon one, which supports the resonance state
under consideration. @a,4, i js Js (KasAss Tasa,) 1S the two-body bound-state wave function of the bound state
(ag A3), which is also calculated using the same nuclear potential as the mirror resonance state. If the mirror

. r, ; . .
symmetry holds then Sq, 4, & Sa,4, and one gets an approximated (CB;A“—B“BJBZ ratio in terms of the Wronskians,

. . . az Az lp i JB
which does not contain the overlap functions:

‘ 2

Toias 1 in g 2F, 4 © ‘W[SﬁalAl I jB JB (ka1A1(0)7 Ta1A1)a 9216;3 (ka1A1(0)7 Tau‘h)]
a1di lgjsJB 1AL

(CB2 )2 /LalAl

az A2 lp jp JB

faai=fen —(79)

2
(W[</)02A2 lBjB JB (KG2A2a TazAz)v @[C}; (Z RagAss Taz As )])
TagAngch

Meantime in [10] another expression for the mirror nucleon ANCs ratio was obtained another equation which

provides the easiest way to determine %]B‘]Bz I will show here a simple way of the derivation of the ratio
az A2 lpip JB
(CFI‘;;’“Z—B”'BJBQ from [10]. First, as it was pointed out in [10], in the nuclear interior the Coulomb interaction
ag A2 lpip JB
varies very little in the nuclear interior and its effect leads only to shifting of the energy of the bound state to the
continuum. Hence, it can be assumed that 9516;3 (Kay A1 (0)> TarA,) and nglC; (i Kay Ay T'ay A, ) behave similarly in the nuclear

interior except for the overall normalization, that is

~C
~C <P[B (kalAl(O);Rch) ~C /-

ka s Ta = = . a s Ta . 73
@lB( 1A41(0), T A) (Plc;g(zﬁagAgu Rch) Pip (ZK’ 2Azs T 2A2) ( )

Vot inings . [2Eaai0 (s?’zCB (ka1A1<0>,Rch)2
(C£2A2 Isin JB)2 Hay Ay 9216;3 (Z KasAgs Rch)

% |W[90¢11A1 IpjB JB (ka1A1(0)7 Ta1A1)a 9216;3 (Z KayAszs Taz As )] |2 |Ta1A17Ta2A2:Rch

Then

o P (74)
(W[¢02A2 lBjB JB (’fa2A2, Ta2A2)7 </7[C;3 (Z RazAss Ta2A2)D |Ta2A2:Rch

Neglecting further the difference between the mirror wave functions @q,a, 155 75 (Kay 41 (0)) Tara,) and

. o . . . Taiay ipip.
CasAs g i Jp (FasAs, TasA,) i the nuclear interior we obtain the approximate expression for (0321“—3“9]‘92 from

az A2 lpiB JpB
[10] (in the notations of the current paper):

PalAl lBjB JB ~ 2 Ea1A1(O) (@lc;g (ka1A1(0)7 RCh)>2 (75)
(CaB22A2 5B JB)2 Hay Ay 9216;3 (i Kayass Ren)
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In descending accuracy I can rank Eq. (69) as the most accurate. Taking into account that the microscopic overlap
functions (calculated in the no-core-shell-model [24-26] or oscillator shell-model [28]) are accurate in the nuclear
interior, using Eq (69) one can determine the ratio %75152 quite accurately. Then follows Eq. (72) and

a2 A2 lpiB JB
finally Eq. (75). Note that Eq. (75) is valid only in the region where the mirror resonant and bound state wave
functions do coincide or very close. The advantage of this equation is that it allows one to calculate the ratio without
using the mirror wave functions and extremely simple to use.

Because for the cases under consideration the internal microscopic resonance wave functions are not available, in

(FE;A”—B“?‘]BZ ratio is calculated using Eqs (72) and (75). It allows one to determine the accuracy of

ag A2 lpip JB

this paper the

both equations.

. . . “ - . . . 2E, . .

Note that the dimension of the ratio (FB;A”—B]B% is determined by the ratio 2#17”‘;(0) To make it dimensionless
ag A2 lpip JB “r

I assume that the reduced mass jiq, 4, and the real part of the resonance energy E,, 4, (o) are expressed in MeV.

B. R-matrix wave function

Because the microscopic overlap functions for mirror resonances are not available, in this paper I use internal
resonance and bound-state wave functions calculated in the the potential model at real energies. In the developed
Wronskian method one needs the wave functions in the internal region in which it is very convenient to use the R-
matrix method. In the R-matrix approach the resonant wave function is considered at the real part of the resonance
energy Fq4 (o) and is real in the internal region. If the mirror symmetry holds the bound-state and resonance wave
functions of the mirror states should be very similar in the internal region. The R-matrix resonant wave function is
normalized to unity in the internal region. The border of this region is determined by the point at which the radial
derivative of the internal resonant wave function is equal to zero. If the resonant wave function has a few nodes,
the border of the internal region is determined by the last point at which the radial derivative of the resonant wave
function vanishes. The bound-state wave function is normalized to unity in the whole coordinate space. To make the
bound-state wave function close to the resonant wave function the former is also renormalized to unity in the internal
region. The advantage of the Wronskian method is that to calculate the ratio of the resonance width and the ANC
of the mirror states one can use the internal real resonant and bound-state wave functions.

VII. COMPARISON OF RESONANCE WIDTHS AND ANCS OF MIRROR STATES

In this section a few examples of the application of Eqgs. (72) and (75) are presented. To simplify the notations
from now on the quantum numbers in the notations for the resonance width and the ANC are dropped and just use
simplified notations, I'y, 4, and C,, 4,. Equation (72) gives I'y, 4,/(Cu, 4,)? in terms of the ratio of the Wronskians
and provides an exact value for given two-body mirror resonant and bound-state wave functions. Equation (75) gives
the T'q, 4, /(Ca, 4,)? ratio in terms of the Coulomb scattering wave functions at the real resonance momentum kq, 4, (0
and the imaginary momentum of the bound state i x4,4, at the channel radius R.,. Hence, to determine the ratio
Ta,4,/(Cay a,)? using Eq. (75) one does not need to know the mirror resonant and bound-state wave functions.
However, to use this equation one should check whether the mirror wave functions are close. In calculations I
deliberately increase the channel radius R.; to demonstrate the convergence of the calculated ratio Iy, 4, /(Cay 4,)?
as R, increases.

A. Comparison of resonance width for '*N(2s; ;) — ">C(0.0 MeV) + p and mirror ANC for virtual decay
13C(2s81/2) — 2C(0.0MeV) + n

I begin from the analysis of the isobaric analogue states 2s;/, in the mirror nuclei 13N and 'C. The resonance
energy of 13N(251/2) is Epi2g0) = 0.421 MeV with the resonance width of I'ji2¢ = 0.0317 £ 0.0008 MeV [29]. The
neutron binding energy of the mirror state '3C(2s1 /5) is £,12¢ = 1.8574 MeV with the experimental ANC CZ,,, = 3.65
fm~! [30, 31]. The experimental ratio I'yi2c/(Cpizc)? = (4.40 £ 0.57) x 1077 allows us to check the accuracy of both
used equations. Because the dimension of the bound-state ANC is fm~'/2 to get the dimensionless ratio I calculated
Fplzc/[h C(Cnlzc)2].

In Fig. 1 are shown the radial wave functions of the mirror states. Following the R-matrix procedure, both wave
functions are normalized to unity over the internal volume with the radius R., = 4.0 fm. We see that the mirror
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Radial Wave Functions

r(fm)

FIG. 1: Solid red line: the radial wave function of the (p12C)25+ resonance state; dashed blue line: the radial wave function
1/2

of the mirror (n120)28+ bound-state. r is the distance between N, where N = p, n, and the c.m. of 12C.
1/2

wave functions are very close at distances < 4.0 fm what confirms the mirror symmetry of (p12C)28+/ and (n120)28+/
1/2 1/2

systems.

(57)%0)2 ratios, which are calculated using Eqs (72) and (75). These calculated ratios
n+t<C
I, 120

are compared with the experimental one. We see that the calculations exceed the experimental value. The (AP
n C

In Fig. 2 are shown the

ratio calculated using the simplified Eq. (75) shows the R.; dependence and is equal to 10.13 x 107° at the peak at
Rep = 5.22 fm.

Equation (72) provides the —2—=S ratio in terms of the ratio of the Wronskians. Each Wronskian contains the

r
(Cn 12C)
two-body wave function and its radial derivative of the system (N 12C)2S+ , N = p,n. Each two-body wave function

1/2

has one node at r = 2.13 fm and a minimum at r = 4.0 fm. . Hence, at some point r the Wronskian in the denominator

. . . .. . . r . . . .
of Eq. (72) vanishes causing a discontinuity in the ratio ﬁ I assume that in the nuclear interior the mirror
nt<C

two-body wave functions are correct (as it should be for the mirror microscopic overlap functions) and calculate the

ratio at E., > 4 fm. At r =4 fm (CI:PI;;C)Q = 8.1 x 10~ while the correct value of this ratio obtained at large R.p, is
n C

9.8 x 10~°, which is close to the peak value of the ratio obtained using Eq. (75).

. . r . . .
Both used equations provide the values of the ﬁ ratio, which exceed the experimental one. It means that
n C

more accurate internal overlap functions are required and the two-body wave functions used here demonstrate the
accuracy of the Wronskian method. However, there is another important conclusion: the simple Eq. (75) in the peak

gives the same result as the asymptotic ratio given by Eq. (72).
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10° Tyec/(Cpe)

rpiz2
(C,120)
ANC of the mirror bound state 130(2532); the red dashed-dotted-dotted line and the red dashed-dotted lines are the low and

FIG. 2: The grey band is the experimental € ratio of the resonance width of the resonance state **N(2st,.) and the

1/2

r
upper limits of this experimental ratio; the solid red line is the %0)2 ratio as a function of R.p calculated using Eq. (72);
nl2c

(Cc
the blue dotted line is the (CF”I%C)Q ratio calculated as a function of R.p, using Eq. (75).
n C

B. Comparison of resonance width for '*N(1ds,2) — ">C(0.0 MeV) + p and mirror ANC for virtual decay
13C(1ds,2) — 2C(0.0MeV) +n

As the second example I consider the isobaric analogue states 1ds;; in the mirror nuclei BN and C. The
resonance energy of 13N(1d5/2) is Epi2¢0) = 1.6065 MeV with the resonance width of I'y12¢ = 0.047 + 0.0008 MeV
[29]. The neutron binding energy of the mirror state *C(1ds/5) is €,12¢ = 1.09635 MeV with the experimental ANC
C2,, =0.0225 fm~! [30]. The experimental ratio is I'pi2c/C2 15 = (1.1 £0.2) x 1072 .

In Fig. 3 are shown the radial wave functions of the mirror states. Following the R-matrix procedure, both wave
functions are normalized to unity over the internal volume with the radius R.;, = 3 fm. We see that the mirror wave
functions are very close at distances r < 4 fm what confirms the mirror symmetry of (p'2C), iz, and (n'2C), iz,

systems. In Fig. 4 are shown the (CF”%C) ratios calculated using Eqgs (72) and (75), which are compared with the

n +<C
experimental ratio. We see that the calculated ratios are closer to the experimental ratio than in the previous case and

(57)%0)2 ratio calculated using the simplified Eq. (75) shows the
n+t<C

R.;, dependence and is equal to 0.0141 at the peak at R., = 3.95 fm. In the case under consideration the bound-state

r
wave function does not have nodes at r > 0. That is why the ﬁ ratio calculated using Eq. (72) is a smooth
nt<C
ISP
P C

Cn® = 0.0135 at R., = 4 fm, which differs very little from its correct
n C

asymptotic value of 0.0143. Again, as in the previous case, our calculations show that the simple Eq. (75) can give
the results close to the Wronskian method.

both equations give quite reasonable results. The

function of R, . This equation gives
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FIG. 3: Solid red line: The radial wave function of the (p*2C) resonance state; dashed blue line: the radial wave function

+
1d5/2

of the mirror (leC) bound-state. r is the distance between N, where N = p, n, and the c.m. of 2C.
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FIG. 4: The grey band is the experimental (5”1%0)2 ratio of the resonance width of the resonance state 13N(ld;r/z) and the ANC
nl2c
of the mirror bound state 13C(1d5+/2); the red dashed-dotted-dotted line and the red dashed-dotted lines are the low and upper
r
limits of this experimental ratio; the green dotted line is the adopted experimental value of the ratio ﬁ = (1.14£0.2) x 1072
nl2c

r r
; the solid red line is the % ratio as a function of R, calculated using Eq. (72); the blue dotted line is the %
n C n C

ratio calculated as a function of R, using Eq. (75).
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C. Comparison of resonance width for *F(1ds,2) — "*0(0.0MeV) + p and mirror ANC for virtual decay
8C(1ds/2) — **C(0.0MeV) +n

In this section I determine the ratio I'y110/C? 14 for the mirror states 15F(1d5/2) and 15C(1d5/2). The resonance
energy and the resonance width of "*F(1ds,s) are Epag(g) = 2.77 MeV and T'pug = 0.24 £ 0.03 MeV [32]. The
binding energy and the ANC of the bound state 15C(1d5/2) are ep12c = 0.478 MeV and 0121140 =(3.6+08) x 1073
fm~!. The experimental ratio FPI4O/CT27,14C =0.338 & 0.001 .

This is the most difficult case because the resonance state is not potential. It is clear from Fig. 5.

Radial wave functions

0.0 1 1 1 1 1 1 1 1

r (fm)

FIG. 5: Solid red line: the radial wave function of the (pMO)ld5 /» Tesonance state; dashed blue line: the radial wave function

of the mirror (n**C) bound-state. r is the distance between the nucleon and the c.m. of the nucleus.

1ds /5

The mirror wave functions are normalized in the internal region » < 3.2 fm. They begin to deviate at r > 3.0
fm. Because the resonance width in the case under consideration is much wider than in the previous cases, the
calculated in the potential model resonant wave function in the external region differs significantly from the tail of
the bound-state wave function. That is why the Wronskian ratio does not have an asymptote at large r. But the
idea of the Wronskian method is to determine the I',14¢ / 0721 11¢; Tatio using the mirror wave functions in the internal
region where they practically coincide.

In Fig. 6 is shown the I‘me/Cfl 14 Tatio calculated using the Wronskian method and the simplified Eq. (75). The
Wronskian ratio at 4.0 fm is 0.32 while Eq. (75) gives 0.31. Both values are very close to the experimental ratio.

D. Comparison of resonance width for *®Ne(17) — *0(0.0 MeV) + o and mirror ANC for virtual decay
80(17) — "C(0.0MeV) + a

In this section I determine the ratio I' 120 /C? 1., for the mirror states **Ne(17) and *#O(17). The resonance energy
is Eq110(0) = 1.038 MeV . The binding energy of the bound state BO(17) is quac = 0.027 MeV. The resonance
width and the ANC of the mirror states are unknown.

The purpose of this section is to show that the ratio I'y110/ C’i 1a¢ does not depend on the number of the nodes
of the mirror wave functions. The potential model search showed that for the given resonance energy and binding
energy for [ = 1 the mirror wave functions have at » > 0 the number of nodes N =4 or 6 . The normalization region
of the mirror wave functions is r < 7.2 fm for N = 6 and r» < 6.73 fm for NV = 4. In Figs 7 and 8 are shown the radial
wave functions and the ratio I'y110/ Ci LG for the number of the nodes N = 4 and 6.

One can see that the mirror wave functions practically coincide up to r = 15 fm. It means that the simplified
Eq. (75) can be used up to 15 fm. The ratio I'y110/C? 14 calculated using Eq. (72) is the same for N = 4 and 6.
Because the mirror wave functions practically identical in the external region the ratio Ty 140/ C’i 1a¢ calculated using
the Wronskian method (Eq. (72)) has an asymptote. The calculated for N = 4, 6 ratio reaches its asymptotic value
at R.;, = 7.5 fm which is T, 140/02 e = 3.48 x 10%2. The maximum of T, 140/02 1ue calculated using Eq. (75)
at Rep, = 9 fm is 3.42 x 10°2. This comparison demonstrates again that in the absence of the microscopic internal



18

14+ .

1.0 | e

[io/(Cpic)’
o
©

06 ]

04 3

o T T T

o : :

R, (fm)

FIG. 6: The grey band is the experimental (CF:I% ratio for the resonance state 15F(1d5+/2) and the mirror bound state
15C(1d5+/2); the solid red line is the (5:1% ratio as a function of R.; calculated using Eq. (72); the blue dashed line is the
(CF:I% ratio calculated as a function of R, using Eq. (75).

overlap functions both the Wronskian and the simplified method given by Eq. (75) can be used and give very close
results.

E. Comparison of resonance width for '"F(s;,2) — '®N(0.0 MeV) + o and mirror ANC for virtual decay
TO(s1/2) — C(0.0MeV) + «

(011‘17133”)2 of the resonance state "F(1/2%) and
atsC

the mirror bound state 17O(1/2%). The orbital momentum of the mirror states is [ = 1 and the resonance energy is
E,15n(0) = 0.7371 MeV [32]. The location of the state 7O(1/2%) is questionable. The excitation energy E, of the
state 170(1/2%) is 6356 + 8 keV [32]. Taking into account that the o — 13C threshold is located at 6359.2 keV one
finds that this 1/27 level is the located at E,isc = —3 & 8 keV, that is, it can be a subthreshold bound state or a
resonance [32]. This location of the level 17O(1/2%) was adopted in the previous analyses of the direct measurements
including the latest one in [33]. If this level is the subthreshold bound state, then its reduced width is related to
the ANC of this level. However, in a recent paper [34] it has been determined that this level is actually a resonance
located at E 13 = 4.7 £ 3 keV. Because the possible subthreshold state and near threshold resonance are located
very close to each other the reduced widths corresponding to these two levels are very close. Here in the analysis I still
assume that 17O(1/2%) is the bound state with the binding energy of —3 keV. I adopt the ANC of this subthreshold
state C25 = 4.4 x 1069 fm~! [35].

The calculated mirror resonance and bound state wave functions are shown in Fig. 9. They are normalized in the
internal region r < 5.2 fm. Both wave functions practically identical up to R., < 15 fm.

The last case, which I consider, is the determination of the ratio
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FIG. 7: Panel (a): the mirror radial wave functions for N = 6; the solid red line is the (a**Q);- resonance wave function; the
dashed blue line is the radial wave function of the mirror (a'*C);- bound-state. r is the distance between the a-particle and
the c.m. of the nucleus. Panel (b): notations are the same as in panel (a) but for N = 4.

In Fig. 10 the (crﬂlil;N)Q ratio is calculated using the Wronskian Eq. (72) and the simple Eq. (75). The asymptotic
at2C

value of the ratio is (Cpalil;N)z = 4.48 x 10~ 178, The value of the (Cralif’N)z at the border of the internal region R, = 5.2
o4 C o4 C

fm is very close to its asymptotic value. Eq. (75) gives (5“171:"1)2 = 4.55 x 10~'"®. Taking into account the adopted
at°C

value of the ANC C\, 3¢ and the experimental ratio (5"171:1‘1)2 = 4.48 x 107178 one obtains from the Wronskian ratio
a 19C

the resonance width T'y 15y = 4.48 x 107178 x 4.4 x 10'% x hec = 3.9 eV.
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FIG. 8: Panel (a): the (galljo)z ratio for the resonance state **Ne(17) and the mirror bound state **O(17) for N = 6; the
a1=C

solid red line is the (61:‘11%44)2 ratio as a function of R, calculated using Eq. (72); the blue dashed line is the ﬁ ratio
alic 1c
calculated as a function of R.x using Eq. (75). Panel (b): notations are the same as in panel (a) but for N = 4.

VIII. APPENDIX

In this Appendix is shown that Zeldovich regularization procedure can be used for normalization of the resonance
wave function wy,;,, () both for exponentially decaying potentials and potentials with the Coulomb tail. The normal-
ization of the resonance wave function depends on its tail. Taking into account Eq. (13) it is enough to consider the
integral

I(B,v,2) /dre Y. (76)
0

Here, 2z =2ikoar)r = 2ikqao)r+2Imk, (g r. It is assumed that k,4(0) > Imk, 4(R), as it should be for physical
resonances. Then Rez? < 0. Also

k, Tmk,
_9; v _ 9 ¥ kaa(o) Lo v Imk,4(r)

kaaoy —ilmk,a(R) k2 aq) + (Imkga(r))? k2 o) + (Imkga(r))

=21 n(R)

(77)

27

¥ = Z4 ZA paa/137. Thus, one can see that for the repulsive Coulomb potential Rev > 0 using Eq. (3.462.1) from
[36] one gets

[(B,v,2) = T(v +1) (28) /2 e/ CN D_,_1(~2/\/25). (78)
Here D, (z) is the parabolic cylinder function. For Rez? < 0 using Eq. (9.246.1) from [36] one gets
100, v, 2) = lim I(B,v,2)=T(v+1)(=2z)"""L (79)
B—+0
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FIG. 9: The solid red line is the (a'*N); 2+ Tesonance wave function; the dashed blue line is the radial wave function of the
mirror (alSC)1/2+ bound-state. r is the distance between the a-particle and the c.m. of the nucleus.

Thus the regularization procedure used by Zeldovich is applicable and for the physical resonances k,4(0) > Imkga(r)
the integral in Eq. (76) does exist and converges in the lim § — +0 .
Let me consider now the integral

Ir(B,v,2) = /dre*m2 e*"r. (80)
R

Integrating it by parts one gets

. R g v 1
Jim Ir(B,,2) = == ¢ 1= 5 + Ol )],
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