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Abstract10

We compare anisotropic hydrodynamics (aHydro) results obtained using the relaxation-time ap-11

proximation (RTA) and leading-order (LO) scalar λφ4 collisional kernels. We extend previous12

work by explicitly enforcing number conservation through the incorporation of a dynamical chem-13

ical potential (fugacity) in the underlying aHydro distribution function. We focus on the case of a14

transversally homogenous and boost-invariant system obeying classical statistics and compare the15

relevant moments of the two collisional kernels. We then compare the time evolution of the aHydro16

microscopic parameters and components of the energy-momentum tensor. We also determine the17

non-equilibrium attractor using both the RTA and LO massless λφ4 number-conserving kernels.18

We find that the aHydro dynamics receives quantitatively important corrections when enforcing19

number conservation, however, the aHydro attractor itself is not modified substantially.20

Keywords: Quark-gluon plasma, Relativistic heavy-ion collisions, Relativistic hydrodynamics, Anisotropic21
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I. INTRODUCTION23

In the kinetic theory, the collisional kernel provides the microscopic input to the Boltz-24

mann equation and encodes the dynamical processes which drive the system toward equilib-25

rium [1]. In hydrodynamics approaches which are based on kinetic theory, moments of the26

collisional kernel are used and, therefore, the choice of a specific collisional kernel dictates the27

manner in which the resulting fluid description approaches equilibrium. In the anisotropic28

hydrodynamics (aHydro) framework [2–4], for example, most papers to date have used the29

relaxation-time approximation (RTA) for the collisional kernel [5]. Despite its simplicity,30

3+1d aHydro codes which use the RTA do a quite reasonable job in describing experimen-31

tal observations of identified hadron spectra, elliptic flow, Hanbury-Brown-Twiss radii, etc.32

[6–8]. Given this success, it is desirable to make the underlying aHydro equations of motion33

more realistic by using collisional kernels associated with an actual quantum field theory.34

Of course, the eventual goal is to use realistic scattering kernels based on quantum chromo-35

dynamics [9]. Herein, we take a small step in this direction by making comparisons between36

results obtained using the RTA and leading-order (LO) scalar λφ4 collisional kernels.37

In our previous work [10], we demonstrated how to use a general 2 ↔ 2 collisional38

kernel in the aHydro formalism and then specialized to the case of a LO scalar λφ4 theory.39

We applied the aHydro equations to a 0+1d massless system undergoing boost-invariant40

longitudinal expansion. Our results demonstrated that the system dynamically produced41

higher anisotropy when using the LO scalar kernel than when using the RTA kernel. We42

also demonstrated that the system approached its non-equilibrium attractor more slowly43

with the LO scalar kernel.44

In this work, we extend the analysis presented in Ref. [10] by enforcing number conser-45

vation using both the RTA and LO massless λφ4 kernels. In both cases, we generalize the46

Romatschke-Strickland form [11, 12] to include a dynamical chemical potential. We derive47

the necessary aHydro equations of motion using the 0th, 1st, and 2nd moments of the Boltz-48

mann equation, solve the resulting ordinary differential equations numerically, and discuss49

the effect of enforcing number conservation with both the RTA and LO scalar kernels. Us-50

ing the resulting equations of motion, we also determine the differential equation obeyed by51

the aHydro dynamical “attractor” [10, 13], now taking into account number conservation.52

The attractor drives the early-time dynamical evolution of the system and is important in53
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understanding the hydrodynamization of the quark-gluon plasma [14–24].54

The structure of the paper is as follows. We present the setup in Sec. II. In Sec. III we55

introduce the RTA and LO scalar collisional kernels, taking into account a finite chemical56

potential. In Sec. IV, the aHydro equations are presented for a number conserving theory.57

In Sec. V we compute the necessary moments using both collisional kernels. In Sec. VI we58

present representative numerical solutions of the aHydro equations of motion, comparing59

the LO scalar collisional kernel and the RTA collisional kernel with and without number60

conservation. In this section, we also present the aHydro non-equilibrium dynamical attrac-61

tor and compare to previously obtained results. In Sec. VII we provide our conclusions and62

an outlook for the future.63

CONVENTIONS AND NOTATION64

The Minkowski metric tensor is taken to be gµν = diag(+,−,−,−). The Lorentz-65

invariant integration measure is dP = d3p
(2π)3

1
Ep

and four-vectors are decomposed as, e.g.66

pµ = (Ep,p). In what follows, we will work in the massless limit m→ 0 such that Ep = |p|.67

II. SETUP68

In our prior paper [10], we compared the equations of motion, pressure anisotropies, attac-69

tor, etc. resulting from the use of a 2↔ 2 scalar collisional kernel and the Anderson-Witting70

kernel (relaxation time approximation or RTA) [5]. In that work, we did not explicitly take71

into account number conservation in the scalar theory nor did we enforce it in the RTA equa-72

tions of motion. In order to accomplish this, we generalize the distribution function ansatz73

to include a finite chemical potential and then use the zeroth moment of the Boltzmann74

equation to provide the additional equation of motion required. In the general case, the75

starting point for aHydro is the following form for the one-particle distribution function [4]76

f(x, p) = feq

(
1

Λ

√
pµΞµνpν ,

µ

Λ

)
+ δf̃ , (1)

where Λ is an energy scale which becomes the temperature in the isotropic equilibrium limit77

and µ is the chemical potential. The anisotropy tensor has the form Ξµν ≡ uµuν+ξµν−∆µνΦ78
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where ξµν is a symmetric traceless tensor obeying uµξ
µν = 0 and ξµµ = 0, uµ is the local79

fluid four-velocity, Φ is the bulk degree of freedom, and ∆µν = gµν − uµuν is the transverse80

projector. The first term in Eq. (1) is the leading-order ellipsoidal form and the second term81

accounts for terms which are not of generalized Romatschke-Strickland form [25, 26]. In this82

paper, we will perform our analysis for a transversally homogeneous and boost-invariant83

system (0+1d) and we work at leading-order, i.e. we ignore δf̃ , in which case it suffices to84

introduce one anisotropy parameter [4, 27] and additionally, since the particles are massless85

and we ignore the running coupling, there is no bulk contribution. As a result, one can write86

the distribution function in the local rest frame of the fluid as [11, 12]87

fp = exp

(
− 1

Λ

√
p2⊥ + (1 + ξ)(p · n̂)2 +

µ

Λ

)
,

= γf 0
p , (2)

where γ ≡ exp (µ/Λ) is the particle fugacity and88

f 0
p ≡ exp

(
− 1

Λ

√
p2⊥ + (1 + ξ)(p · n̂)2

)
. (3)

is the zero chemical potential distribution function. Above, we have additionally assumed89

that the particles obey classical statistics. In the above expressions (2) and (3), ξ is the90

anisotropy parameter (−1 < ξ < ∞), Λ is the transverse temperature, and n̂ is a unit91

vector along the anisotropy direction, which is typically taken to be the beamline direction,92

i.e. n̂ = ẑ. Both ξ and Λ depend on spacetime in general, but we suppress this dependence93

for compactness of the notation.1. For a recent review of aHydro, we refer the reader to94

Ref. [4].95

III. COLLISIONAL KERNELS AT FINITE CHEMICAL POTENTIAL96

In this section, we present the modifications necessary to extend our prior analyses of97

both the scalar and RTA collisional kernels to finite chemical potential. We will use the98

Boltzmann equation to obtain the necessary aHydro equations of motion99

pµ∂µfp = C[fp] , (4)

1Note that, in 0+1d, if one works in Milne coordinates one is already in the local rest frame of the matter and

uµ = (1, 0, 0, 0).
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where fp = f(p) is the one-particle distribution function and the collisional kernel C[fp] is100

a functional which encodes the details of the specific microscopic interactions.101

A. Scalar collisional kernel at finite chemical potential102

We will consider massless scalar λφ4 to leading order in the coupling. The elastic 2↔ 2103

scattering kernel with classical statistics can be written in the form [10, 28]104

Csc[fp] =
1

32

∫
dKdK ′dP ′ |M|2 (2π)4δ(4)(kα + k′α − pα − p′α)F(k, k′, p, p′) , (5)

where105

F(k, k′, p, p′) ≡ fkfk′ − fpfp′ , (6)

withM being the invariant scattering amplitude. For the case considered one has |M|2 = λ2106

with λ being the scalar coupling constant.107

Using Eq. (2) one can see immediately that the distribution function factorizes108

F(k, k′, p, p′) = γ2F0(k, k′, p, p′) , (7)

where the superscript 0 indicates the statistical factors at zero chemical potential. From109

this, it follows that110

Csc[fp] = γ2Csc[f
0
p ] , (8)

where the subscript ‘sc’ indicates ‘scalar’.111

B. RTA kernel at finite chemical potential112

At finite chemical potential, the RTA collisional kernel can be written as113

CRTA[fp] =
Ep
τeq

[feq − fp] , (9)

where114

feq(p/T ) ≡ Γ exp(−|p|/T ) = Γf 0
eq , (10)
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with T being the effective temperature and Γ being the effective fugacity. Above τeq = 5η̄/T115

with η̄ ≡ η/s being the specific shear viscosity [29, 30]. As a result, one has116

CRTA[fp] =
Ep
τeq

[
Γf 0

eq − γf 0
p

]
. (11)

In order to fix the effective temperature and fugacity we require the right hand sides of the117

zeroth and first moments of the Boltzmann equation to vanish. These constraints enforce118

number and energy-momentum conservation, respectively. They result in the following two119

relations120

T = R(ξ)
√

1 + ξ Λ , (12)

Γ =
γ

(1 + ξ)2R3(ξ)
, (13)

where [3]121

R(ξ) =
1

2

[
1

1 + ξ
+

arctan
√
ξ√

ξ

]
. (14)

Using (13) we can write the RTA collisional kernel at finite chemical potential as122

CRTA[fp] =
γEp
τeq

[
f 0
eq

(1 + ξ)2R3(ξ)
− f 0

p

]
. (15)

IV. AHYDRO EQUATIONS OF MOTION AT FINITE CHEMICAL POTENTIAL123

In this section, we derive the massless 0+1d equations of motion using both the LO124

scalar and RTA collisional kernels. The starting point is the Boltzmann equation (4) with125

the collisional kernel given by either (5) or (11). As usual, in anisotropic hydrodynamics we126

take moments of the Boltzmann equation [4]. The zeroth-moment equation is127

∂µn
µ = 0 , (16)

where nµ = nuµ with n being the number density. The right hand side of (16) vanishes128

automatically for the scalar collisional kernel and vanishes in RTA due to the matching129

conditions (12) and (13). Using (2) one has n = γn0
eq(Λ)/

√
1 + ξ, where n0

eq is the equilibrium130
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number density at zero chemical potential. As a result, the zeroth moment equation becomes131

∂τ ln γ + 3 ∂τ ln Λ− 1

2

∂τξ

1 + ξ
+

1

τ
= 0 . (17)

The first-moment equation encodes energy-momentum conservation132

∂µT
µν = 0 , (18)

where, once again, the right hand side vanishes automatically for the scalar collisional kernel133

and vanishes in RTA due to the matching conditions (12) and (13). Expanding the first134

moment equation using (2), one obtains135

∂τ ln γ + 4 ∂τ ln Λ +
R′(ξ)
R(ξ)

∂τξ =
1

τ

[
1

ξ(1 + ξ)R(ξ)
− 1

ξ
− 1

]
. (19)

Finally, we need one equation from the second moment which is obtained by taking the136

zz-projection minus one third of the sum of the xx, yy, and zz projections [31]. For a general137

collisional kernel, one obtains138

1

1 + ξ
∂τξ −

2

τ
= K , (20)

with139

K ≡ C
xx

Ix
− C

zz

Iz
=
π2Λ

4γ

[
(1 + ξ)1/2C̄xx(ξ)− (1 + ξ)3/2C̄zz(ξ)

]
, (21)

where140

C̄µν ≡ 1

Λ6

∫
dP pµpν C[fp] , (22)

and141

Ii ≡
∫

d3p

(2π)3
p2i fp = γI0i . (23)
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V. MOMENTS OF THE COLLISIONAL KERNELS142

In order to proceed, we need to compute K (21) using both the scalar and the RTA143

collisional kernels. After some algebra, it can be shown that in RTA one has144

KRTA =
Λ

5η̄
ξ(1 + ξ)

3
2R3(ξ)

=
1

τeq
ξ(1 + ξ)R2(ξ) . (24)

In order to compare the scalar case to RTA it is convenient to pull out the overall factor of145

λ2 by defining C̃ii = C̄ii/λ2, which gives146

Ksc =
π2λ2Λ

4γ

[
(1 + ξ)1/2C̃xxsc (ξ)− (1 + ξ)3/2C̃zzsc (ξ)

]
, (25)

For the scalar collisional kernel we must evaluate the remaining 8-dimensional integrals147

C̃xx(ξ) and C̃zz(ξ) numerically [32].148

Additionally, if we want to make a proper comparison between dynamics subject to the149

RTA and scalar collisional kernels, we should match the two collisional kernels in the near150

equilibrium limit. In order to do this, we expand both results to leading order in ξ and151

match the leading-order coefficients. This can be done with the full K function or using152

either term contributing to K. Following our previous paper, we evaluate C̄zz(ξ) for both153

collisional kernels and equate the leading-order coefficients [10].2154

For the RTA kernel, the small-ξ expansion can be done analytically with the result being155

lim
ξ→0
C̄zzRTA =

8γ

15π2η̄
ξ +O(ξ2) . (26)

For the scalar kernel, the numerical result is156

lim
ξ→0
C̄zzsc = αγ2λ2ξ +O(ξ2) , (27)

with α ' 0.4394± 0.0002 [10].157

Equating the leading-order RTA and scalar kernel results listed above, we obtain the158

2Once the matching is done using C̄zz(ξ), it is guaranteed to work for C̄xx(ξ) and hence K.
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following matching condition159

λ2 =
8

15π2αγη̄
. (28)

With this, Eq. (25) becomes160

Ksc =
2Λ

15αγ2η̄

[
(1 + ξ)1/2C̃xxsc (ξ)− (1 + ξ)3/2C̃zzsc (ξ)

]
, (29)

A. Final second moment equations161

Using the matching condition (28), one can write the second moment equation (20) in162

the following compact form [10, 13]:163

∂τξ −
2(1 + ξ)

τ
+
W(ξ)

τeq
= 0 . (30)

For the RTA kernel, the W function is given by164

WRTA(ξ) = ξ(1 + ξ)2R2(ξ) , (31)

and for the scalar collisional kernel it is165

Wsc(ξ) ≡
2

3αR(ξ)

[
(1 + ξ)2C̃zzsc,0(ξ)− (1 + ξ)C̃xxsc,0(ξ)

]
. (32)

B. Connection to second-order viscous hydrodynamics and the attractor166

Based on the results contained in Ref. [13] and [10], once we have cast the second moment167

equation the form (30), the second-moment equation and associated attractor equation can168

then be written in terms of the shear viscous correction, Π. Using169

Π(ξ) ≡ Π

ε
=

1

3

[
1− RL(ξ)

R(ξ)

]
. (33)

one obtains170

Π̇

ε
+

Π

ετ

(
4

3
− Π

ε

)
− 2(1 + ξ)Π

′
(ξ)

τ
+
W(ξ)

τeq
Π
′
(ξ) = 0 . (34)
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result

c0 0

c1 1

c2 0.60658

c3 −0.068866

c4 0.0077844

c5 −0.00062427

c6 0.000034979

c7 −1.393× 10−6

result

c8 4.0055× 10−8

c9 −8.3865× 10−10

c10 1.2781× 10−11

c11 −1.4017× 10−13

c12 1.0771× 10−15

c13 −5.5029× 10−18

c14 1.6784× 10−20

c15 −2.3126× 10−23

TABLE I. Polynomial fit coefficients for the classical LO scalarWsc(ξ) function defined in Eq. (32).

The fit was made assuming Wsc(ξ) =
∑

n cnξ
n and using 101 points in the range −0.68 ≤ ξ ≤ 99.

where it is understood that ξ = ξ(Π) with ξ(Π) being the inverse function of Π(ξ). For171

details concerning construction of this inverse function, we refer the reader to Ref. [13].172

Transforming to “attractor variables”173

w ≡ τT (τ) ,

ϕ ≡ τ
ẇ

w
, (35)

one obtains the following first-order differential equation by combining the first moment174

with Eq. (34) [13]175

wϕ
∂ϕ

∂w
=

[
1

2
(1 + ξ)− w

4
W
]

Π
′
, (36)

where w ≡ w/cπ with cπ = 5η̄. Once the “amplitude” ϕ is determined by solving (36) subject176

to the appropriate boundary condition at w = 0, one can obtain the pressure anisotropy177

using178

PL
PT

=
3− 4ϕ

2ϕ− 1
. (37)

VI. RESULTS179

We now turn to our results. We will compare results obtained from our prior work180

[10] which assumed µ = 0 (γ = 1) using both the RTA (31) and scalar (32) collisional181

kernels. For the scalar collisional kernel we tabulated Wsc(ξ) using 101 points in the range182

−0.68 ≤ ξ ≤ 99. We evaluated the eight-dimensional integrals necessary using the Monte-183

Carlo VEGAS algorithm [10]. The resulting numerical data for Wsc(ξ) was then fit using184
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FIG. 1. Comparison of W from the LO scalar and RTA kernels. Panel (a) shows the result for

small values of ξ and panel (b) shows the result for large values of ξ. The RTA kernel results at

µ 6= 0 and µ = 0 are indicated by solid red and dashed red lines, respectively. The scalar kernel

results at µ 6= 0 and µ = 0 are indicated by solid black and black dashed lines, respectively.

a 15th-order polynomial Wsc(ξ) =
∑15

n=0 cnξ
n. The resulting fit coefficients are listed in185

Table I. In addition to this polynomial fit, we performed large-ξ computations and extracted186

the leading ξ-scaling of the kernel in this limit, finding that limξ→∞Wsc(ξ) = 1.3183 ξ3/2.187

We used the polynomial fit for all ξ ≤ 99 and the large-ξ result for ξ > 99. The resulting188

analytic approximations for Wsc(ξ) were then used as an input to Eq. (30).189

A. W function190

In Fig. 1 we compare the W functions obtained using the LO scalar and RTA kernels.191

Focusing first on the RTA kernel results (red and red dashed lines), we see that the effect192

of enforcing number conservation is to increase W at large ξ > 0. As a result, one expects193

to see smaller momentum-space anisotropies developed when taking into account number194

conservation with the RTA approximation. The scalar kernel results (black and black dashed195

lines) show the opposite behavior, leading to the prediction that larger momentum-space196

anisotropies will develop when taking into account number conservation in this case. As we197

will see, this expectation is realized in our results for the early-time dynamical momentum-198

space anisotropy and the non-equilibrium attractor.199
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FIG. 2. The evolution of ξ (a)-(b), the transverse temperature scale Λ in GeV (c)-(d), and the

fugacity γ (e)-(f). The left column panels (a), (c), and (e) show the case that η̄ = 0.2 and the right

column panels (b), (d), and (f) show η̄ = 1. For this figure we assumed isotropic initial conditions

with ξ0 = 10−8, τ0 = 0.25 fm/c, Λ0 = 0.5 GeV, and γ0 = 1.

B. Dynamical evolution of the microscopic parameters200

In Figs. 2 and 3, we present the evolution of the anisotropy paramter ξ, the transverse201

temperature scale Λ in GeV, and the fugacity γ. In both figures, we compare the case that202

η̄ = 0.2 to the case when η̄ = 1. In Fig. 2 we assumed isotropic initial conditions with203

ξ0 = 10−8, τ0 = 0.25 fm/c, Λ0 = 0.5 GeV, and γ0 = 1. In Fig. 3, we assumed anisotropic204
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FIG. 3. Same as Fig. 2 except for this figure we assumed anisotropic initial conditions ξ0 = 100

initial conditions with ξ0 = 100 and all other parameters the same as Fig. 2. Focussing205

on Fig. 2 first, in each panel we compare the RTA and scalar collisional kernels with and206

without enforcing number conservation in the equations of motion. In the top row, we see207

that the peak anisotropy parameter observed is consistent with the ranking hypothesized,208

namely that enforcing number conservation using the RTA kernel results in a reduced level209

of momentum-space anisotropy.3 We see the opposite ordering of the peak ξ when using210

3Due to the fact that we consider a massless system with classical statistics, there is a one-to-one correspondence

between the value of ξ and the expected level of pressure anisotropy since the fugacity factors cancel leaving

PL/PT = RL(ξ)/RT (ξ) which is a monotonically decreasing function of ξ.
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FIG. 4. Evolution of the effective temperature (a)-(b) and pressure ansiotropy (c)-(d) using both

the RTA and scalar collisional kernels with and without number conservation enforced. In the

top row, we plot the scaled temperature multiplied by (τ/τ0)
1/3 in order to better see the small

deviations between the different approaches. The left column panels (a) and (c) show the case

η̄ = 0.2 and the right column panels (b) and (d) show the case η̄ = 1. The initial conditions were

taken to be isotropic with the same parameters as in Fig. 2.

the scalar kernel which is consistent with our prediction that the level of momentum-space211

anisotropy should increase when enforcing number conservation in this case.212

Continuing on the first row of Fig. 2, we notice that, at late times, the RTA and scalar213

collisional kernels give the same asymptotic behavior, with the µ 6= 0 RTA and scalar results214

converging to one another and likewise for the case µ = 0. From the second row of Fig. 2215

we see that the transverse temperature Λ for µ 6= 0 is approximately the same using either216

collisional kernel. Finally, in the bottommost row of Fig. 2 we see the evolution of the217

fugacity γ. Starting from γ = 1 at τ = 0.25 fm/c, we see that the fugacity decreases as a218

function of proper time. Turning to Fig. 3 we observe the same patterns in the values of ξ219

developed during the evolution. Additionally, we see qualitatively the same behavior of the220

fugacity as a function of proper time, namely that it decreases monotonically and saturates221

to a small fixed value at late times.222
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FIG. 5. Same as Fig. 4 except with anisotropic initial conditions. The initial conditions and

parameters are the same as in Fig. 3.

C. Dynamical evolution of the effective temperature and pressure ratio223

Next we turn our attention to Figs. 4 and 5 which show the effective temperature and224

pressure ansiotropy using both the RTA and scalar collisional kernels with and without225

number conservation enforced. In Fig. 4 we assumed isotropic initial conditions with the226

same parameters as Fig. 2, and in Fig. 5 we assumed anisotropic initial conditions with the227

same parameters as Fig. 3. In Figs. 4 and 5, we see that both collisional kernels have the228

same asymptotic behavior for the pressure anisotropy for µ = 0 and µ 6= 0. In addition, we229

see only very small differences in the effective temperature which had to be multiplied by230

(τ/τ0)
1/3 in order to make them visible to the naked eye. At early times, we see that the231

ordering of the level of momentum anisotropy is consistent with our expectations based on232

the large-ξ behaviour of the W function. At late times, the system evolves into the small-ξ233

region, where all collisional kernels giveW ∼ ξ. The late-time differences between the µ 6= 0234

and µ = 0 cases are due to the additional term involving the fugacity in the energy density235

evolution. One commonality is that for both the RTA and scalar collisional kernels one sees236
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FIG. 6. The left panel (a) shows the attractor solution for the amplitude ϕ and the right panel (b)

shows the associated pressure anisotropy. The four lines show results obtained using the RTA and

scalar collisional kernels for both µ 6= 0 and µ = 0.

that enforcing number conservation reduces both the late-time effective temperature and237

momentum-space anisotropy.238

D. The aHydro attractor239

Next, we turn to our numerical results for the aHydro attractor for both collisional kernels240

at µ 6= 0 and µ = 0. In both cases, given the function W , one only has to solve a first order241

differential equation for the amplitude ϕ subject to the appropriate boundary condition. For242

aHydro, the boundary condition for the amplitude is [13]243

lim
w→0

ϕ(w) =
3

4
. (38)

Using this boundary condition, we then solved Eq. (36) numerically using built-in routines244

in Mathematica.245

In Fig. 6, we compare the attractors obtained using the RTA and scalar collisional kernels246

for µ 6= 0 and µ = 0. From panel (b) we see that the effect of enforcing number conservation247

on the attractor is opposite when using the RTA and scalar kernels. We see that, when248

we use the RTA kernel, enforcing number conservation results in less momentum-space249

anisotropy whereas the reverse is true for the scalar kernel. Once again this is consistent250

with the observations we made in the discussion of the large-ξ behavior of the W function.251

16



FIG. 7. Pressure anisotropy evolution for a variety of different initial conditions (dashed lines)

together with the corresponding attractor (solid line). The left panel (a) shows the results obtained

using the scalar collisional kernel and the right panel (b) shows the results obtained using the RTA

collision kernel. For both panels we show the case µ 6= 0.

Additionally, from this figure we see that all kernels converge to the same level of late time252

pressure anisotropy when plotted versus w. This rescaling gets rid of the weak dependence253

of the effective temperature evolution on the kernel used.254

In Fig. 7, we plot the pressure anisotropy evolution for a set of different initial conditions255

(dashed lines) together with the corresponding attractor (solid line). The left panel (a)256

shows the results obtained using the scalar collisional kernel and the right panel (b) shows257

the results obtained using the RTA collision kernel. For both panels we show the case µ 6= 0.258

As can be seen from this figure, the scalar kernel results in a slightly slower rate of approach259

to the attractor than the RTA kernel. This is consistent with results found in our previous260

paper [10]. Besides this, these two plots are qualitatively similar and demonstrate that one261

can correctly identify the attractor in aHydro when enforcing number conservation.262

Finally, in Fig. 8 we compare the pressure anisotropy evolution for a set of different initial263

conditions (dashed lines) together with the corresponding attractor (solid lines) for both264

the RTA and scalar collisional kernels. As we can see clearly from this comparison, when265

enforcing number conservation one finds that a higher level of momentum-space anisotropy266

develops when using the scalar kernel than when using the RTA kernel. Additionally, we267

see that, at w >∼ 5, all results converge to a universal curve which is independent of the268

collisional kernel.269
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FIG. 8. Comparison of the pressure anisotropy evolution for a variety of different initial conditions

(dashed lines) together with the corresponding attractor (solid lines) for both the RTA and scalar

collisional kernels.

VII. CONCLUSIONS AND OUTLOOK270

In this paper, we studied the impact of enforcing number conservation on the dynamical271

evolution of a 0+1d system subject to the RTA and LO massless λφ4 collisional kernels. For272

both collisional kernels we obtained the necessary equations of motion for the transverse273

temperature Λ, anisotropy parameter ξ, and fugacity γ from the first three moments of the274

Boltzmann equation. For RTA, we enforced number conservation by introducing an effective275

fugacity Γ in the equilibrium distribution, which was fixed using a matching condition. For276

both kernels we solved the resulting coupled non-linear differential equations numerically277

and compared the evolution of the aHydro parameters, pressure anisotropy, and effective278

temperature.279

We found that, at late times, enforcing number conservation decreases both the effective280

temperature and pressure anisotropy for both collisional kernels considered. At early times,281

however, we found a more complicated ordering of the level of pressure anisotropy when282

comparing the RTA and LO scalar kernels with and without enforcing number conservation.283

This ordering, however, was well-explained by the behavior of the large-ξ limits of each284

kernel’s W function with µ = 0 and µ 6= 0. In addition to these findings, we presented the285

differential equation for the aHydro attractor, now taking into account number conservation.286

We found that the form of the attractor equation remains the same as when not enforcing287

number conservation, only with a modified W function. We solved the attractor differential288
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equation for both collisional kernels with µ = 0 and µ 6= 0 and compared to existing results289

in the literature.290

The work presented herein helps us to understand the impact of different collisional291

kernels on aHydro evolution. In the future, we plan to implement a realistic QCD-based292

collisional kernel in aHydro. Work along these lines is in progress [9]. Another interest-293

ing question concerns the impact of thermal fluctuations on the character/existence of the294

non-equilibrium attractor. If one allows for thermal fluctuations which break either trans-295

verse homogeneity or boost invariance, then these have been shown to modify the late time296

dynamics away from the classic Bjorken solution [33–35]. There has been one numerical at-297

tractor study of the effect of geometric inhomogeneities on the attractor in which the author298

found that an attractor still exists in this case, albeit with some quantitative differences to299

the homogenous case [20]. In the case of thermal fluctuations, a diffusion current must exist300

with density fluctuations satisfying the corresponding fluctuation-dissipation theorem and301

this will have an effect on the attractor solution. It would be very interesting to extend this302

analysis to also include thermal fluctuations and the effects of the diffusion current.303
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