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Nuclei are nearly transparent to each other when they collide at high energy, but the
collisions do produce high energy density matter in the central rapidity region where most
experimental measurements are made. What happens to the receding nuclear fireballs? We
calculate the energy loss of the nuclei using the color glass condensate model. We then use a
simple space-time picture of the collision to calculate the baryon and energy densities of the
receding fireballs. For central collisions of large nuclei at RHIC and LHC we find baryon
densities more than ten times that of normal nuclear matter. These results provide initial
conditions for subsequent hydrodynamic evolution and could test the equation of state at
very high baryon densities.

I. INTRODUCTION

Since the 1980’s the high energy heavy ion community has focussed on the central rapidity
region of nucleus-nucleus collisions [1]. That followed the influential work of Bjorken in 1983
[2]. The reasons are: (i) the energy density is expected to be higher there; (ii) the matter is nearly
baryon-free, making it relevant to the type of matter that existed in the early universe and more
amenable to comparisons with lattice gauge calculations; (iii) detectors in a collider can more
readily measure particle production and correlations within one unit of rapidity around the center-
of-momentum of the colliding nuclei. The earlier work of Anishetty, Koehler and McLerran in
1980 [3], which found that nuclei were significantly compressed and excited when they collide
at extreme relativistic energies, was pursued only sporadically. In Ref. [4] we picked up the line
of work of Ref. [3] in light of the theoretical and experimental developments since then. We
found that in central collisions of gold nuclei at

√
sNN = 200 GeV, the top RHIC energy, the

central core lost about ∆y = 2.9 units of rapidity and was compressed by a factor of e∆y [3–6], a
very large compression indeed. In this paper we expand our work on the baryonic fireballs which
emerge beyond one unit of rapidity. It should be noted immediately that our calculations are not
particularly relevant to the lower beam energy scan at RHIC.

In our work we use the semi-analytical results of Refs. [7, 8], which were based on the
McLerran-Venugopalan model [9], for the energy and momentum deposited in the central rapidity
region by the colliding nuclei. Similar numerical results were obtained in Refs. [10–12]. This
produced matter is oftentimes referred to as glasma; it is the precursor to quark-gluon plasma. We
consider the backreaction of the glasma on the receding nuclei. Imposing energy and momentum
conservation on the whole system, the increase of energy and momentum for the glasma is equal
to the descrease of energy and momentum of the nuclei. Solving the energy momentum conserva-
tion equations gives us the anticipated rapidity loss and excitation energy for the receding nuclear
fireballs. We neglect transverse coupling over the brief time duration of the collision, which is
less than 1 fm/c. This means that the collisions are treated as a sum of independent tube-tube or
streak-streak collisions, dependent on the transverse position r⊥. Once we have the baryon density
and energy density, we can estimate the resulting temperature and baryon chemical potential of
the fireballs as functions of r⊥. This is done with the help of a realistic crossover equation of state
that smoothly connects the quark-gluon plasma phase at high temperature and high baryon chem-
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ical potential to the hadronic resonance gas phase at low temperature and small baryon chemical
potential [13]. Apart from the prototype Au+Au collision at

√
sNN = 200 GeV, we also explore

other collision configurations, such as the asymmetric Cu+Au collision and collisions involving
distorted nuclei like U+U collisions. Non-central collisions are also studied. In addition, we con-
sider Pb+Pb collisions at even higher energy at the LHC.

The outline of the paper is as follows. In Sec. II the formalism for implementing energy-
momentum conservation is presented. Properties of the equations of motion and determination of
the input parameters are discussed. Section III is devoted to the prototype Au+Au central collision
at
√
sNN = 200 GeV. In Sec. IV, systematic studies of the high baryon densities in high energy

heavy-ion collisions are given. We consider the nuclear size dependence, the collision energy
dependence, and the impact parameter dependence. Conclusions are presented in Sec. V.

II. BARYON RAPIDITY LOSS AND NUCLEAR EXCITATION ENERGY

In this section we discuss the equations of motion and input parameters, followed by some
numerical results.

A. Equations of Motion

For high energy heavy-ion collisions in the center-of-momentum frame, the nuclei are highly
Lorentz contracted spheres (or ellipsoids if the ground state nucleus is deformed). We neglect
transverse dynamics, which should not be important during the fraction of a fm/c time interval of
relevance. Then the collision can be thought of as a sum of tube-tube or streak-streak collisions,
each taking place at a particular value of the transverse coordinate r⊥ with the beam along the
z-axis. The projectile tube has a 4-momentum per unit area in the center-of-momentum frame
denoted by PµP = (EP, 0, 0,PP). The tube loses energy and momentum to the classical color
electric and magnetic fields produced in the region between the two receding tubes. This loss is
quantified by

dPµP = −T µνglasmadΣν (1)

where dΣν = (dz, 0, 0,−dt) is the infinitesimal four-vector perpendicular to the hypersurface
spanned by dt, dz, and unit transverse area. The energy-momentum tensor of the glasma has been
calculated in Refs. [7, 8] as

T µνglasma =


A+ B cosh 2η 0 0 B sinh 2η

0 A 0 0
0 0 A 0

B sinh 2η 0 0 −A+ B cosh 2η

 . (2)

The A and B are functions of proper time τ =
√
t2 − z2 (and other input parameters to be dis-

cussed in the following), while the dependence on space-time rapidity η = 1
2

ln[(t + z)/(t − z)]
follows from the fact that T µνglasma is a second-rank tensor in a boost-invariant setting. The longi-
tudinal position of the tube zP is a function of time, zP = zP(t). The zP is related to the time t
via the velocity vP = dzP/dt = tanh yP, where yP is the momentum-space rapidity of the tube.
Hence all the quantities solely depend on t. Note that T µνglasma must be evaluated on the trajectory
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of the tube. Explicitly

dEP(t, zP) = −T 00
glasma(t, zP)dzP + T 03

glasma(t, zP)dt ,

dPP(t, zP) = −T 30
glasma(t, zP)dzP + T 33

glasma(t, zP)dt .
(3)

It is useful to define the Lorentz invariant effective mass per unit areaMP via the relations EP =
MP cosh yP and PP =MP sinh yP so that

dEP = cosh yP dMP +MP sinh yP dyP ,

dPP = sinh yP dMP +MP cosh yP dyP .
(4)

We then express the differential form of the energy momentum conservation in Eqs. (3) in terms
of the Milne coordinates (τ,x⊥, η). Using the transformations τ =

√
t2 − z2

P and ηP = 1
2

ln[(t +
zP)/(t− zP)], the pseudorapidity of the projectile slab ηP follows the equation

τ
dηP

dτ
= tanh (yP − ηP) (5)

where the auxilliary relations between (t, zP) and (τ, ηP)

dτ

dt
=

cosh (yP − ηP)

cosh yP

,

dτ

dzP

=
cosh (yP − ηP)

sinh yP

,

(6)

have been used. Substituting Eqs. (2), (4) and (6) into Eq. (3), we obtain the equations of motion
for the rapidity yP and the effective massMP of the projectile slab in terms of Milne coordinates

−MP cosh (yP − ηP)
dyP

dτ
= A(τ)− B(τ) cosh (2yP − 2ηP) ,

cosh (yP − ηP)
dMP

dτ
= −B(τ) sinh (2yP − 2ηP) .

(7)

Note that Eq. (7) should be supplemented by the equation for pseudorapidity ηP via Eq. (5).
It is important to point out that yP and MP are dynamical variables while ηP is a geometric
variable coming from the coordinate transformation. Equations (5) and (7) are coupled first order
differential equations. Given the functions A(τ) and B(τ) from the glasma energy-momentum
tensor, initial conditions are needed to solve for yP,MP and ηP. But before discussing the initial
conditions and numerical solutions to the equations, a few important properties of Eqs. (5) and (7)
are worth noting.

• If B(τ) = 0, the glasma energy-momentum tensor becomes diagonal, T µνglasma =
diag(A,A,A,−A), which is like the string rope model [14, 15]. In that case, dMP/dτ = 0
and the effective massMP does not change with time. No energy is deposited in the nu-
cleus. On the other hand, the rapidity yP decreases with time. As long as A(τ) 6= 0, yP

decreases until it becomes negative when the yo-yo type motion in string rope models ap-
pears. Therefore, a nonvanishing B(τ) is necessary to incorporate nuclear excitation energy
and prevent the appearance of yo-yo type motion. The glasma energy-momentum tensor
predicts a nonvanishing B(τ). Physically, the function A(τ) represents contributions from
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the longitudinal chromo-electromagnetic fields Ez and Bz, while the function B(τ) repre-
sents contributions from the transverse chromo-electromangetic fields Ei and Bi. Initially,
at τ = 0,A 6= 0 and B = 0, so the transverse fields are zero while the longitudinal fields are
nonzero. As the glasma evolves, B gradually increases while A gradually decreases until
they become nearly equal; see Sect. IIc.

• If B(τ) > 0, the effective mass MP(τ) increases or decreases with time according to
the sign of yP(τ) − ηP(τ). For the excitation energy MP(τ) to increase with time,
yP(τ) < ηP(τ) has to be maintained. From the definition tanh yP = dzP/dt, one ob-
tains zP =

∫ t
0

tanh yP(t′)dt′ > tanh yP(t) t because the velocity of the projectile tube
vP = tanh yP decreases with time. With tanh ηP = zP/t, the condition yP < ηP is strictly
guaranteed. Hence, positive values of B(τ) predicts an increase of the effective mass and
nuclear excitation energy. In addition, as long as yP 6= ηP, the effective mass always in-
creases with time, which brings up the question of a cutoff time dependence of the nuclear
excitation energy. Physically, the increase of effective mass is governed by the strength of
the transverse chromo-electromagnetic fields in the glasma which gradually builds up over
time. It is worthwhile pointing out that this increase of transverse chromo-electromagnetic
fields is not due to the decrease of the effective mass but comes from the decrease of the
longitudinal chromo-electromagnetic fields.

• For yP < ηP, Eq. (5) predicts that the pseudorapidity ηP, like yP, also decreases with time.
This decrease of ηP is purely kinematic in nature as a way to respond to any changes of yP.
On the other hand, Eq. (7) predicts that the rate of momentum space rapidity loss dyP/dτ
becomes smaller and smaller and finally saturates due to the time dependent properties of
the functions A(τ) and B(τ).

To summarize, the nonvanishing, positive function B(τ) in the glasma energy-momentum
tensor, which is due to the transverse chromo-electromagnetic fields that gradually build up, is
responsible for the nuclear excitation and prevents the momentum space rapidity from forever
decreasing.

B. Determining the Input Parameters

Initial conditions must be specified. For nucleus-nucleus collisions at center-of-momentum
collision energy per nucleon pair

√
sNN , the initial rapidity yP(τ = 0) is computed by

yP(τ = 0) ≡ y0 = cosh−1

(√
sNN

2mN

)
(8)

where mN = 0.937(8) GeV is the nucleon mass. All tubes have the same initial momentum space
rapidity. The initial value of pseudorapidity ηP(τ = 0) is indeterminate, so we choose the initial
value of ηP to be equal to y0 and start numerical calculations at an infinitesimal initial time τ = 0+.
Since we consider nucleus-nucleus collisions as a sum of tube-tube collisions at different r⊥, the
initial effective mass, which is the mass per unit area, depends on the transverse position as

MP(r⊥, τ = 0) = TA(r⊥)mN . (9)

Here TA(r⊥) =
∫
dz ρA(r⊥, z) is the nuclear thickness function for a nucleus with mass number

A. The function ρA(r⊥, z) is the Woods-Saxon distribution for a spherical nucleus.
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Apart from the initial conditions, other input parameters come from the glasma energy-
momentum tensor. Specifically, the functions A(τ) and B(τ) in Eq. (2) factorize into two parts:
the overall normalization ε0 which is independent of time, and the time-dependent evolution func-
tions. They can be expressed as

A(τ) = ε0FA
(
ln (Q2/m2), Qτ

)
,

B(τ) = ε0FB
(
ln (Q2/m2), Qτ

)
,

(10)

The functions FA and FB depend on two free parameters, the ultraviolet cutoff scale Q and the
infrared cutoff scale m on the transverse momentum. The ultraviolet cutoff scale characterizes the
division between a description in terms of classical gluon fields and perturbative QCD . Larger
values of Q attribute more energy and momentum to the classical fields whereas smaller values of
Q attribute moere to the production of partons or minijets. The infrared cutoff is identified as the
ΛQCD scale. The main complication comes from the initial energy density ε0. To facilitate further
discussions, we quote its expression here from Ref. [8].

ε0(r⊥) = 2πα3
s

Nc

N2
c − 1

µ1(r⊥)µ2(r⊥) ln

(
Q2

1

m2
1

)
ln

(
Q2

2

m2
2

)
(11)

Clearly, for different slab-slab collisions characterized by different values of r⊥, the initial energy
densities ε0(r⊥) are different. This is due to the width µ(r⊥) of color charge fluctuations per unit
area. Here µ1(r⊥) and µ2(r⊥) are the color charge fluctuation widths for the two colliding slabs.
Considering a nucleus, we assume that µA(r⊥) is a sum of contributions from all the nucleons at
r⊥, that is µA(r⊥) = TA(r⊥)µN [16, 17]. The µN , which characterizes the gluon saturation for a
nucleon, is related to the gluon saturation scale Q2

s,N up to a logarithmic modification [18]. The
proton saturation scaleQ2

s,N can be extracted from deep inelastic scattering experimental data [19].
With these considerations, we relate the color charge squared per unit area for a tube at transverse
position r⊥ to the tube at the central core region of the nucleus r⊥ = 0 by

µ(r⊥)

µ(r⊥ = 0)
=

TA(r⊥)

TA(r⊥ = 0)
. (12)

As a consequence, the initial energy density for a tube-tube collision at transverse position r⊥
scales as

ε0(r⊥)

ε0(r⊥ = 0)
=

[
TA(r⊥)

TA(r⊥ = 0)

]2

. (13)

In arriving at Eq. (13), we assume the ultraviolet cutoff Q and the infrared cutoff m are the same
for all the slabs given the same two colliding nuclei for a fixed collision energy. For asymmetric
collisions, the respective nuclear thickness function has to be used. To determine the initial energy
density at the central core ε0(r⊥ = 0), initial conditions for hydrodynamic equations are invoked.
Hydrodynamic equations require the initial value of the energy density εhydro(τ0) ≡ εhydro(x =
0, y = 0; τ = τ0) at spatial location x = 0, y = 0 with τ0 the moment when hydrodynamics begins.
Both εhydro(τ0) and τ0 are free input parameters of hydrodynamic simulations and are tuned to
reproduce the experimental data. We assume the initial classical gluon fields from the glasma state
are valid until τ = τ0 when it is switched to the hydrodynamic state. This is in the same spirit as
the IP-Glasma model [16, 17]. Therefore, the glasma energy density εglasma = A(τ) + B(τ) (see
Eq. (2)) at the central core equals εhydro(τ0) at τ = τ0.

ε0(r⊥ = 0)
[
FA
(
ln (Q2/m2), Qτ0

)
+ FB

(
ln (Q2/m2), Qτ0

)]
= εhydro(τ0). (14)

Hence ε0(r⊥ = 0) can be solved once εhydro(τ0) and τ0 are given.
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C. Numerical Results

In this subsection we consider Au+Au collisions at zero impact parameter at the center-of-
momentum collision energy

√
sNN = 200 GeV. We focus on the tube-tube collision that comes

from the central core of the nucleus characterized by r⊥ = 0 and compute the rapidity loss and
nuclear excitation energy. The initial beam rapidity is y0 = 5.36. The infrared cutoff is chosen
to be m = ΛQCD = 0.2 GeV. The initial mass per unit area isMP(r⊥ = 0) = 2.03 GeV/fm2.
We use the hydrodynamic initial energy density εhydro(τ0 = 0.6 fm/c) = 30.0 GeV/fm3, which
has been used in viscous hydrodynamic simulations in Ref. [20]. Depending on the ultraviolet
cutoff chosen, ε0(r⊥) has values 123.2, 142.0 and 158.1 GeV/fm3 for Q = 3.0, 4.0 and 5.0 GeV,
respectively; see Fig. 1. Different values of the ultraviolet cutoff Q only influence the time evolu-
tion of energy density at very early times (τ <∼ 0.15); all the energy densities converge to the same
values at later time when the transition to quark-gluon plasma is assumed to occur. Typical time
dependences of FA(τ) and FB(τ) for Q = 4.0 GeV are given in Fig. 2.

��� ��� ��� ��� ��� ��� ���
�

��

���

���
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FIG. 1: Time evolution of the energy density for different values of the ultraviolet cutoff scale Q given the
hydrodynamic initial energy density εhydro(τ0 = 0.6 fm/c) = 30.0GeV/fm3.

With these input parameters we solve the equations of motion Eqs. (7) and (5) up to proper
time τ = 0.6 fm/c. Figure 3 shows the momentum-space rapidity yP of the central core of a gold
nucleus as a function of proper time τ . The final rapidity in the center-of-momentum frame is
2.47. The central core loses about 2.9 units of rapidity within the first 0.1-0.2 fm/c; this is a robust
result, insensitive to the value of Q. The rate of rapidity loss decreases with time at the beginning
and finally approaches values close to zero, unlike the forever decreasing rapidity in string models.

Figure 4 shows the excitation energy per baryon in units of the nucleon mass as a function
of proper time. There is a slow but monotonic increase, unlike the rapidity loss whose asymp-
totic limit is reached within a few tenths of a fm/c. There is a weak dependence on Q. As
can be seen from Eq. (7), the increasing rate of the nuclear excitation energy is determined by
2B(τ) sinh (ηP − yP). At late time, B(τ) maintains an almost constant postive value as shown in
Fig. 2 while the difference ηP− yP slowly diminishes but maintains finite positive value as shown
in Fig. 5. As a consequence, the increasing rate of the excitation energy gradually decreases. At
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FIG. 2: The dependence of FA(τ) and FB(τ) on proper time for Q = 4.0GeV.

τ = 0.6 fm/c the excitation energy reachesMP/MP(τ = 0) = 6.97, approximately seven times
larger than the nucleon rest mass.
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FIG. 3: Rapidity of the central core of a gold projectile nucleus in the center-of-momentum frame for√
sNN = 200GeV as a function of proper time. The result is insensitive to the choice ofQ in the physically

relevant range.
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FIG. 4: Excitation energy per baryon in the central core of a gold projectile nucleus in the center-of-
momentum frame for

√
sNN = 200GeV as a function of proper time. The result is mildly sensitive to the

choice of Q in the physically relevant range.
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FIG. 5: Momentum space rapidity yP and coordinate space pseudorapidity ηP as functions of proper time
for the central core of a gold projectile nucleus in the center-of-momentum frame for

√
sNN = 200GeV.

The ultraviolet cutoff is Q = 4.0GeV. The condition yP < ηP is maintained in the physically relevant
proper time range.
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III. HIGH BARYON AND ENERGY DENSITIES ACHIEVABLE AT TOP RHIC ENERGY

In the previous section we calculated the rapidity loss and excitation energy for one single
tube-tube collision that comes from the central core of the nucleus. In this section, we repeat the
calculations for all the tube-tube collisions at different r⊥ with the help of Eqs. (9) and (13) for
central Au+Au collisions at

√
sNN = 200 GeV. Different tube-tube collisions characterized by

r⊥ will produce different rapidity losses yP(r⊥, τ) and different excitation energies MP(r⊥, τ).
Once yP(r⊥, τ) andMP(r⊥, τ) have been obtained, the average rapidity loss is readily computed,
which is constrained by the experimental data from the BRAHMS collaboration [21, 22]. Further-
more, rapidity loss and excitation energy predict the baryon density and energy density that can be
achieved. Additional thermodynamic properties of the high baryon density matter like temperature
and baryon chemical potential can be calculated with the help of an appropriate equation of state.

A. Net-Baryon Rapidity Distribution

By collecting all the baryons at different r⊥ after the collision at proper time τ0 and record
their final rapidity yP(r⊥, τ0), one obtains the net-baryon rapidity distribution at that time. Let
yP(r⊥) denote the rapidity for the projectile tube at r⊥ at proper time τ0 = 0.6 fm/c. The net-
baryon rapidity distribution dNB/dy is computed by summing up all the baryons at different r⊥
that have rapidity y.

dNB

dy
=

∫ 2π

0

dφ

∫ RA

0

r⊥dr⊥ TA(r⊥) δ(y − yP(r⊥)) =
2πr⊥TA(r⊥)

|dyP/dr⊥|

∣∣∣∣
r⊥=r⊥(y)

(15)

Here RA is the radius of the nucleus and and TA(r⊥) the nuclear thickness function. We assume
azimuthal symmetry in the transverse plane. The total number of baryons should be equal to the
nuclear mass number A =

∫ y0

0
dNB
dy
dy with y0 the initial beam rapidity. The average rapidity loss

follows from
〈δy〉 = y0 −

1

A

∫ y0

0

y
dNB

dy
dy. (16)

Figure 6 shows the net-baryon rapidity distribution at τ = 0.6 fm/c after the collision of gold
nuclei at

√
sNN = 200 GeV. The initial beam rapidities are y0 = ±5.36 and the final rapidities for

the central core of the Au nuclues are yP(r⊥ = 0) = ±2.47. The central core of the gold nucleus
experiences the largest rapidity loss while the peripheral part (r⊥ ∼ RA ) experiences the smallest
rapidity loss. For now we ignore possible thermal motion of baryons inside the nuclear tubes so
that all the baryons at r⊥ have the same rapidity yP(r⊥). That is why there is a sharp vertical line
at y = 2.47. The average rapidity loss is computed to be 〈δy〉 ≈ 2.4. The BRAHMS collaboration
[21, 22] was the only detector at the RHIC that could measure particle production anywhere near
the fragmentaion regions. The coverage was limited to |y| ≤ 3.1, so the uncertainty in the rapidity
loss estimate was large. For 0-5% centrality BRAHMS found an average rapidity loss of about
2.05 + 0.4/0.6. This is consistent with our result, especially since we focus on 0% centrality for
illustration.
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FIG. 6: Net-baryon rapidity distribution at τ = 0.6 fm/c in the center-of-momentum frame after the colli-
sion for Au+Au at

√
sNN = 200GeV. The initial beam rapidities are y0 = ±5.36.

B. Large Baryon and Energy Densities

With the rapidity loss yP(r⊥, τ) and the excitation energyMP(r⊥, τ), we are able to calculate
the baryon density and the energy density. The baryon density at proper time τ0 is computed by
[3–6]

nB(r⊥, z
′, τ0) = e∆y(r⊥,τ0) ρA(r⊥, z

′ e∆y(r⊥,τ0)), (17)

where z′ = z − zP(r⊥, τ0) is the longitudinal coordinate in the local rest frame of the tube char-
acterized by r⊥. The change of rapidity ∆y(r⊥, τ0) = y0 − yP(r⊥, τ0) depends on the transverse
position r⊥. Different parts of the colliding nucleus characterized by r⊥ have different time depen-
dent rapidity yP(r⊥, τ) and different longitudinal trajectory zP (r⊥, τ) as viewed in the center-of-
momentum frame. Those tubes that are close to the central core of the nucleus experience larger
rapidity loss and travel a smaller longitudinal distance zP(r⊥ ∼ 0, τ0) at time τ0, while those tubes
close to the peripheral region of the nucleus experience small rapidity loss and travel to a larger
longitudinal distance zP(r⊥ ∼ RA, τ0). Therefore, different tubes characterized by different r⊥
are separated along the longitudinal direction due to different zP(r⊥, τ0) at τ0, and the spherical
shape of the nucleus before the collision will no longer be maintained after the collision. Since
yP(r⊥, τ) also depends on r⊥, there is no single reference frame that is the local rest frame for all
the tubes comprising the fireball. Each tube has its own local rest frame by boosting the center-of-
momentum frame to the frame moving at rapidity yP(r⊥, τ0). Multiplying the baryon density by
the nuclear excitation energy, one obtains the energy density

ε(r⊥, z
′, τ0) =

MP(r⊥, τ0)

MP(r⊥, τ = 0)
mN nB(r⊥, z

′, τ0). (18)

The energy density relies on the excitation energy which slowly increases with time, see Fig. 4.
Hence, the energy density depends on the proper time chosen to evaluate its value.
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Figure 7 shows the proper energy and baryon densities as functions of the transverse co-
ordinate at τ = 0.6 fm/c for z′ = 0. It should be noted that the maximum baryon density,
about 3 baryons/fm3, is 20 times greater than the normal matter density of 0.155 nucleons/fm3.
The maximum energy density is about 20 GeV/fm3, much larger than the critical energy density
∼ 1.0 GeV/fm3 for the formation of quark-gluon plasma.

Figure 8 is a contour plot of the proper baryon density. The contours are drawn at nB = 3,
2, 1, 0.5, and 0.15 baryons/fm3. The shapes of the contours arise for the following reasons. The
diameter of a gold nucleus 2RA is about 14 fm. The core centered at r⊥ = 0 along the z axis
contains the most matter, suffers the greatest deceleration, and hence the greatest compression.
Moving outward with increasing r⊥, the length of the tube is decreased to 2

√
R2
A − r2

⊥, and the
deceleration, and hence compression, is reduced. These opposing effects approximately cancel
each other, giving rise to roughly rectangular contours in the r⊥ − z′ plane. Care must be taken
when interpreting this figure. Since the rapidity loss depends on r⊥ it means that there is a shear
in the r⊥ direction, and there is no single global frame of reference for all elements of the fireball.
It should be emphasized that the baryon densities calculated here are more robust than the energy
densities. The reason can be seen by comparing Eqs. 3 and 4. The rapidity loss, and therefore
compression, is determined mostly within the first few tenths of a fm/c when the glasma dominates
the dynamics. The excitation energy continues its slow growth as time goes on. If the transition
from glasma to quark-gluon plasma happens earlier than 0.6 fm/c, it would reduce the excitation
energy but hardly affect the compression. Exactly how the transition occurs is a topic of much
current interest and activity. This should be kept in mind in the following discussions.
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FIG. 7: The energy and baryon densities at τ = 0.6 fm/c as functions of the transverse distance for central
collisions of Au nuclei at

√
sNN = 200GeV.
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FIG. 8: Contour plot of the proper baryon density for central collisions of Au nuclei at
√
sNN = 200GeV.

The numbers are in units of baryons per fm3. The horizontal axis measures the distance along the beam
direction in the local rest frame. Care must be taken when interpreting this plot since the rapidity of the
matter and therefore the frame of reference depend on r⊥.

Both the baryon density Eq. (17) and the energy density Eq. (18) are evaluated in the local
rest frame of the tube characterized by r⊥. In this representation, Fig. 8 displays the volume in-
formation of the fireball. To present the distributions in the center-of-momentum frame, where the
spatial distribution of baryons is apparent, requires making Lorentz boosts from the individual lo-
cal rest frame characterized by r⊥ to the center-of-momentum frame. Note that the baryons shown
in Fig. 8 share the same proper time τ instead of the same Cartesian coordinate time t. Figure 9
is a schematic picture of the central tube after collision in its own rest frame. Let (t∗, z∗) denote
Cartesian coordinates in the center-of-momentum frame and (t′, z′) denote Cartesian coordinates
in the local rest frame of the nuclear slab. Making the Lorentz transformation one gets

z′L = γP(z∗L − βPt
∗
L), (19)

where γP = cosh yP and βP = tanh yP with yP the rapidity of the tube. The baryons all have the
same proper time τ when viewed in the center-of-momentum frame so that z∗L = τ sinh ηL and
t∗L = τ cosh ηL. Here ηL is the pseudorapidity defined in the center-of-momentum frame. Then
z′L = τ sinh (ηL − yP) which, compared with z∗ = τ cosh ηL, is just a shift of rapidity from ηL to
ηL − yP. Therefore, the space-time pseudorapidity ηL of a baryon labeled by L in the center-of-
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FIG. 9: Schematic picture of the tube for the central core of a nucleus in its local rest frame.

momentum frame is related the the corresponding coordinate z′L in the local rest frame by

ηL = sinh−1

(
z′L
τ

)
+ yP . (20)

A potential problem with Eq. (20) is that for z′O = 0 it predicts ηO = yP, which is not exactly
true since ηO slightly deviates from yP; see Fig. 5. Here O indicates the center of the tube in Fig.
9. However, this only slightly influences the absolute position of the pseudorapidity for the center
of the tube; the span of the pseudorapidity remains unchanged. This analysis improves upon and
supercedes that reported in Ref. [4].

Figure 10 shows the baryon distribution in the r⊥ − η plane using Eq. (20). The central
tube spans about 1.5 units of rapidity. This distribution is useful as an initial condition for the
subsequent hydrodynamic evolution in space and time, which is outside the scope of this paper.

C. Temperature and Baryon Chemical Potential

The previous results and discussions have not assumed the fireballs in the fragmentation re-
gions to be thermalized. High energy densities are only necessary but not sufficient conditions for
the formation of quark-gluon plasma. If and when thermalization occurs is hard to know. The
proper time τ = 0.6 fm/c is the typical time when quark-gluon plasma is believed to be formed in
the central region of Au+Au collisions at

√
sNN = 200 GeV and is also the time when the matter

in the central region is assumed to be thermalized. Exactly how the quark-gluon plasma in the
central region equilibrates and thermalizes has not reached a definitive conclusion yet and is still
under active investigation [23]. The practical approach is to assume the thermalization has been
reached and tune the input parameters at τ = 0.6 fm/c (for example) so as to reproduce exper-
imental data. The exact mechanism for the thermalization is actually not so relevant as long as
it predicts the required initial conditions at τ = 0.6 fm/c constrained by experimental data. As
for the fragmentation regions, Anishetty, Koehler and McLerran [3] argued that the matter in the
fireballs in the fragmentation regions could thermalize due to interactions of secondary particles.
Since then, there has been very little research concerning the fragmentation regions, not to mention
the thermalization problem. Thermalization in the fragmentation regions, if it is possible, could
be as challenging as the thermalization problem in the central region and beyond the scope of this
paper. Just like the current practice in the central region, we assume the fireballs have reached
thermalization and explore the consequences.
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FIG. 10: Contour plot of the proper baryon density for central collisions of gold nuclei at
√
sNN =

200GeV. The numbers are in units of baryons per fm3. The horizontal axis is the space-time pseudo-
rapidity in the center-of-momentum frame.

Assuming local thermal equilibrium, what are the temperature and baryon chemical poten-
tial? To answer that question we need an equation of state. In the limit of very high temperature
and baryon density, the equation of state can be calculated using perturbative QCD in thermal
field theory [24, 25]. On the other hand, in the low temperature and small baryon density regime,
the relevant degrees of freedom are hadrons. For a thermalized system of hadrons, the hadron
resonance gas model gives a very good description of the thermodynamic properties of the sys-
tem. Furthermore, first principle calculations based on lattice QCD provides robust results for the
equation of state of a system of quarks and gluons in a very wide range of temperature for zero
baryon chemical potential [26, 27]. Extending to finite baryon chemical potential has the notori-
ous sign problem. Currently, much effort has been devoted to extending the lattice calculations to
finite baryon chemical potential [28]. In the following, we will use a crossover equation of state
[13] that smoothly connects the quark-gluon plasma phase and the hadronic resonance gas phase
consistent with lattice data [27, 29]. This equation of state does not contain a first order phase
transition line or critical point. Instead, the transition from the quark-gluon plasma phase to the
hadronic resonance gas phase is a rapid, smooth crossover both for zero baryon chemical potential
and for nonzero baryon chemical potentials. The crossover equation of state [13] has the form

P (T, µ) = S(T, µ)Pqg(T, µ) + [1− S(T, µ)]Ph(T, µ). (21)
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with the switching function

S(T, µ) = exp{−θ(T, µ)}, θ(T, µ) =

[(
T

T0

)r

+

(
µ

µ0

)r]−1

. (22)

Here Pqg represents the perturbative QCD results for the pressure of the quark-gluon plasma phase
while Ph represents pressure from the excluded volume model of the hadronic resonance gas phase.
The switching function S(T, µ) asymptotically approaches 1 for very large T and µ and asymp-
totically approaches 0 for very small T and µ. The free parameters T0, µ0 and r are optimized to
be consistent with lattice data.

Given the energy and baryon density distributions for z′ = 0 shown in Fig. 7, we compute the
corresponding temperature and baryon chemical potential distributions using the crossover equa-
tion of state from Eqs. (21) and (22). Figure 11 shows the temperatures and baryon chemical
potentials for different rapidities yP instead of r⊥. Note that there is a one-to-one correspondence
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FIG. 11: The temperature and baryon chemical potential in the fragmentation region as a function of mo-
mentum space rapidity at τ = 0.6 fm/c. Values are calculated for z′ = 0 as defined in Eq. (17). Only
matter with energy densities larger than 1.0GeV/fm3 have been displayed.

between r⊥ and yP: yP = yP(r⊥). Only those areas with energy densities larger than 1.0 GeV/fm3

have been displayed. In the range of rapidity from 2.47 to 3.45, the value of the baryon chemical
potential increases from 655 MeV to 1020 MeV while the value of the temperature correspond-
ingly decreases from 328 MeV to 155 MeV. The baryon chemical potential to temperature ratio
ranges from 2.0 to 6.5 as shown in Fig. 12. The same data is shown in the µB − T plane in
Fig. 13. Assuming the subsequent expansion of the thermalized high baryon density matter after
τ = 0.6 fm/c is approximately adiabatic, just like in the central region, then typical phase trajec-
tories in the µB − T plane may be computed. See Fig. 14 for three different entropy per baryon
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FIG. 12: Ratio of baryon chemical potential to temperature as a function of momentum space rapidity at
τ = 0.6 fm/c.
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FIG. 13: The initial temperatures and baryon chemical potentials in the fragmentation regions at τ =

0.6 fm/c with energy density larger than 1.0GeV/fm3. Values are calculated for z′ = 0 as defined in Eq.
(17).

ratios. The corresponding momentum space rapidities are correlated with the entropy per baryon.
These phase trajectories tilt to the right after changing from the quark-gluon plasma phase to the
hadronic gas phase. In the transition region, the temperature decreases very quickly while the
baryon chemical potential decreases very slowly. From these phase trajectories, it is possible that
the expansion of the high baryon density matter in the fragmentation regions might go through or
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near the region in the µB − T plane where a first order phase transition line or a critical point are
conjectured to occur [30, 31]. As shown in Fig. 15, the entropy per baryon ratio might be in the
right range so that a scan through the momentum space rapidity may locate the critical point.
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FIG. 14: Phase trajectories of adiabatic expansion at three different rapidities and entropy per baryon ratios.
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FIG. 15: Entropy per baryon as a function of the momentum space rapidity. A rapidity scan may help locate
the critical point.
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IV. HIGH BARYON DENSITY ACHIEVABLE IN OTHER COLLISION CONFIGURATIONS

To extend the previous analysis of the high baryon densities achieved outside the central rapid-
ity region of Au+Au collisions at

√
sNN = 200 GeV to other heavy ion collision configurations

involving different nuclear sizes, different collision energies or different impact parameters, the
crucial step is to determine the initial energy density of the glasma ε0(r⊥) for these different col-
lision configurations. In the case of central Au+Au collisions at

√
sNN = 200 GeV, the ε0(r⊥)

is determined by ε0(r⊥ = 0) through the nuclear thickness function TA(r⊥), while ε0(r⊥ = 0) is
fixed by the initial energy density of hydrodynamics at τ0 = 0.6 fm/c, assuming that the classi-
cal gluon fields are valid up to the time when hydrodynamic evolution of the quark-gluon plasma
begins. In principle, we can repeat this procedure to determine ε0(r⊥) for other collision config-
urations as long as we know the starting time of hydrodynamics τ0 and the energy density at that
time ε(r⊥ = 0, τ0). These two quantities are usually optimized to reproduce bulk experimental
data after running hydrodynamic simulations. In the following analysis, however, we take a dif-
ferent approach in determining ε0(r⊥) for other collision configurations. We assume that Eq. (11)
is the formula which determines the initial energy density ε0(r⊥). Rewritten more explicitly, the
initial energy density

ε0(r⊥) ≡ ε0

[
µi(r⊥,

√
s), Qi(r⊥,

√
s)
]

(23)

is a functional of µi(r⊥,
√
s) and Qi(r⊥,

√
s) with i = 1, 2 indicating the two colliding nuclei.

We assume the infrared cutoffs to be the same m1 = m2 = ΛQCD for the two colliding nuclei.
Both the color charge squared per unit area µi and the ultraviolet cutoff Qi depend, in principle,
on the transverse position r⊥ and the center-of-momentum collision energy

√
s. The color charge

squared per unit area for a nucleus is related to that of a nucleon by

µA(r,
√
s) = TA(r⊥)µN(

√
s). (24)

We assume, for a given nucleus-nucleus collision, that the ultraviolet cutoff is independent of the
transverse position r⊥ so that

QA(r⊥,
√
s) = QA(

√
s). (25)

The central Au+Au collision at
√
sNN = 200 GeV will serve as a reference for other collisions

involving different nuclear sizes, different collision energies and different impact parameters.

A. Nuclear Size Dependence

In this subsection, we consider heavy-ion collisions at fixed center-of-momentum collision
energy

√
sNN = 200 GeV. We will study Cu+Cu, Cu+Au, and U+U collisions in addition to

Au+Au collisions. RHIC has already run Cu+Cu, Au+Au, and Cu+Au collisions at
√
sNN =

200 GeV and run U+U collisions at
√
sNN = 193 GeV. For a fixed center-of-momentum collision

energy, the initial energy density for a general nucleus-nucleus central collision can be obtained
with reference to the Au+Au collision by

ε0,A(r⊥) =

[
TA(r⊥)

TAu(r⊥ = 0)

]2

ε0,Au(r⊥ = 0). (26)

The initial energy density for Au+Au collisions is ε0,Au(r⊥ = 0) = 142.0 GeV/fm3 for the ul-
traviolet cutoff Q = 4.0 GeV; see Fig. 1. Since the rapidity loss is insensitive to the ultraviolet
cutoff, we choose Q = 4.0 GeV for all collisions at

√
sNN = 200 GeV.
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Computation of nuclear thickness functions involves the Woods-Saxon nuclear distribution
function. For spherical nuclei, such as Au and Cu, the Woods-Saxon distributions ρA(r) are spher-
ically symmetric. For deformed nuclei like U, we use the following parameterization [32, 33]

ρA(r) =
ρ0

1 + e
r−RAΩ(θ)

ξ

. (27)

Here ρ0 = 0.166 fm−3, ξ = 0.44 fm, RA = 6.86 fm and Ω(θ) = 1 + β2Y
2

0 (θ) + β4Y
4

0 (θ) with
β2 = 0.280 and β4 = 0.093. The Y l

m(θ) are spherical harmonic functions. The angle θ is related to
the Cartesian coordinates by sin θ = r⊥/r and cos θ = z/r. The θ = 0 corresponds to the direction
of the longest axis while θ = π/2 corresponds to the direction of the shortest axis. Equation (27)
describes an ellipsoid-like shape. In central U+U collisions, depending on the orientations of the
uranium nuclei, there could be many different collision configurations. In the following discussion,
we only consider the tip-tip collision configuration where the longest axes of the uranium nuclei
align with the beam directions.

Table I presents several physical quantities associated with the three collisions of different
nuclear sizes at

√
sNN = 200 GeV, which are Cu+Cu, Au+Au and U+U (tip-tip) collisions. They

√
sNN = 200GeV Cu+Cu Au+Au U+U (tip-tip)

εhydro(GeV/fm3) 13.3 30.0 52.3

〈δy〉 1.93 2.40 2.67

yP 2.87 2.47 2.19

nB(1/fm
3) 2.04 3.01 3.94

εP(GeV/fm3) 9.0 20.0 33.8

T (MeV) 264.1 328.1 376.0

µB(MeV) 693.0 655.4 643.9

s/nB 18.33 23.53 27.82

TABLE I: Three different collision configurations at
√
sNN = 200GeV. Here εhydro is the initial energy

density in the central rapidity region with x = y = 0 at τ = 0.6 fm/c when hydrodynamics starts. The
average rapidity loss is 〈δy〉. The yP denotes the final rapidity of the central core of the nucleus, which
experiences the largest rapidity loss. Other thermodynamic quantities nB, εP, T , µB and s are also evaluated
in the central core of the fireball.

all have the same initial beam rapidity y0 = 5.36. The average rapidity loss 〈δy〉 increases with
the increase of nuclear mass. This can be understood from the tube-tube collision at the central
cores of the colliding nuclei where the remaining quantities yP, nB, εP, T and µB are evaluated.
In the three collisions, the central core of a projectile starts with initial rapidity y0 and ends with
rapidity yP. For collisions involving nuclei of larger atomic mass, like U+U, the final rapidity yP is
smaller and the rapidity loss experienced is therefore larger. This point is encoded in the equations
of motion (7) where MP ∼ TA(r⊥) and A,B ∼ [TA(r⊥)]2 so that the rate of rapidity change
dy/dτ ∼ TA(r⊥). When averaging over r⊥, collisions of nuclei with bigger nuclear size have
larger average rapidity loss. The average rapidity loss in Au+Au collisions at

√
sNN = 200 GeV

for the centrality class 0 − 5% has been measured and estimated to be in the range from 1.45 to
2.45 by the BRAHMS collaboration [21]. However, the average rapidity losses for the Cu+Cu
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collision and the U+U (tip-tip) collision have not been measured experimentally. Baryon densities
increase with increasing nuclear mass in accordance with the rapidity losses because the baryon
density is proprotional to the exponential of the rapidity loss. These maximal baryon densities are
all more than ten times larger than the normal nuclear density. The maximal energy densities εP

obtained in the fragmentation regions of the three collisions are smaller than the respective energy
densities εhydro in the central rapidity region at τ = 0.6 fm/c when hydrodynamics begins. This
is consistent with the expectation that energy density achieved in the central region of high energy
heavy-ion collisions is larger than the energy density achieved in the receding nuclear fireballs.
The temperature T and baryon chemical potential µB corresponding the largest baryon density nB

and energy density εP for the three collisions are also given in Table I. Finally, the largest entropy
per baryon s/nB that can be achieved in the fragmentation regions of the three collisions are 18.33,
23.53 and 27.82 which increases with the nuclear atomic mass, reflecting the fact that the energy
density increases faster than the baryon density.
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FIG. 16: Baryon density achievable in the central core as a function of r⊥ for three different collisions at√
sNN = 200GeV.

Figures 16, 17, 18 and 19 show the baryon density, energy density, baryon chemical potential
and temperature achievable in the central core of the three collisions as functions of r⊥. The
temperature and baryon chemical potential are displayed only in the regions with energy density
larger than 1.0 GeV/fm3. In Fig. 18, the baryon chemical potential increases as r⊥ increases,
reaches a maximum, and then decreaes. This feature is due to the equation of state because the
corresponding temperatures in these regions are in the transition regions from the quark-gluon
plasma to the hadronic resonance gas. Figures 20 and 21 show the baryon density distributions in
the center-of-momentum frame. Here η is the space-time pseudorapidity. For Cu+Cu collisions,
the pseudorapidity spans about 1.5 unit around the central core regions while for U+U collision,
the pseudorapidity spans about 1.0 unit.
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FIG. 17: Energy density achievable in the central core as a function of r⊥ for three different collisions at√
sNN = 200GeV.
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FIG. 18: Baryon chemical potential achievable in the central core as a function of r⊥ for three different
collisions at

√
sNN = 200GeV. Only regions with energy density larger than 1.0GeV/fm3 have been

displayed.
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FIG. 19: Temperature achievable in the central core as a function of r⊥ for three different collisions at√
sNN = 200GeV. Only regions with energy density larger than 1.0GeV/fm3 have been displayed.
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FIG. 20: Contour plot of the proper baryon density for central collisions of Cu nuclei at
√
sNN = 200GeV.

The numbers are in units of baryons per fm3. The horizontal axis is the space-time pseudorapidity in the
center-of-momentum frame.
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FIG. 21: Contour plot of the proper baryon density for central tip-tip collisions of U nuclei at
√
sNN =

200GeV. The numbers are in units of baryons per fm3. The horizontal axis is the space-time pseudorapidity
in the center-of-momentum frame.

For asymmetric central collisions of Cu+Au at
√
sNN = 200 GeV, the gold nucleus has a

larger diameter than the copper nucleus so that the transverse overlap size is only the cross sec-
tional area of the copper nucleus. Peripheral regions of the gold nucleus play the role of spectators
and do not participate in the collision. To solve the equations of motion (7) for the copper and
gold fireballs after the collision, one has to generalize the initial energy density in Eq. (26) to
incorporate contributions from two different nuclei as

ε0,AA′(r⊥) =
TA(r⊥)TA′(r⊥)

[TAu(r⊥ = 0)]2
ε0,Au(r⊥ = 0). (28)

Here A and A′ indicate the two colliding nuclei. As a consequence, the functions A,B in the
equations of motion (7) scale as TATA′ . For the copper nucleus, after canceling TCu from the
two sides of equations in (7), the equations of motion only depend on the thickness function TAu.
These equations of motion are exactly the same as the equations of motion for the gold nucleus
in symmetric Au+Au collisions at the same energy. Likewise, the equations of motion for a gold
nucleus in Cu+Au collisions are exactly the same as the equations of motion governing the copper
nucleus in Cu+Cu collision at the same energy. In other words, concerning the rapidity loss and
the excitation energy, the following equivalences are valid.
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• Copper in Cu+Au central collisions at
√
sNN = 200 GeV ⇐⇒ Gold in Au+Au central

collisions at
√
sNN = 200 GeV.

• Gold in Cu+Au central collisions at
√
sNN = 200 GeV ⇐⇒ Copper in Cu+Cu central

collisions at
√
sNN = 200 GeV.

Therefore, the maximum baryon density achievable in the copper fireball in Cu+Au collisions
is about 3.01 baryons/fm3 while the maximum baryon density in the gold fireball is about
2.04 baryons/fm3; compare Tables I and II. The copper fireball is denser and hotter than the
gold fireball in high energy Cu+Au collisions. On the other hand, the average rapidity loss 〈δy〉
for the copper nucleus in Cu+Au collisions is different from that of the gold nucleus in Au+Au
collisions because of the different nuclear thickness functions.

Cu+Au
√
sNN = 200GeV Au Cu

RA(fm) 6.4 4.2

〈δy〉 1.34 2.71

yP 2.87 2.47

nB(1/fm
3) 2.04 3.01

εP(GeV/fm3) 9.0 20.0

T (MeV) 264.1 328.1

µB(MeV) 693.0 655.4

s/nB 18.33 23.53

TABLE II: Asymmetic Cu+Au collisions at
√
sNN = 200GeV. The average rapidity loss is 〈δy〉. The

yP denotes the final rapidity of the central core of the nucleus, which experiences the largest rapidity loss.
Other thermodynamic quantities nB, εP, T , µB and s are also evaluated in the central core of the fireball.

Figure 22 shows the net baryon rapidity distribution in Cu+Au central collisions at
√
sNN =

200 GeV; this is the initial distribution to be used in hydrodyanic modeling. Peripheral regions
of the gold nucleus do not participate in the collision so that their rapidities are the same as the
beam rapidity y0 = −5.36. The net baryon distribution on the copper side is smaller magnitude
and narrower when compared to the net baryon distribution in Au+Au collisions as shown in Fig.
6, but they have the same smallest rapidity cutoff at y = 2.47.

B. Collision Energy Dependence

In this section we study the high baryon densities achievable with different collision energies.
Specifically, we focus on Au+Au central collisions at

√
sNN = 62.4 GeV, Au+Au central colli-

sions at
√
sNN = 200 GeV, Pb+Pb central collisions at

√
sNN = 2.76 TeV and Pb+Pb central

collisions at
√
sNN = 5.02 TeV. The Au+Au collisions at these two different collision energies

have been carried out at RHIC while the LHC has collided Pb+Pb at 2.76 TeV and 5.02 TeV. The
Au nucleus has atomic mass number 197 and the Pb nucleus has atomic mass number 208, so
nuclear size differences would be minor. It should be pointed out that the McLerran-Venugopalan
model that describes the central region of high energy heavy-ion collisions using classical gluon
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FIG. 22: Net baryon rapidity distribution in Cu+Au central collisions at
√
sNN = 200GeV. The initial

beam rapidities are ±5.36. Peripheral regions of the Au nucleus do not participate in the collision.

fields becomes more applicable with increasing center-of-momentum collision energy. For the
Au+Au collision at

√
sNN = 62.4 GeV, whether the McLerran-Venugopalan model is still ap-

plicable needs more detailed study, which is beyond the scope of this paper. Here we explore
the Au+Au collision at

√
sNN = 62.4 GeV as an extrapolation of our method. Importantly, the

average baryon rapidity loss and net proton rapidity distribution have been measured for Au+Au
collision at

√
sNN = 62.4 GeV [22].

To solve for the rapidity loss and excitation energy from Eq. (7) for collisions at different
energies, one needs to generalize the calculation of initial energy density from Eq. (26) to include
the collision energy dependence. With the help of Eq. (24) we have

ε0,A(r⊥,
√
sNN)

ε0,Au(r⊥ = 0,
√
sNN = 200 GeV)

=

[
TA(r⊥)

TAu(r⊥ = 0)

]2 [ µN(
√
sNN)

µN(
√
sNN = 200 GeV)

]2

. (29)

In obtaining this expression, we ignore the expected collision energy dependence of the ultraviolet
cutoff illustrated in Eq. (25) which appears as lnQ2/m2 in the initial energy density expression
of Eq. (11). In principle the ultraviolet cutoff Q has to be adjusted when the saturation scale Qs

changes with collision energy. This is to make sure that the scale separation Q2 � Q2
s is satisfied

so that the semi-analytic expression of the glasma energy-momentum tensor we obtained in the
leading Q2 approximation can be used. In Au+Au collisions at

√
sNN = 200 GeV, we used the

value Qs = 1.2 GeV and Q = 4.0 GeV. As it will become clear in the following, the saturation
scale at the LHC energy 5.02 TeV is approximately Qs ∼ 1.8 GeV and an ultraviolet cutoff of
Q ∼ 6.0 GeV only contributes approximately 10% change in the energy density after taking the
logarithm. This logarithmic change of the ultraviolet cutoff in the expression for the energy density
should be minor compared to the power law changes in the µN(

√
sNN). Note that µN is related

to the saturation scale of the nucleon Q2
sN up to a logarithmic correction. The collision energy

dependence of the saturation scale Q2
sN(x) can be parameterized as [34–36]

Q2
sN(x) = Q2

0

(x0

x

)λ
(30)
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with Q2
0 = 1.0 GeV2, x0 = 3 × 10−4 and λ = 0.288. This parametrization provides a successful

description of the HERA data on deep inelastic scattering. At central rapidity y = 0, the small
x parameter is related to the center-of-momentum collision energy by x = QsN/

√
sNN , and one

obtains [37]
Q2
sN(
√
sNN)

Q2
sN(
√
s0)

=

(√
sNN√
s0

)λ̄
(31)

where λ̄ = λ
1+λ/2

= 0.252 with
√
s0 some reference collision energy. Therefore, the final expres-

sion for the collision energy dependent initial energy density is

ε0,A(r⊥,
√
sNN)

ε0,Au(r⊥ = 0,
√
sNN = 200 GeV)

=

[
TA(r⊥)

TAu(r⊥ = 0)

]2 [ √sNN
200 GeV

]2λ̄

. (32)

Using this simple parametrization of the collision energy dependence, we compute the initial en-
ergy density of the glasma and the hydrodynamic initial energy density for the different collision
energies; the results are given in Table III.

Collision Au+Au Au+Au Pb+Pb Pb+Pb
√
sNN (GeV) 62.4 200 2760 5020

QsA(GeV) 1.04 1.20 1.69 1.82

ε0(GeV/fm3) 78.9 142.0 553.6 748.5

εhydro(GeV/fm3) 16.7 30.0 116.9 158.0

εMC−Glauber
hydro (GeV/fm3) 25.5 42.5 104.5 132.3

TABLE III: The initial energy density of the glasma and the initial energy density for hydrodynamics for
different collision energies from Eq. (32). The hydrodynamic initial energy densities obtained from the
Monte Carlo Glauber model for the 0-5% centrality are from Ref. [38]. The gluon saturation scale of the
nucleus at different collision energies are also estimated.

With the help of Eq. (32) we can calculate the baryon and energy densities achieved in Au+Au
and Pb+Pb collisions at different energies. Table IV shows a few characteristic values of physical
quantities. The average rapidity loss for Au+Au at

√
sNN = 62.4 GeV is found to be 1.85, which

is close to the lower bound of 1.85 ≤ 〈δy〉 ≤ 2.17 measured by the BRAHMS collaboration [22].
The average rapidity losses for Pb+Pb collisions at 2.76 TeV and 5.02 TeV are 3.73 and 4.02,
respectively. As a consequence of the rapidity losses, the maximum baryon density achievable in
Au+Au collisions at

√
sNN = 62.4 GeV is 1.7 baryons/fm3, which is about 11 times larger than

normal nuclear density. Furthermore, for Pb+Pb collisions at
√
sNN = 2.76 TeV and 5.02 TeV,

the maximum baryon densities achievable are 11.7 baryons/fm3 and 15.8 baryons/fm3, which are
about 75 times and 101 times larger than normal nuclear density. These are extremely large baryon
densities. The maximum energy density in the fireball for Au+Au collisions at

√
sNN = 62.4 GeV

is 6.34 GeV/fm3 which is smaller than the energy density in the central region 16.7 GeV/fm3, as
shown in Table III. However, the energy density in the receding fireballs in Pb+Pb collisions at√
sNN = 2.76 TeV and 5.02 TeV are 288.7 GeV/fm3 and 527.5 GeV/fm3 which are much larger

than the corresponding energy densities in the central region, 117 GeV/fm3 and 158 GeV/fm3

given in Table III. As the collision energy increases, the maximum temperature achievable in
the nuclear fireballs increases monotonically. The baryon chemical potential, however, increases
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Collision Au+Au Au+Au Pb+Pb Pb+Pb
√
sNN (GeV) 62.4 200 2760 5020

y0 4.2 5.36 7.99 8.59

〈δy〉 1.85 2.41 3.73 4.02

yP 1.89 2.47 3.76 4.06

nB(1/fm
3) 1.71 3.01 11.66 15.77

εP(GeV/fm3) 6.34 20.00 288.67 527.50

T (MeV) 236.6 328.1 642.4 745.9

µB(MeV) 748.3 655.4 673.7 680.8

s/n 16.3 23.5 49.6 58.2

TABLE IV: Central collisions of Au+Au at
√
sNN = 62.4 and 200 GeV and of Pb+Pb at

√
sNN = 2.76 and

5.02TeV. The final rapidity yP, baryon density nB , energy density εP , temperature T , baryon chemical
potential µB and the entropy per baryon ratio s/n are given for the central core of the fireball.

rather slowly. Consequently, the maximum entropy per baryon increases with the collision energy,
as one would expect. This is a direct result of the use of the McLerran-Venugopalan model for the
glasma phase. The baryon distributions of the fireballs for Au+Au collisions at

√
sNN = 62.4 GeV

and for Pb+Pb collisions at
√
sNN = 2.76 TeV are shown in Figs. 23 and 24.
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FIG. 23: Contour plot of the proper baryon density for central collisions of gold nuclei at
√
sNN =

62.4GeV. The numbers are in units of baryons per fm3. The horizontal axis is the space-time pseudo-
rapidity in the center-of-momentum frame.
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FIG. 24: Contour plot of the proper baryon density for central collisions of lead nuclei at
√
sNN =

2.76TeV. The numbers are in units of baryons per fm3. The horizontal axis is the space-time pseudo-
rapidity in the center-of-momentum frame.

In Fig. 25 the adiabatic phase trajectories for the central cores of the fireballs for Au+Au
collisions with

√
sNN = 62.4 and 200 GeV and for Pb+Pb collisions with

√
sNN = 2.76 and

5.02 TeV are shown. Increasing the collision energy increases the temperatures while the baryon
chemical potentials change more slowly, leading to larger entropy per baryon ratios.

0 200 400 600 800
0

200

400

600

800

FIG. 25: Adiabatic phase trajectories for the central cores of the fireball in Au+Au collisions at
√
sNN =

62.4 and 200 GeV and in Pb+Pb collisions at
√
sNN = 2.76 and 5.02 TeV.



29

C. Non-Central Collisions

Apart from colliding heavy ions of different sizes and collision energies, realistic heavy-ion
collisions also measure observables at different centralities. The centrality characterizes the im-
pact paramter of the two colliding nuclei. From the most central collisions with impact parameter
b ∼ 0 to the most peripheral collisions with impact parameter b ∼ 2RA, the centrality increases
from 0% to 100%. The impact parameter, however, cannot be directly measured in heavy-ion ex-
periments. It is to be noted that the observed particle multiplicity decreases from central collisions
to peripheral collisions. Therefore, experiments measure the particle multiplicity and categorize
these events using centrality values in the range 0%− 100%. With the help of a geometric model,
like the Glauber model, one can then relate the centrality to the impact paramter. A few examples
are given in Table V as calculated by the PHENIX collaboration [39]. In this subsection, we will
explore the impact parameter dependence of the baryon densities in the fireballs in high energy
heavy-ion collisions.

Centrality Class 0-5% 5%-10% 10%-15% 15%-20% 20%-25%

Impact parameter (fm) 2.3 4.1 5.2 6.2 7.0

TABLE V: Correspondence between centrality classes and average impact parameters from calculations
within the Glauber model.

To characterize non-central collisions in the transverse plane we use cylindrical coordinates.
Figure 26 is a schematic illustration of the transverse overlap region of two equal size nuclei
colliding at non-zero impact paramter b. All the vectors in this figure are 2-dimensional in the x-y
plane. Let the projectile P be located at b/2 and the target T at−b/2 with b = (0, b). An arbitrary
point is labeled by r⊥ = r⊥(cosφ, sinφ) = (x, y). The distance from the centers of the nuclei to
that point are

r2
P = r2

⊥ +
1

4
b2 − br⊥ sinφ ,

r2
T = r2

⊥ +
1

4
b2 + br⊥ sinφ .

(33)

The thickness functions TP and TT depend only on rP and rT, respectively. Consider the baryon
distribution arising from the projectile; a similar formula applies to the target. Let yP(r⊥, φ, b)
denote the final rapidity of a piece of projectile located at the position r⊥. Then the baryon rapidity
distribution is a generalization of Eq. (15) taking into account the non-zero impact parameter,

dNP

dy
=

∫ ∞
0

dr

∫ 2π

0

dφTP(r⊥, φ, b)r⊥δ(y − yP(r⊥, φ, b)). (34)

For central collisions of spherical nuclei, which need not be identical, there is no dependence on
φ, and there is a one-to-one correspondence between yP and r. Then we can replace δ(y−yP(r⊥))
with δ(r⊥ − r⊥P(y)) along with the relevant Jacobian to reproduce the expression in Eq. (15).

For b 6= 0 it is may be better to discretize both r and φ. Assume uniform spacings ∆r and ∆φ
which satisfy Nr× r = R̃ and (Nφ + 1)×∆φ = 2π, respectively. Here R̃ characterizes the radius
of a circular area chosen for the discretization. The discretized points are labeled by (ri, φj) with

ri = i∆r, i = 1, 2, . . . , Nr

φj = j∆φ, j = 0, 1, 2, . . . , Nφ.
(35)
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FIG. 26: Schematic picture of the transverse overlap region for non-central collisions of two nuclei.

The point (0, 0) is treated separately. For points in the overlap region, their coordinates (ri, φj)
satisfy r2

P(i,j) ≤ R2
A and r2

T(i,j) ≤ R2
A. For the tube-tube collisions at the position (ri, φj), the

mass per unit area is obtained by the thickness functionsMP(i,j) = mNTA(rP(i,j)) andMT(i,j) =
mNTA(rT(i,j)), while the initial energy density is proportional to the product of the two nuclear
thickness functions ε0(i,j) ∼ TA(rP(i,j))TA(rT(i,j)). We can then solve for the final rapidity yP(i,j)

and the nuclear excitation energy MP(i,j). The number of baryons within the projectile tube at
position (ri, φj) is ∆NP(i,j) = riTP(i,j)∆r∆φ. To calculate the baryon rapidity distribution for
b 6= 0, we perform an intergration over the Dirac delta function while fixing the value of φ.

dNP

dy
=
∑
j

∆φ

∫ ∞
0

dr⊥TP(r⊥, φj, b)r⊥δ(y − yP(r⊥, φj, b))

=
∑
j

TP(r⊥, φj, b)r⊥∆φ

|dyP/dr⊥|

∣∣∣∣
r⊥=r⊥(y,φj ,b)

(36)

In Figs. 27 and 28 the proper baryon density distribution of the fireball in the transverse
plane for the longitudinal slice z′ = 0 is given for b = 0 and b = 2.3 fm, respectively. For zero
impact parameter, the baryon distribution is azimuthally symmetric in the transverse plane and
the center of the fireball achieves the largest baryon density of about 3 baryons/fm3. In contrast,
for collisions with non-zero impact paramter b = 2.3 fm, the baryon distribution in the transverse
plane is no longer azimuthally symmetric. Even the region where the largest baryon density is
achieved has been shifted away from the center of the projectile fireball (the center of the fireball
corresponds to (x = 0, y = 0)). The region with the largest baryon density surrounds the point
(x = 0, y = 2.3 fm), which is the transverse location of the center of the target fireball when the
projectile nucleus and the target nucleus overlap. This is easy to understand from our previous
discussion on asymmetric Cu+Au collisions. When two nuclear tubes collide, the tube with less
baryon charge experiences larger nuclear compression, while the tube with more baryon charge
experiences less nuclear compression.
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FIG. 27: Contour plot of the proper baryon density for the gold projectile fireball in the transverse plane
for the slice z′ = 0. The collision is Au+Au at

√
sNN = 200GeV with impact parameter b = 0 fm. The

numbers are in units of baryons per fm3. The position x = 0, y = 0 corresponds to the center of the fireball.
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FIG. 28: Contour plot of the proper baryon density for the gold projectile fireball in the transverse plane
for the slice z′ = 0. The collision is Au+Au at

√
sNN = 200GeV with impact parameter b = 2.3 fm. The

numbers are in units of baryons per fm3. The highest density occurs at x = 0, y = −b.
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FIG. 29: Contour plot of the proper baryon density for Au+Au collisions at
√
sNN = 200GeV with impact

parameter b = 7 fm in the x− η plane for y = 0. The numbers are in units of baryons per fm3.

Figure 29 shows the baryon density distribution in the x − η plane, where the impact param-
eter is in the y direction. The region of the projectile nucleus that overlaps with the central region
of the target nucleus experiences the largest nuclear compression while the regions of the projec-
tile nucleus that overlap with the peripheral region of the target nucleus experiences less nuclear
compression.

V. CONCLUSION

In this paper we have systematically studied the high baryon densities outside the central
rapidity region of high energy heavy-ion collisions within the McLerran-Venugopalan model. The
off-diagonal term in the energy-momentum tensor of the glasma, which comes from the transverse
chromo-electromagnetic fields, is reponsible for the nuclear excitation energy in this model. In
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contrast, typical string models do not deposit energy in the receding nuclei. For central Au+Au
collisions at

√
sNN = 200 GeV, the highest baryon density 3.0 baryons/fm3 is about twenty times

larger than normal nuclear density, and the largest energy density 20 GeV/fm3 is more than one
hundred times larger than the energy density of nuclear matter at its saturation density. Using a
crossover equation of state, the temperature ranges from about 155 to 330 MeV, while and the
baryon chemical potential ranges from about 650 to 1020 MeV. The entropy per baryon ratios are
found to be in the range of 10 to 23.5, corresponding to the momentum space rapidity range 2.5 to
3.7. The entropy per baryon ratios might be in the right range so that a scan through rapidity may
locate the critical point of QCD phase diagram for central collisions. For central collision at fixed
beam energy, the highest baryon density achievable in the fragmentation regions increases with
nuclear size. In Cu+Cu, Au+Au and U+U (tip-tip) collisions at

√
sNN = 200 GeV, the highest

baryon densities are about 2, 3 and 4 baryons/fm3, respectively. In asymmetric Cu+Au collisions,
the Cu nucleus is compressed more than the Au nucleus so that the Cu fireball achieves the higher
baryon densities. For central collisions at fixed nuclear size, the highest baryon density achievable
increases with collision energy. We numerically studied Au+Au collisions at

√
sNN =62.4 and 200

GeV and Pb+Pb collisions at
√
sNN = 2.76 and 5.02 TeV. For non-central collisions, the average

rapidity loss is reduced due to the spectator baryons in the peripheral region of the colliding nculei.
For Au+Au collisions at

√
sNN = 200 GeV with 0 − 5% centrality, our calculations predict the

average rapidity loss to be about 2.14. This is in agreement with measurement by the BRAHMS
collaboration. Rapidity loss at LHC is not known because of the challenge of measuring and
identifying particles with large rapidity in the detector’s frame of rest. We must emphasize that
the results obtained here provide the initial conditions for relativistic fluid dynamic descriptions of
high energy heavy ion collisions and cannot be compared directly to experimental data.

Improvements can be made within the theoretical framework described here. For example, the
McLerran-Venugopalan model for the glasma, as implemented by us, could be complimented by
the inclusion of the production of minijets. An equation of state could be used that incoporates a
critical point. In the presence of a critical point, the adiabatic trajectories as shown in Fig. 14 could
be tilted to pass through the critical point if they are within the critical region, see Ref. [31]. In
high energy heavy-ion collisions, when scanning the momentum rapidities outside of the central
region, the rapidity dependence of the cumulants might be helpful in finding the critical point.
Similar rapidity dependence around the central rapidity region in the low energy BES program has
recently been proposed in Ref. [40]. For the range of energy and baryon densities where matter
in thermodynamic equilibrium ought to be in a mixed phase, it may be that it is initially produced
as either a metastable superheated hadronic gas or a metastable supercooled quark-gluon plasma,
from which the other phase would have to be nucleated [41–43]. But perhaps the biggest challenge
is how to identify and measure baryons (and mesons) at the higher rapidities of relevance to the
high baryon density matter.
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