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Heavy flavor observables provide valuable information on the properties of the hot and dense
Quark-Gluon Plasma (QGP) created in ultra-relativistic nucleus-nucleus collisions. Various micro-
scopic models have successfully described many of the observables associated with its formation.
Their transport coefficients differ, however, due to different assumptions about the underlying inter-
action of the heavy quarks with the plasma constituents, different initial geometries and formation
times, different hadronization processes and a different time evolution of the QGP. In this study
we present the transport coefficients of these models and investigate systematically how some of
these assumptions influence the heavy quark properties at the end of the QGP expansion. For this
purpose we impose on these models the same initial condition and the same model for the QGP
expansion and show that both have considerable influence on RAA and v2.

I. INTRODUCTION

One of the major efforts of heavy-ion physics aims at
creating a phase of deconfined quarks and gluons (the
Quark-Gluon plasma – QGP) and estimating the char-
acteristic transport properties of the QGP [1]. Due to
its short lifetime, estimation of the QGP properties re-
lies on the comparison between the experimental data
and theoretical calculations which implement the inter-
actions inside the medium.

Heavy quarks are among the most important probes for
the study of the QGP medium [2, 3]. They are primarily
produced in the early stage of the heavy ion collisions via
hard QCD scattering processes, and the production cross
section can be calculated using a pertubative QCD ap-
proach. During their propagation through the medium,
heavy quarks interact with the medium and lose energy.
Various approaches have been developed to describe the
interaction between the heavy quarks and the surround-
ing medium.

It is useful to characterize this interaction by a few
transport coefficients: the drag coefficients ηD, the spa-
tial diffusion coefficient Ds, the momentum transport co-
efficients κL, κT , q̂ [4–8], etc. The reduction of the inter-
action to a few transport coefficients has two advantages.
On the one side, for each approach that models the inter-

∗ yx59@phy.duke.edu

action between heavy quarks and the medium, by com-
paring the calculation for different choices of transport
coefficients with the experimental data, one should be
able to constrain the values and functional form of the
interaction strength. On the other side, it allows for a
comparison among various approaches which have been
advanced to describe the heavy quark - QGP interaction.

A comparison of these calculations in order to under-
stand the different outcomes so far has been ambiguous
[2, 9]. This is not only due to the relatively large un-
certainties in the experimental measurements – which
will be improved in the near future – but also, more es-
sentially, due to the interplay between different assump-
tions when one models the full sequential evolution of
heavy quarks in heavy-ion collisions: initial conditions,
pre-equilibrium dynamics [10], formation time, time evo-
lution of the QGP, in-medium propagation, hadroniza-
tion [11, 12], hadronic final state interactions [13, 14]
(Fig. 1). Each of these requires sophisticated modeling
and introduces assumptions that need to be justified, as
it may compensate differences in the description of the
elementary heavy quark - QGP interaction. It is there-
fore rather challenging to disentangle the contributions
from different stages of the evolution apart from those
of the heavy quark medium interactions, and truthfully
summarizes the theoretical uncertainties regarding the
determination of the transport coefficients in the QGP
phase. Despite all the difficulties, much effort has been
made during the past to compare among different theo-
retical calculations and investigate the deviation, such as
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FIG. 1. A skeleton showing each ingredients that needs to be taken into consideration during the implementation of heavy
quark evolution, which could affect the estimation of the heavy quark transport coefficients in the QGP phase.

a systematic comparison of different charm quark trans-
port coefficients in a static medium contributed by the
JET-HQ collaboration [15], a broad investigation on the
heavy quark evolution modeling components conducted
by the EMMI framework [16].

In this work we would continue the investigation by
controlling variables and quantifying how differing model
assumptions other than the heavy quark medium inter-
actions contribute to the observed variability in the ex-
tracted heavy quark transport coefficients. We evaluate
the response of the charm quark evolution inside a real-
istic QGP medium using different sets of transport coef-
ficients – which are estimated by multiple microscopic
transport models – in a standard Langevin evolution
framework. Fig. 1 provides a schematic overview of how
we separate each ingredient out and investigate its re-
spective impact. The six sets of transport coefficients
analyzed in this study are estimated from the following
microscopic transport models:

• PHSD [17, 18]: the Parton-Hadron-String Dynam-
ics transport approach, based on off-shell Kadanoff-
Baym equations (in first order gradient expan-
sion). Heavy quarks interact with the off-shell
quasi-particles whose masses and widths are eval-
uated to reproduce the lattice QCD EoS. Heavy
quarks scatter with light quarks and gluons elasti-
cally, with the running coupling being determined
by the scale of the temperature.

• Catania-pQCD [19, 20]: Full space-time transport
model for describing both heavy quark and mass-

less light quark and gluon evolution based on the
relativistic Boltzmann equation which is solved nu-
merically by means of the test-particle method.
Heavy quarks interact elastically with the bulk con-
stituents where the scattering cross section is calcu-
lated at leading-order pQCD with a temperature-
dependent running coupling αs and Debye screen-
ing mass mD.

• Catania-QPM [21, 22]: The evolution of heavy
quarks and bulk partons is described by means of a
Boltzmann equation similarly to Catania-pQCD . In
this case, in order to account for non perturbative
interactions, light quarks and gluons are dressed
with thermal masses according to a quasi-particle
prescription and the T-dependence of αs is tuned
to match the lattice QCD EoS.

• Nantes [23, 24]: a pQCD inspired running αs
Monte Carlo at Heavy Quark approach MC@sHQ,
where heavy quarks interact with the medium con-
stituents (thermal massless partons) according to
their scattering rate, using a linearized Boltzmann
equation. The running coupling is implemented as
reaching saturation at small Q2 momentum trans-
fer and the matrix elements are simplified by adopt-
ing an effective scalar propagator 1

t−κm̃2
D(T )

, with

the Debye mass m̃D(T ) evaluated self-consistently.
Both collisional and collisional+radiative energy
loss versions are implemented in the MC@sHQ model.
In this study, the collisional energy loss only version
is used.
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• CCNU-LBT [25, 26]: Linearized Boltzmann dynam-
ics of heavy quarks inside a hydrodynamical model
describing the QGP medium. Heavy quarks inter-
act with the medium constituents (thermal mass-
less partons) according to pQCD scattering rates,
where the running coupling is dependent on the
momentum transfer scale. The gluon radiation rate
utilizes the higher-twist formula, which is the same
as in the Duke model.

• Duke [27–29]: Improved Langevin dynamics of
heavy quark inside a QGP medium modeled by
fluid dynamics, incorporating both collisional and
radiative energy loss. No specific assumption re-
garding the nature of the medium degrees of free-
dom is made, as the medium is defined by lo-
cal temperature and flow velocity and is simulated
by a hydrodynamical model. The interaction be-
tween heavy quarks and the medium is charac-
terized by diffusion coefficients, which follow an
empirical parametrization and are determined by
Bayesian inference of the experimental measure-
ments.

Note that we do not intend to perform a comparison of
the different microscopic interaction mechanisms, which
requires a more sophisticated study and will be con-
ducted in the future.

The paper is structured as follows: in Sec. II we will
briefly review the Langevin dynamics that is used as a
reference evolution model and present the transport coef-
ficients extracted from the different models under discus-
sion. Section III will investigate the effects that different
modeling ingredients have on the outcome of the calcu-
lations. A summary will be addressed in Sec. IV.

II. MODEL DESCRIPTION

A. Langevin dynamics

We investigate the contribution from different com-
ponents by inserting the extracted transport coefficients
into a standard Langevin approach [30]:

d~p

dt
= −ηD(p)~p+ ~ξ. (1)

for the coefficients evaluated by collisional only models
(PHSD , Catania-pQCD , Catania-QPM , Nantes ), while
utilizing the improved Langevin equation [27]:

d~p

dt
= −ηD(p)~p+ ~ξ + ~fgluon. (2)

for the coefficients evaluated by collisional + radiative
models (CCNU-LBT , Duke ).

Here ηD~p is the drag force and ~ξ are the ther-
mal random kicks that heavy quarks consistently re-
ceive from the medium, which satisfy 〈ξi(t)ξj(t′)〉 =

(κLp̂ip̂j + κT (δij − p̂ip̂j)) δ(t− t′). In the scenario where
the radiative energy loss is considered, we introduce an

additional recoil force ~fgluon resulting from heavy quark

emitting gluons and define it as ~fgluon = −d~pgluon/dt.
The gluon radiation probability is adopted from the
higher-twist approach. More details can be found in
[27, 28].

The advantages of our Langevin implementation is
that the interaction between heavy quarks and the
medium is solely dependent on the drag and transport
coefficients ηD, κL, κT , regardless of the medium de-
grees of freedom or the microscopic mechanism of the
interaction[31]. Therefore it is suitable to serve as a
framework for the comparison of the various forms of
coefficients from different models – either calculated di-
rectly from theory, or parametrized and later estimated
from experimental data.

B. Transport coefficients

One of the ambitious goals for heavy flavor studies in
heavy-ion collisions is to get access to the properties of
the QGP medium, especially to calculate or estimate the
interaction between heavy quarks and the medium by en-
coding the interaction into a few transport coefficients.
The drag and momentum transport coefficients are de-
fined as [32]: 

d
dt 〈p〉 ≡ −ηD 〈p〉 ,
1
2
d
dt

〈
(∆pT )2

〉
≡ κT ,

d
dt

〈
(∆pz)

2
〉
≡ κL.

(3)

which are the average momentum loss, the transverse and
longitudinal fluctuations, respectively.

Ideally one would derive the transport coefficients
through a first principle calculation and confront them
directly with experimental data. However, most of the
microscopic transport models that are applied to sim-
ulate the heavy quark evolution have approached the
estimation problem more or less in a data-driven way.
Some ad hoc parameters usually need to be introduced
when implementing the heavy quark in-medium evolu-
tion, ( e.g. corrections for higher order processes or
some unknown non-perturbative effects), and these pa-
rameters are later calibrated with experimental measure-
ments. Clearly, part of the difference observed in the ex-
tracted transport coefficients stems from the different in-
trinsic interaction mechanisms that are considered when
the model is implemented. Yet, part of the discrepancy
in the transport coefficients also comes from the different
choices of other components, such as initial conditions,
the hadronization process, the medium evolution and so
on. All of these can have non-negligible effects on the fi-
nal output, and thus in turn affect the estimation of the
transport coefficients in the QGP phase.

In Fig. 2, 3, 4 we compare the charm quark drag and
momentum transport coefficients ηD, κL, κT as a func-
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FIG. 2. (Color online) Leading order charm quark transport coefficients (drag coefficients ηD) estimated by each group to
describe the D-meson RAA and v2 at AuAu and/or PbPb collisions at RHIC and the LHC.

tion of temperature and momentum for several models
listed in Sec. I. All the transport coefficients are eval-
uated such that each model is able to describe the D-
meson RAA and v2 for AuAu and/or PbPb collisions at
RHIC and the LHC. The drag and momentum trans-
port coefficients are separated into two groups, where the
PHSD , Catania-QPM , Catania-pQCD and Nantes (colli-
sional) models employ only the collisional energy loss,
and the Duke ,CCNU-LBT models employ both collisional
and radiative energy loss for heavy quarks. For the drag
coefficient ηD, all the models show a monotonously ris-
ing temperature dependence and a decrease for increas-
ing momentum. The Nantes coefficients have the largest
gradient in the high temperature and low momentum re-
gion, which is due to a momentum dependent running
coupling constant.

Both the transport coefficients κL, κT show a strong
positive momentum dependence and a mild tempera-
ture dependence, except for the Duke coefficients, which
feature an isotropy assumption unlike the others, and
have the smallest absolute value. The PHSD coefficients
are consistently smaller but still compatible with the
Catania-QPM coefficients, while some interplay appears
in the low momentum region when one compares between
Nantes and Catania-pQCD coefficients. The non-trivial
peak for CCNU-LBT coefficients in the low momentum re-

gion is due to the non-constant K-factor, which is in-
cluded in the model in order to provide a satisfactory de-
scription of experimental data, and its parametrization
reads as K = 1 +Kp exp(−p2/2σ2

p).

The drag and transport coefficients shown in
Figs. 2, 3, 4 carry only contributions from elastic pro-
cesses. These are the most often used transport coeffi-
cients for characterizing the interaction between heavy
quarks and the medium, and are frequently compared
among different models. For models that consider only
collisional energy loss process, they represent the total
drag and momentum coefficients. However, for models
incorporating both collisional and radiative energy loss
– Duke and CCNU-LBT – the inelastic processes contribu-
tion may be significant, even though the gluon radiation
process is of higher order in αs. In order to make fair
comparison between different models, it is therefore im-
portant to account for all of these contributions, from
elastic and inelastic processes.

The gluon radiation implemented in Duke and
CCNU-LBT is time-dependent (proportional to
sin2(∆t/2τf ) where τf is the gluon formation time),
which breaks the localization of the interaction and mim-
ics the coherence effect of medium-induced radiation.
We calculate the momentum change and broadening
using Monte Carlo techniques, by propagating the heavy
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FIG. 3. (Color online) Same as Fig. 2 but for longitudinal momentum transport coefficient κL.

quarks in a static medium for 1 fm/c, and calculating
the total coefficients by Eqn. 3. The results from
the dynamical calculation are presented in Fig. 5 at
fixed temperature T = 0.3 GeV and fixed momentum
p = 10 GeV correspondingly. The solid lines (with or
without markers) are the overall coefficients (containing
both, elastic and inelastic contributions), while the
dashed lines are the contributions from elastic processes,
the difference between these two are the additional
contributions from inelastic processes. We can already
see that for the Duke and CCNU-LBT models the gluon
radiation contributes effectively at higher momenta and
at temperatures which we observe at the beginning of
the QGP expansion. The existence of radiative processes
can partially explain why the transport coefficients
estimated by the Duke and CCNU-LBT models are com-
paratively smaller than those in models containing solely
elastic interactions when one only includes the elastic
components in the analysis.

III. HEAVY QUARK IN-MEDIUM EVOLUTION

In this section, we implement charm quark propaga-
tion inside a QGP medium using Langevin dynamics
coupled to a realistic description of the QGP medium
in AuAu collisions at

√
s = 200A GeV. We test the

impact of several model components, and compare the
charm quark energy loss at the end of the QGP phase
(Tc = 0.155 GeV [34, 35]). The two variables evaluated
are the nuclear modification factor RAA, here defined
as the ratio between the final state spectra and initial
state spectra RAA = dNfinal

dpT dy
/dNinitial

dpT dy
, and the elliptic flow

v2 =
〈
p2y−p

2
x

p2y+p
2
x

〉
. We do not intend to compare the dif-

ferent hadronization mechanisms , which are among the
least understood processes yet have been investigated in
[16].

This section is structured as follows: first we will com-
pare the results generated from different initial conditions
using the same QGP medium evolution model (a hydro-
dynamical description), and the heavy quarks interact
with the medium using common transport coefficients.
Then we will compare the results using different medium
evolution models, in which the media expand from the
same initial conditions. Later we compare in detail how
heavy quarks respond to different drag and momentum
transport coefficients for a given standard initial condi-
tion and a common medium evolution. Different schemes
for the Einstein relationship implementation as well as
the temperature and momentum dependence of the drag
and transport coefficients are inspected at the end of this
section.
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FIG. 4. (Color online) Same as Fig. 2, 3 but for transverse momentum transport coefficient κT .

A. Initial conditions

Charm quarks are created initially by hard processes
which can be calculated in perturbative QCD. In this
study we employ FONLL [36, 37] complemented by the
nuclear shadowing effect (cold nuclear matter effect) in
the EPS09 parametrization [38] to calculate the initial
spectra of the c-quarks.

In position space the initial geometry of the collisions
still remains one of the largest uncertainties in modeling
the QGP evolution in heavy-ion collisions [39]. There-
fore the correlation between the initial energy/entropy
density of the QGP and the initial position distribution
of heavy quarks is still a matter of active research.

In this study, we compare two different initial condi-
tions:

• PHSD : the procedure developed in Ref. [40] is ap-
plied in order to solve the Landau matching condi-
tion Tµνuν = euµ by diagonalization of the energy-
momentum tensor extracted from the PHSD simu-
lations. We construct a grid in Milne coordinates
with a cell size ∆τ = 0.2 fm/c, ∆x = ∆y =
1 fm and ∆η = 0.1). The starting time t = 0
considered here corresponds to the first nucleon-
nucleon collision. In the PHSD model, the par-
ticle coordinates are converted from (t, x, y, z) to

Milne coordinates using the following relations (τ =√
t2 − z2, x, y, η = 1/2 ln((t + z)/(t − z))). Each

of these particles then contributes to the energy-
momentum tensor with a Gaussian weight where
the widths are taken to be (∆x)2 = (∆y)2 in the
transverse direction and (∆η)2 in the longitudinal
direction. This smearing procedure allows us to
obtain a smooth profile with only one PHSD simu-
lation containing 30 parallel events. To avoid any
over-counting, each particle is restricted to only
contribute once in a given bin in proper time τ . In
addition, particles with non-real proper times and
space-time rapidities are simply discarded. Using
this method, the local energy density e, the pres-

sure components and the cell flow velocity ~β are
extracted for each space-time cell of the Milne grid.

• TRENTo : a parametric initial condition that does
not assume a specific physical mechanism, but de-
posits energy/entropy according to a parametric
function that maps the projectile thickness TA into
initial distribution dS/dy at mid-rapidity. The
mapping function is calibrated to experimental
data of light hadron observables by Bayesian anal-
ysis and the functional form dS/dy ∝

√
TATB is

used in this comparison.

Although initial event-by-event fluctuations are generally
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FIG. 5. (Color online) Overall heavy quark transport coefficients with radiative process considered. The values are estimated
by propagating charm quarks inside a static medium for 1 fm/c. The solid lines (with or without markers) represent the total
transport coefficients, while the dashed lines represent the contribution from collisional only process. The difference between
those two is the contribution from higher order radiative process.

regarded as an important feature in modeling the colli-
sion and have been shown to have a considerable impact
on flow observables, here, we will for the sake of simplic-
ity, consider averaged TRENTo initial conditions which
are obtained using 50 single TRENTo events. These av-
eraged initial conditions are widely utilized in hydrody-
namical models in the literature and are computationally
significantly less expensive.

Figure 6 shows a PHSD initial condition, a TRENTo
initial condition and an averaged TRENTo initial condi-
tion for AuAu collisions at

√
s = 200 AGeV with an

impact parameter b = 6 fm at the hydro starting time
τ0 = 0.6 fm/c (as well as the starting time of heavy
quarks interacting with the medium). The top figures
are the initial energy density for the soft medium, while
the bottom figures are the histograms of initial heavy
quark positions for the corresponding same events. The
(averaged) TRENTo initial condition is constructed by av-

eraging over 50 independent TRENTo initial conditions.
All the TRENTo initial conditions are selected to have a
similar spatial eccentricity ε2(s) as the PHSD initial con-
dition. Those initial energy densities are the input for
the (2+1)D hydrodynamical model – VISHNU – to sim-
ulate the evolution of the QGP medium, starting from
τ0 = 0.6fm/c. Figure 7 (left), shows the time evolu-
tion of the spatial and the momentum eccentricity of the
medium, displaying the well-known behavior of decreas-
ing ε2(s) and increasing ε2(p) as the system expands.
The momentum eccentricity can be interpreted as the
response of the system to the initial spatial eccentricity.
The hydrodynamic medium evolution with the PHSD ini-
tial condition shows a more rapidly increasing momen-
tum anisotropy at earlier times of the evolution (due to

the initial flow ~β introduced in the system) and slow-
ing down after the first few fm/c. The final momentum
anisotropy, however, is comparable to the one with an
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averaged TRENTo initial condition.
Using these initial conditions, we then propagate

charm quarks in the QGP medium till the end of the
QGP phase, using Duke transport coefficients (this choice
is arbitrary - we just need to fix one set of coefficients for
the comparison). Figure 8 (left), shows the time evo-
lution of the elliptic flow of charm quarks. A signifi-
cant fraction of this elliptic flow is generated at later
times during the evolution, when the medium itself has
a larger momentum anisotropy. We observe a persistent
difference between the charm quark v2 generated by these
two different initial conditions. This implies that charm
quarks can actually not only retain information about
the initial condition, but also keep a record of the QGP
medium expanding history, particularly, the later stages
of the evolution. At the end of the QGP phase, charm
quarks starting from an average TRENTo initial condition
have picked up a larger v2 than the ones from the PHSD
initial conditions, as shown on the right of Fig. 8, plotted
as the charm quark pT differential flow at the end of the
QGP phase.

B. QGP medium evolution

The interaction between heavy quarks and the medium
is dependent on the local temperature and the flow ve-
locity of the medium. In microscopic transport models
such as Boltzmann dynamics, the interactions will also
depend on the medium degrees of freedom.

Various approaches have been developed to describe
the evolution of the QGP medium in heavy-ion collisions.
Hydrodynamical models are very successful in describing
hadron multiplicities, and flow coefficients up to pT ' 3
GeV. However, they do rely on the assumption of local
thermal equilibrium during the evolution. An alternative

approach to the hydrodynamical description is micro-
scopic transport, which employs microscopic kinetic the-
ory and evolves the system of partons using a transport
equation such as the Boltzmann equation [17, 22, 42].
These types of models do not rely on any equilibrium
assumptions but require assumptions on the medium de-
grees of freedom. The differences between those two
classes of models result in significant deviation of the
medium properties, especially the viscosity corrections.
An early comparison between a hydrodynamical model
and an expanding fireball model already revealed some
significant differences regarding the charm quark v2 at
the end of QGP phase due to the different development
of radial and elliptic flow in those two models [43, 44].
Thus one may also expect differences if one compares
medium evolutions based on hydrodynamics vs. kinetic
theory.

Here we briefly summarize the default medium evolu-
tion models that are utilized in the heavy quark transport
models mentioned in Sec. I.

• PHSD: off-shell transport approach with a hadronic
and a partonic phase, the simulation of the
medium is based on the off-shell Kadanoff-Baym
equations (in first order gradient expansion), the
medium consists of quasi-particles, whose masses
and widths are determined by fitting the lattice
QCD EoS. (PHSD )

• (2+1)D viscous hydrodynamical model VISHNU:
implementation of boost-invariant viscous hydro-
dynamics which has been updated to handle event-
by-event fluctuated initial conditions and incorpo-
rates shear and bulk viscosity corrections with tem-
perature dependence, calculating the second-order
Israel-Stewart equations in the 14-momentum ap-
proximation (Duke , CCNU-LBT ).

• Boltzmann transport model [19]: full Boltzmann
simulation with QGP medium composed either of
pQCD massless or massive particles. The local
cross section for the interaction between the bulk
constituents is tuned to a fixed value of η/s(T ).
This is realized through the Chapmann-Enskog ap-
proximation and allows to gauge the Boltzmann
collision integral to the wanted η/s(T ) and simu-
late the fluid evolution in analogy to hydrodynamic
approach.(Catania-pQCD , Catania-QPM )

• EPOS: event generator with fluctuating initial con-
ditions and (3+1)D viscous hydrodynamics vHLLE
using a lattice QCD EoS. (Nantes )

In this section we compare the charm quark prop-
agation through three different QGP medium evolu-
tions: the PHSD medium, the (2+1)D hydrodynamical
VISHNU medium, and the (3+1)D hydrodynamical vH-
LLE medium. We prepare the medium evolutions follow-
ing the same methodology as discussed in [40], starting
from the same initial conditions (initial energy density e,
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FIG. 10. (Color online) Charm quark RAA as a function of y (Left), and pT (Middle), elliptic flow v2 as a function of pT
(Right) at the end of the QGP phase. The charm quarks are following a Langevin dynamics with two sets of transport
coefficients applied: PHSD (red) and Duke (green).

flow velocity ~β) that have been generated by the PHSD

model. The initial energy density and transverse flow ~β
generated from PHSD is plotted in Fig. 9, at hydro start-
ing time τ0 = 0.6 fm/c. A detailed comparison regarding
the PHSD medium and the hydrodynamical medium can
be found in [40].

The charm quarks then propagate through the three
media using our standard Langevin dynamics, where two
sets of transport coefficients are chosen as examples: the
collisional-only PHSD coefficients, and the collisional + ra-
diative Duke coefficients. Charm quark RAA(y), RAA(pT )
and v2 are evaluated at the end of the QGP phase, and
are shown in Fig. 10.

As shown in Fig. 10 the evolution of charm quarks in-
side hydrodynamical (2+1)D VISHNU and (3+1)D vHLLE
media are quite similar to each other. For the RAA with
respect to rapidity y, whose value is dominated by low pT
charm quarks, discrepancies among the three media ap-
pear at large rapidities. Among those, the low pT charm
quarks are most suppressed in a PHSD medium around
|y| ' 2.

High pT charm quarks propagating inside a hydro-
dynamical medium (solid and solid dots lines) show a
larger suppression than in the PHSD medium (dots lines)
and develop a larger elliptic flow v2. While RAA(y) and
RAA(pT ) are almost identical for (2+1)D and (3+1)D
hydrodynamical calculations, the values of v2 differ by
about 15%. This is understandable as the medium
anisotropy is weaker in a (3+1)D simulation but also re-
veals the limitation of the predictive power of (2D+1)
hydrodynamical calculations . The difference between
charm quarks propagating in a hydrodynamical medium
and a PHSD medium, however, is more significant. A
factor of 2 difference in the momentum differential flow
v2 is observed in the high momentum region.

A previous study [40] has shown that although the
shear (bulk) viscosity implemented in the hydrodynami-

cal medium are compatible (smaller) than what is embed-
ded in the PHSD model, the latter has a weaker response
to the bulk pressure, resulting in a slightly smaller mo-
mentum eccentricity for the bulk sector at later times
of the evolution in the PHSD model. Recalling what is
shown in previous section, charm quarks develop a signif-
icant part of their flow at later evolution times. The sub-
stantial discrepancy between the charm quark evolution
inside the two different media, shows that charm quarks
are more susceptible to the different bulk pressures of the
media, compared to the bulk matter itself. This study
shows that the heavy quark observables are sensitive to
both, the heavy quark - medium interaction and the de-
scription of the QGP expansion. One of the caveats is
that different combinations of the transport coefficients
and the medium expansion can lead to very similar re-
sults in one observable – for example, the charm quark
v2 results of the PHSD (coefficients)-Hydro3D (medium)
combination and Duke (coefficients)-PHSD (medium) ,
whereas for other observables, like RAA(pT ), the results
are rather different. This reveals that multiple (addi-
tional) observables are necessary to uniquely determine
the transport coefficients and the medium expansion even
if all other ingredients, like the initial conditions, were
known.

C. Heavy quark transport coefficients

The interactions between heavy quarks and the
medium are encoded into transport coefficients, which
have a non-trivial temperature and momentum depen-
dence.

In this section, we will implement different sets of
charm quark transport coefficients into our standard
Langevin dynamics coupled to the same (2+1)D hydro-
dynamical medium, evolved from the same PHSD ini-
tial conditions. This setup will not only provide us with
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FIG. 11. (Color online) Charm quark RAA as a function of y (Left), and pT (Middle), elliptic flow v2 as a function of pT
(Right) at the end of the QGP phase. The charm quarks are propagating in a hydrodynamical medium simulation for AuAu
collisions at 200 GeV with b = 6 fm/c (Upper), and b = 2 fm/v (Bottom).

a direct comparison between the response of the charm
quark observables (RAA and v2) to the transport coeffi-
cients, but also give us an insight into the difference of
the interaction mechanisms employed by each model, in
particular, Langevin dynamics versus microscopic trans-
port dynamics.

The results of charm quark RAA and v2 at the end
of the QGP phase are plotted in Fig. 11. At interme-
diate and higher pT (> 5 GeV), notable differences ap-
pear among different sets of coefficients. The PHSD and
Catania-QPM models have very similar transport coeffi-
cients, and therefore their RAA and v2 are comparable to
each other. Both generate the least suppression and the
smallest momentum anisotropy. The RAA also levels off
at higher pT due to the lack of radiative energy loss.

The Duke and CCNU-LBT coefficients result in moderate
suppression and flow among the six, although the Duke
coefficients are the smallest of all. This a the consequence
of including the radiative energy loss in the improved
Langevin equation, which significantly strengthens the
interaction between heavy quarks and the medium. The
Nantes coefficients result in the strongest suppression
and the largest flow, even though the Nantes (κL, κT ) are

not the largest. In fact, when one examines the Nantes
and Catania-pQCD coefficients, these two are comparable
with each other yet the RAA and v2 are substantially dif-
ferent. This could be a consequence of the stronger mo-
mentum dependence of the drag coefficient ηD presented
in the Nantes coefficients, which results in a greater en-
ergy loss in a dynamical medium.

The RAA with respect to rapidity, which is dominantly
driven by the low pT charm quarks, has less differenti-
ating power in terms of different transport coefficients.
However, the rapidity dependence of heavy charm ob-
servables may still be useful for distinguishing features
in the medium evolution, as demonstrated in Sec. III B.

At the end of this section, we should be cognizant that
the observed variability of RAA(pT ) and v2(pT ) resulting
from different description of the medium expansion (as
shown in Fig. 10), is of the same order of the magnitude
as the variability resulting from different sets of transport
coefficients (Fig. 11). Clearly one approach to improve
upon this particular ambiguity is to make sure that the
respective medium evolution is calibrated to well repro-
duce the largest possible set of observables in the light
hadron sector.
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D. Einstein’s relationship

Most of the transport approaches presented here are
based on the Boltzmann equation. The Boltzmann colli-
sion integral is solved by a Monte Carlo procedure which
conserves energy and momentum for each collision. The
drag and momentum transport coefficients can be cal-
culated from the Boltzmann collision integral [45]. The
H-theorem guaranties that a system approaches thermal
equilibrium when its time evolution is given by the Boltz-
mann equation. However, when using these transport co-
efficients in a Langevin equation, the approach to equilib-
rium is only guarantied when the Einstein’s relationship
between the drag and the momentum transport coeffi-
cients is satisfied [46–48]. When the equilibrium distri-
bution obeys Boltzmann-Jüttner statistics, the Einstein’s
relationship yields (in the pre-point discretization scheme
of the Langevin equation):

ηD =
κL

2ET
− κL − κT

p2
− ∂κL
∂p2

(4)

The drag and momentum transport coefficients deter-
mined by the Boltzmann collision integral do not usu-
ally fulfill the Einstein’s relationship. When using all
three ηD, κL, κT coefficients independently, the system
does not approach equilibrium, as shown in Fig. 12. Al-
though it has been shown that the Langevin equation
reproduces the results of the Boltzmann equation under
the condition that the scattering angle is small [49], such
condition is often not fulfilled for heavy quark scatter-
ing in the pQCD approach and therefore the difference
between a Boltzmann dynamics and a reduced Langevin
dynamics could be distinct, depending on the the quark
mass and regulator, as shown in Ref. [50].

We are therefore facing an ambiguity when imposing
Einstein’s relationship as only two (one) variables among
the ηD, κL, κT are required in the anisotropic (isotropic)
implementation. Here, we compare the results from
different implementation of Einstein’s relationship in a
static medium, showing in Fig. 13. Heavy quarks are ini-
tialized with an initial momentum pz(0) = 30 GeV and
then propagate in a static medium (T = 0.3 GeV) for
200 fm/c following different dynamics. The red dashed
line represents the average energy evolution under a lin-
earized Boltzmann dynamics, while the others are the
results from Langevin evolution while taking different
choices of the drag and momentum transport coefficients.
As shown on the left panel of Fig. 13, without involving
of the longitudinal momentum transformation κL, heavy
quarks lose energy similarly under linearized Boltzmann
and Langevin dynamics.

It should be pointed out that, the coincidence among
the implementation of the cases: ηD = ER(κT ), κT =
κL, κT = κL = ER(ηD) is, as a matter of fact, very
model-dependent. In the leading order pQCD assump-
tion, where the t-channel is the main contribution for the
energy loss, the relationship between the drag ηD and
transverse momentum coefficients κT is approximately

close to the Einstein’s relationship κT ≈ 2ETηD [32]. In
this scenario, there is no surprise that the green and or-
ange lines collide with each other. However, with the con-
sideration of higher-order contribution, mass effects, dif-
ferent choices of regulators, the relationship is not guar-
anteed. In an extreme scenario as shown on the right
panel of Fig. 13, where κT is quite different from 2ETηD,
the average energy evolution approaching to equilibrium
shows significant deviation between ηD = ER(κT ) and
κT = ER(ηD) implementations. Such extreme case is
achieved here by including only the s-channel contribu-
tion in the 2 → 2 scatterings, which is not intended to
describe the reality but used for demonstration purpose.
In general, while focusing on the study of average energy
loss, the implementation with drag coefficient ηD would
result in more similarity between Langevin and Boltz-
mann dynamics.

The average energy is not the only criterion to com-
pare the different implementation. To compare the influ-
ence of Einstein’s relationship implementation on heavy
quark evolution in a realistic medium, we demonstrate
the following three cases: (a) anisotropic case: (κL, κT )
are known while ηD is calculated from Einstein’s rela-
tionship; (b) isotropic case: κT is known and κL = κT
and ηD is calculated from Einstein’s relationship; (c)
isotropic case: ηD is known while κL = κT are calculated
from Einstein’s relationship. Additionally, Einstein’s re-
lationship Eqn. 4 holds for the traditional Langevin equa-
tion. The detailed balance naturally included in the
traditional Langevin dynamics breaks down in the im-
proved Langevin equation as a consequence of not in-
cluding gluon absorption. In the improved Langevin im-
plementation, a cut-off for the emitted gluon energy as
ω = πT is induced, such that the Boltzmann distribu-
tion is still achieved yet with a slightly smaller effective
equilibrium temperature [27].

The RAA and v2 with Einstein’s relationship imposed
are shown in Fig. 14. Just as in the previous subsection,
the charm quarks propagate in a (2+1)D hydrodynami-
cal medium and the observables are calculated at the end
of the QGP phase. Surprisingly, after imposing the Ein-
stein’s relationship, the charm quark RAA is significantly
smaller compared to the one without imposing Einstein’s
relationship (Fig. 11). Since the Duke coefficients obey
the isotropic Einstein’s relationship by default, their re-
sults are not affected.

When one selects case (b) or (c), the isotropic versions
of Einstein’s relationship (in those two cases, κT or ηD,
respectively, is the only coefficient that controls the inter-
action strength between charm quarks and the medium),
RAA and v2 faithfully reflect the magnitude of κT (ηD).
A consistently larger Catania-QPM κT than PHSD κT re-
sults in a consistently stronger suppression in RAA and a
larger v2, and vice versa. When one selects case (a) (the
anisotropic version of Einstein’s relationship), the charm
quarks develop the strongest momentum anisotropy, and
the peak of v2 has shifted from the lower momentum re-
gion pT ∼ 2.5 GeV to a higher momentum of around 5
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FIG. 12. (Color online) Charm quarks distribution after propagating within the Langevin evolution in a static medium with
constant temperature for t = 50 fm/c. The dashed black lines are the equilibrium Boltzmann distribution.

GeV.
Given the ambiguities laid out above, one can ques-

tion whether the Fokker Planck approach, although very
useful to compare different transport approaches, is the
right tool for quantitative predictions which can be com-
pared to experimental results. The results for the case
that the three transport coefficients are taken as indepen-
dent - as obtained from the Boltzmann collision integral -
and for the case that one imposes the Einstein’s relation-
ship differ substantially. In addition the results depend
on the arbitrary choice of which of the three transport
coefficients is taken over from the Boltzmann collision
integral and serves to determine the other two via the
Einstein’s relationship. These results reinforce the first
findings discussed in Ref. [50] within only a pQCD-like
approach.

IV. CONCLUSION

The heavy-ion experiments at RHIC and the LHC have
provided the community with a rich set of heavy flavor
measurements. The main mechanisms driving the strong
suppression of high-pT heavy flavor hadrons and their sig-

nificant elliptic flow are in general understood, as heavy
quarks lose a substantial amount of energy while propa-
gating through the QGP medium. In the low momentum
region, the energy loss is dominated by collisional en-
ergy loss while in the high momentum region, radiative
energy loss plays significant role [51–53]. However, the
precise determination of the energy loss and the related
transport coefficients still lags behind. To advance, an
improvement of current experimental precision (statisti-
cally and systematically) as well as a thorough under-
standing of the discrepancies observed among theoretical
calculations are of crucial importance.

In this report, we have investigated a number of com-
ponents in the modeling of the heavy quark evolution
in heavy-ion collisions in order to evaluate their possi-
ble contribution to the determination of the heavy quark
transport coefficients in a QGP medium. Key observa-
tions we have found include:

• Charm quarks are sensitive to the history of the
QGP evolution and retain information on the entire
time evolution from initial condition up to the late
stage of the reaction. The calculations confirm that
heavy quarks are a very suitable probe to study the
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QGP properties.

• Different initial conditions could cause up to a 20
% discrepancy for the final observables v2. This
result is obtained using an averaged TRENTo initial
condition and a PHSD initial condition for the same
approach for the time evolution.

• The results for the v2 observable depend on the
medium through which the heavy quarks travel. If
the expanding plasma is in local equilibrium (hy-
drodynamics) we obtain – for the same initial con-
dition – higher values for v2 as compared to the
non-equilibrium PHSD approach. This observation
suggest to study whether other observables give
additional information on the equilibrium/non-
equilibrium expansion of the QGP. In addition, a
15% of difference in v2 has been shown between
heavy quarks propagating in a 2D hydrodynamical
medium vs. a 3D hydrodynamical medium. The
rapidity distribution is much less dependent on the
medium.

• The inclusion of radiative energy loss has a large
effect on the estimation of leading order transport
coefficients, particularly to the determination of q̂
coefficients (which omit higher order radiative pro-
cess). In order to make a meaning comparison, one
should include all contributions from all processes.

• The transport coefficient κL, κT and ηD, calculated
from the pQCD cross sections used in the mod-
els presented here, do not obey the Einstein’s re-
lationship. Thus the Boltzmann equation, used in
these approaches, cannot be consistently reduced
to a Langevin equation because the angular dis-
tribution of the cross sections cannot be well ap-
proximated by retaining only the first two terms
of the Taylor expansion. Since for any approach
which brings the system asymptotically to a ther-
mal equilibrium the Einstein’s relationship has to
be fulfilled, one has to make the arbitrary choice
which of the three coefficients should be considered
as fundamental. The other two are then obtained
by the Einstein’s relationship. Our results show
that the final observables depend strongly on this
choice.

• Different sources of uncertainties, like different ex-
pansion scenarios, different initial conditions and
different elementary heavy quark-QGP interactions
influence RAA and v2 in a similar way.

To ensure progress in the future, one has to reduce the
uncertainties laid out in this manuscript, either by theo-
retical considerations or by adding new observables into
the analysis. Including light hadron observables may help
to limit the variance of the expansion scenarios. Re-
placing the Langevin approach by a Boltzmann approach
helps to eliminate the theoretical uncertainties which are
unavoidable if one wants to replace a Boltzmann equation
by a Langevin equation, even though care has to be taken
regarding heavy quark interactions at small momenta.

In the future we plan to extend our study to a detailed
comparison of the different interaction mechanisms that
are implemented in each microscopic model, the effect
of the hadronization process, as well as other modeling
components such as the dynamics of the pre-equilibrium
stage for hydrodynamic models and hadronic final state
interaction.
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FIG. 14. (Color online) Charm quark RAA as a function of pT (Upper), elliptic flow v2 as a function of pT (Bottom) at the
end of the QGP phase. The charm quarks are propagating in a hydrodynamical medium simulation for AuAu collisions at 200
GeV with b = 6 fm/c, with different scenario of Einstein’s relationship applied.

Appendix A: T, p dependence of the transport
coefficients

In this section, we will show that it is important for
each model to describe the RAA and v2 momentum de-
pendence simultaneously in all the momentum regions to
which the model can be applied. In other words, we will
first adjust the coefficients by multiplying each set by a
constant K factor, such that we obtain a charm quark
RAA = 0.3 at pT = 10 GeV using a Langevin dynamics

in a (2+1)D hydrodynamical medium. It is to some ex-
tend the analogy to the “tune2” test in[15] despite the
major difference is that now charm quarks propagate in
a dynamical medium instead in a static one.

As shown in Fig. 15, fixing RAA(pT = 10) = 0.3 makes
the variance of the RAA considerably smaller compared
to Fig. 11, the variance of v2, however, has not improved.
This shows the complexity of the dynamics and the in-
dependence of both observables.
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