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We propose a dynamical mechanism which provides an interaction between the spins of hyper-
ons and anti-hyperons and the vorticity of the baryon current in non-central high energy nuclear
collisions. The interaction is mediated by massive vector and scalar bosons which is well-known to
describe the nuclear spin-orbit force. It follows from the Foldy-Wouthuysen transformation and leads
to a strong-interaction Zeeman effect. The interaction may explain the difference in polarizations
of Λ and Λ̄ hyperons as measured by the STAR collaboration at RHIC. The signs and magnitudes
of the meson-baryon couplings are closely connected to the binding energies of hypernuclei and to
the abundance of hyperons in neutron stars.

Experiments at the Relativistic Heavy Ion Collider
(RHIC) and at the Large Hadron Collider (LHC) have
provided a wealth of data on the hot and dense matter
created in collisions between heavy ions [1]. Among these
data are the coefficients of a Fourier expansion in the az-
imuthal angle for various physical observables. They pro-
vide strong evidence for collective expansion of the hot
and dense matter and provide information on transport
coefficients such as the shear viscosity [2]. In addition,
the polarization of Λ and Λ̄ hyperons was proposed as
yet another observable that provides information on col-
lective flow, in particular vorticity [3, 4]. Measurements
of the polarizations have been made by the STAR col-
laboration from the lowest to the highest beam energies
at RHIC [5–7], noting that RHIC produces matter with
the highest vorticity ever observed.

The standard picture of Λ and Λ̄ polarization in non-
central heavy ion collisions assumes equipartition of en-
ergy [8, 9]. But there is a potential puzzle presented
by the experimental data: The Λ̄ polarization is greater
than the Λ polarization by a factor of 4 at the level of
2 standard deviations at

√
sNN = 7.7 GeV for Au+Au

collisions. Both the difference between the two and their
absolute values decrease with increasing beam energy un-
til they are approximately equal at

√
sNN = 200 GeV,

albeit only at the 1 standard deviation level, whereas
equipartition would suggest no difference. The interac-
tion that we propose addresses the issue of the polariza-
tion difference.

It has been known since the early days of the nuclear
shell model that a spin-orbit interaction is required to
explain the single particle energy levels [10]. It was sub-
sequently shown that attractive scalar and repulsive vec-
tor meson exchanges naturally lead to such spin-orbit
interactions via a non-relativistic reduction of the Dirac
equation [11]. Starting with the so-called Walecka model
[12] much success has been achieved in describing nu-
clear structure, proton-nucleus scattering, and high den-
sity matter using various versions of these relativistic
Lagrangians incorporating baryons and mesons [13, 14].
The fact that they include the strong interaction equiv-
alent of the magnetic force and the spin-orbit force, in-

cluding hyperons [15], suggests that this approach pro-
vides a natural explanation for the interaction between
spin and vorticity and for the difference between Λ and
Λ̄ polarizations.

Suppose that the strong interaction among bayons is
mediated by a scalar field σ and a vector field V µ. The
effective Lagrangian is

Leff =
∑
j

ψ̄j(i 6∂ −mj + gσjσ − gV j 6V )ψj

+ 1
2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4V
µνVµν + 1

2m
2
V VµV

µ . (1)

Here j represents one of the spin-1/2 baryons in the octet,
and the field strength tensor for the vector field is

Vµν = ∂µVν − ∂νVµ . (2)

In general there may be a potential U(σ) which has terms
cubic and quartic in σ but its exact form will not be
needed here.

One may perform a Foldy-Wouthuysen transformation
[16–18] (an expansion in powers of the inverse of the
baryon mass, higher order corrections may be found in
[19]) to obtain the nonrelativistic interaction between the
vector field and the spin operator S of the Λ and Λ̄. (We
set ~ = c = 1.) The interaction of the spin with the
vector meson is

HV
spin = −gV Λ

mΛ
β S·BV−i

gV Λ

4m2
Λ

S·∇×EV−
gV Λ

2m2
Λ

S·EV×p
(3)

where EV and BV are the vector meson electric and mag-
netic fields corresponding to Eq. (2), p is the momentum
of the Λ or Λ̄, and

β =

(
1 0
0 −1

)
(4)

is the usual Dirac 4x4 β matrix. When acting on the
spinors of Λ and Λ̄ they result in opposite signs whereas
the second and third terms have the same sign. The
second and third terms contribute to the usual nuclear
spin-orbit energy. Only their sum is Hermitian, not the



2

individual terms. (According to the Bianchi identity we
can replace ∇ ×EV with −∂BV /∂t.) For a spherically
symmetric static potential only the third term remains,
which becomes

HV
spin−orbit =

gV Λ

2m2
Λ

1

r

∂V0

∂r
S ·L (5)

where L = r × p is the orbital angular momentum.
For the scalar field the spin-orbit interaction is

Hσ
spin−orbit =

gσΛ

2m2
Λ

S ·∇σ × p (6)

while there is no “magnetic” interaction. For central po-
tentials this becomes

Hσ
spin−orbit =

gσΛ

2m2
Λ

1

r

∂σ

∂r
S ·L . (7)

In atomic nuclei V is identified with the ω vector meson.
A survey of results in the literature leads to gωN ≈ 8.646
and gσN ≈ 8.685 [14]. With the sign convention used here
σ > 0 represents an attractive interaction and ω0 > 0
represents a repulsive interaction. They contribute with
the same sign to the spin-orbit interaction with approx-
imately equal strengths, whereas their contributions to
the total binding energy approximately cancel.

In the mean field approximation the vector field is cal-
culated as follows [12–14].

∂µV
µν +m2

V V
ν =

∑
j

gV jJ
ν
j (8)

Here Jµj is the baryon current 〈ψ̄γµψ〉 contributed by
species j, such that protons and anti-protons contribute
with opposite signs, for example. The mean scalar field
is determined by

∂2σ +m2
σσ +

dU

dσ
=
∑
j

gσjnsj (9)

where nsj is the scalar density 〈ψ̄ψ〉 contributed by
species j, such that protons and anti-protons contribute
with the same sign, for example. These interactions
are anticipated to become relevant around the time of
hadronization of the hot and dense matter created in the
collisions which is generally accepted to be on the order
of 3 to 5 fm/c or longer. The corresponding energy scale
is much less than mω = 783 MeV and mσ ≈ 550 MeV so
that the derivatives in Eqs. (8-9) can be neglected.

For non-central potentials, ∇×EV = −∂BV /∂t 6= 0,
∇σ 6= (r/r2)∂σ/∂r, the spin-orbit terms represent an ex-
change of energy and angular momentum with the fields.
For some systems in the condensed matter context, the
electromagnetic spin-orbit interaction has been used to
derive the Gilbert term which describes Gilbert damp-
ing, the rate at which magnetization relaxes to equilib-
rium, in Refs. [20, 21]. The damping of magnetization is
commensurate with the emission of electromagnetic radi-
ation. Assuming that the baryons in high energy nuclear

collisions have a vortical flow motion, the scalar and vec-
tor meson interactions given above can provide a mecha-
nism for hyperon polarization. In addition, note that the
“magnetic” interaction is opposite in sign for hyperons
and anti-hyperons due to the factor of β.

We can make a simple estimate of the magnitudes and
signs of the effects. We work in the center-of-momentum
frame of the colliding nuclei at mid-rapidity and neglect
Lorentz γ factors. The x-z plane is taken as the reac-
tion plane with the projectile nucleus moving along the
+z direction at x = b/2 and the target nucleus moving
along the −z direction with x = −b/2. Then the angular
momentum of the produced matter is oriented in the −y
direction. The baryon species are assumed to all couple
to the vector meson with similar coefficients. (See the
discussion below.) Therefore we approximate

m2
V V

µ = ḡV J
µ
B (10)

with an effective coupling ḡV . Write the baryon current
as J0

B = nB(t) and JB = nB(t)v(x, t) with the velocity
parameterized by

v =
(
ψ̇x(t)x+ c1z/t, ψ̇y(t)y, z/t+ c3x/t

)
. (11)

The third component with z/t = tanh η, where η is space-
time rapidity, is the usual longitudinal expansion in the
Bjorken model [22]. The ψ̇x(t)x and ψ̇y(t)y terms rep-
resent transverse expansion and when they are different
they reflect elliptic flow. The c1 term represents directed
flow of the baryons as they are deflected away from the
beam axis. The c3 term represents shear flow along the
beam axis. The ci terms represent contributions to vor-
ticity since ∇ × v = (0,∆c/t, 0), where ∆c = c1 − c3,
which can be positive or negative. Baryon conservation
leads to ṅB(t) + (ψ̇x(t) + ψ̇y(t) + t−1)nB(t) = 0. In gen-

eral, for fixed transverse coordinate one expects the ψ̇
to start near zero, rise with time and then fall to zero.
Since we are interested in the time around hadronization
we take ψ̇x(t) = ax/t and ψ̇y(t) = ay/t with ax and ay
constants. Then

nB(t) = nB(tch)

(
tch
t

)ax+ay+1

(12)

where tch is the time of hadronization. The limit ax =
ay = 0 corresponds to longitudinal expansion only, while
the limit ax = ay = 1 corresponds to homologous spheri-
cal expansion. Consistent with this is the approximation
that the scalar density ns is a function of t only so that
the scalar field does not contribute to the polarization,
at least in this simple model.

This is basically a blast wave model1. At some time
tf > tch hydrodynamic flow ceases and free-streaming

1 One may change variables so that x = τ sinh ρ cosφ and x/t =
(sinh ρ/ cosh η) cosφ where ρ ≥ 0 is the transverse rapidity, and
similarly for y.
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begins. At that time x2 + y2 . R2, where R is a cutoff
on the transverse extent of the matter. The resulting
fields are

BV =
ḡV
m2
V

(
∆c

t

)
nB(t) ŷ

EV =
2ḡV
m2
V

(
1 + aav

t

)
nB(t)v (13)

with

∇×EV = −∂BV

∂t
=

2ḡV
m2
V

(
1 + aav

t2

)
nB(t)∆c ŷ (14)

where aav ≡ 1
2 (ax + ay). Then the ratio of the second to

the first coefficient in Eq. (3) is (1 + aav)/(2mΛt) which
is less than 6% for t > 3 fm/c. Due to the symmetries
of our simple model 〈EV × p〉 = 0 when averaging is
done with a Boltzmann distribution boosted by the flow
velocity v so the third term in Eq. (3) is also negligible.
The second and third terms do not contribute to the
polarization difference anyway.

Suppose that the spins were in equilibrium at temper-
ature T (tch) at time tch. With the quantization axis in
the y direction the average polarization in the high tem-
perature/weak field limit would be

Py = β
gV Λ

mΛ

|BV |
2T

= gV ΛḡV
nB(tch)

mΛm2
V

∆cβ

2tchT (tch)
. (15)

Assuming that gV ΛḡV > 0 this implies that Λ’s are po-
larized in the +y direction while Λ̄’s are polarized in the
−y direction if ∆c > 0, and the opposite if ∆c < 0.

Synergy with neutron star physics comes from the
requirement that the Lagrangian produce a relativistic
mean field equation of state that is stiff enough to sup-
port stars of at least two solar masses [23, 24]. Introduc-
tion of new degrees of freedom, such as hyperons, softens
the equation of state and lowers the maximum mass [25].
This provides a constraint on the values of the vector
coupling constants so that the appearance of hyperons is
delayed to higher densities. For example, Ref. [26] used
SU(3) flavor symmetry along with ideal ω-φ mixing to
determine the vector couplings in terms of a singlet g1,
an octet g8, and the F/(F+D) ratio α. They are

gωN = 1
3 (4α− 1)g8 +

√
2
3g1

gωΛ = − 2
3 (1− α)g8 +

√
2
3g1

gωΣ = 2
3 (1− α)g8 +

√
2
3g1

gωΞ = − 1
3 (2α+ 1)g8 +

√
2
3g1

gφN =
√

2
3 (4α− 1)g8 −

√
1
3g1

gφΛ = − 2
√

2
3 (1− α)g8 −

√
1
3g1

gφΣ = 2
√

2
3 (1− α)g8 −

√
1
3g1

gφΞ = −
√

2
3 (2α+ 1)g8 −

√
1
3g1 . (16)

Examples of numerical values which produce a two solar
mass neutron star are given in Table I. Those choices
were used for illustration in Ref. [26] because the SU(6)

values are α = 1 and g8/g1 = 1/
√

6. Greater masses are
produced when g8/g1 < 0.35 for α = 1 and when α < 0.9

for g8/g1 = 1/
√

6.

Vector α = 1 α = 0.9

Coupling g8/g1 = 0.35 g8/g1 = 1/
√

6

gωΛ/gωN 0.700 0.674

gωΣ/gωN 0.700 0.721

gωΞ/gωN 0.400 0.372

gφN/gωN -0.071 -0.066

gφΛ/gωN -0.707 -0.526

gφΣ/gωN -0.495 -0.460

gφΞ/gωN -0.919 -0.954

TABLE I. Examples of SU(3) couplings that produce a two
solar mass neutron star [26]

.

Synergy also arises with hypernuclear physics [27]. A
survey of results in the literature for Λ binding energies
in nuclei leads to gωΛ ≈ 0.55gωN and gσΛ ≈ 0.5gσN
[14]. Unlike nucleons, the spin-orbit interaction expe-
rienced by the Λ is an order of magnitude smaller than
that arising from the Foldy-Wouthuysen reduction of the
vector interaction. The physical reason for this is that,
within the quark model, the spin of the Λ is carried by
the strange quark which does not couple to the ω meson
[28, 29]. To cancel the spin-orbit interaction arising from
the vector interaction requires the tensor interaction

Ltensor = − fωΛ

4mΛ
ψ̄Λσ

µνψΛωµν . (17)

This contributes to the spin-orbit energy an amount

Htensor
spin−orbit =

fωΛ

m2
Λ

1

r

∂ω0

∂r
S ·L . (18)

Cancellation with the vector and scalar couplings implies
that fωΛ ≈ −gωΛ. The Zeeman energy

− (gωΛ + fωΛ)

mΛ
β S ·Bω

is thus suppressed. This suggests that it is the φ meson
which is the primary origin of the polarization difference,
which should be no surprise because of the matching of
the strange quark spin content of these hadrons.

In general there is no reason to expect that vector
and tensor interactions between all vector mesons and
all baryons will cancel. For example, quark models have
been used to estimate that (f/g)ωΣ ranges between 0.6
and 1.3, and that (f/g)ωΞ ranges between −1.9 and −2.3
[29]. Reference [30] used the values 1 and −2, respec-
tively. There is no empirical knowledge of the spin-orbit
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coupling involving the φ meson due to the lack of obser-
vation of multiply-strange hypernuclei [27, 31].

There are several complications before one is able to
make precision comparisons to data. These include, but
are not limited to: feed down from decays of the heavier
hyperons Σ, Ξ, and Ω; feedback of the polarized spins
to produce an effective vector meson magnetic field via
susceptibility; and a more realistic, relativistic space-time
evolution of the baryon current. Nevertheless, we make
some preliminary comparisons here. The difference in
polarization in the −y direction according to Eq. (15)
has the form

PΛ̄ − PΛ = C

(
nB(tch)

0.15/fm3

)(
140 MeV

T (tch)

)
. (19)

For the chemical potential and temperature at tch as
functions of

√
sNN we use the parameterization given in

[32]. We then use a crossover equation of state from [33]
to determine the baryon density. For illustration, since
the precise magnitude is rather uncertain for the rea-
sons given above, we consider two cases. In case I C is
independent of beam energy. In case II C ∼ 1/

√
sNN be-

cause generally the directed flow and the shear flow of net
baryons is expected to decrease with increasing energy.
We take C = 0.03 for case I and C = 0.45 GeV/

√
sNN

for case II; both assume that ∆c > 0. The coefficients are
chosen to give a reasonable visual fit to the polarization
data as shown in Fig. 1. The difference in polarizations
rises with decreasing energy because the net baryon den-
sity increases, the temperature decreases, and in case II
the factor C rises with decreasing energy. It is interest-
ing to note that the directed flow of both net protons
[34] and net Λ’s [35] is actually negative in the range
10 <

√
sNN < 30 GeV. This may reflect a change in the

equation of state of the produced matter [36]. Because
the polarization difference is sensitive to the baryon cur-
rent it is a probe of the reaction dynamics.

For comparison the true magnetic field produced in
high energy heavy ion collisions points in the −y di-
rection. The equilibrium Λ polarization due to that
field is Py = −µΛB/T which orients the spin in the
+y direction because the magnetic moment is negative:
µΛ = −0.61µN where µN is the nuclear Bohr magne-
ton. Being its anti-particle, the Λ̄ would be polarized in
the −y direction. The magnetic field has been calculated
with the inclusion of the electrical conductivity σE of the
produced matter; in its absence the magnetic field at the
time of hadronization is orders of magnitude smaller [37].
At time t at z = 0 its value is

B =
ebσE
8πt2

exp(−b2σE/4t) (20)

where b is the impact parameter. Evaluated at t =
tch = 3 fm/c, b = 7 fm, T = T (tch) = 140 MeV,
and σE = 6 MeV the magnitude of the polarization is
|Py| = 7.4 × 10−6, totally irrelevant compared to the
strong interaction induced polarization. Note also that
as long as the condition γbeambσE > 1 is satisfied there
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FIG. 1. (color online) Difference in polarization of Λ and
Λ̄ hyperons with positive meaning that it is opposite to the
total angular momentum of the produced matter. The top
panel (a) shows case I and the bottom panel (b) shows case
II, as described in the text. The data at 200 GeV comes from
[7], the rest comes from [6]. Only statistical uncertainties are
included.

is no beam energy dependence to the magnetic field. Re-
alistic transport model calculations show that the time
extent of the magnetic field is on the order of 0.2 fm/c,
which is too short to build up observable polarization
[38].

For the problem of relaxation of a small departure from
equilibrium we turn to studies in the area of spintronics.
A solution to the Bloch equations for a static magnetic
field in the y direction provides a formula for the spin
relaxation rate Γs for the magnetization in that direction
in the form [39, 40]

Γs =
〈Ω2

x〉+ 〈Ω2
z〉

Ω2
y + Γ2

c

Γc . (21)

Here Ωy is the Larmor frequency associated with the
static magnetic field, 〈Ω2

x〉 and 〈Ω2
z〉 are the average fluc-

tuations of the Larmor frequencies in the perpendicular
directions, and 1/Γc is the coherence time of a single spin,
which we take to be the time between scatterings of the
hyperons with other particles. The fluctuations in this
problem arise from the spin-orbit term involving Eω × p
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in Eq. (3). We apply this formula assuming an adiabatic
evolution of the vector meson magnetic field in the y di-
rection. Around tch the time between collisions is on the
order of several fm/c, so that Ωy < Γc. From the spin-
orbit interaction we estimate that Γs � Γc and therefore
the polarization difference should be established around
the time of hadronization at its equlibrium value and not
change significantly thereafter.

In conclusion, we have argued that well-known inter-
actions of baryons with mesons can result in a splitting
of the polarizations of Λ and Λ̄ hyperons in high energy
heavy ion collisions. This interaction is orders of mag-
ntide larger than the one arising from electromagnetic

fields. The results are sensitive to the space-time evolu-
tion of the baryon current. There is much work to be
done by theorists and experimentalists to fully exploit
this idea.
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