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The 3H(d,n)4He reaction has a large low-energy cross section and will likely be utilized in future
commercial fusion reactors. This reaction also takes place during big bang nucleosynthesis. Studies
of both scenarios require accurate and precise fusion rates. To this end, we implement a one-
level, two-channel R-matrix approximation into a Bayesian model. Our main goals are to predict
reliable astrophysical S-factors and to estimate R-matrix parameters using the Bayesian approach.
All relevant parameters are sampled in our study, including the channel radii, boundary condition
parameters, and data set normalization factors. In addition, we take uncertainties in both measured
bombarding energies and S-factors rigorously into account. Thermonuclear rates and reactivities of
the 3H(d,n)4He reaction are derived by numerically integrating the Bayesian S-factor samples. The
present reaction rate uncertainties at temperatures between 1.0 MK and 1.0 GK are in the range of
0.2% to 0.6%. Our reaction rates differ from previous results by 2.9% near 1.0 GK. Our reactivities
are smaller than previous results, with a maximum deviation of 2.9% near a thermal energy of 4 keV.
The present rate or reactivity uncertainties are more reliable compared to previous studies that did
not include the channel radii, boundary condition parameters, and data set normalization factors
in the fitting. Finally, we investigate previous claims of electron screening effects in the published
3H(d,n)4He data. No such effects are evident and only an upper limit for the electron screening
potential can be obtained.

I. INTRODUCTION

The cross section of the 3H(d,n)4He reaction has a
large Q-value of 17.6 MeV, and a large cross section that
peaks at ≈ 5 barn near a deuteron (triton) bombard-
ing energy of 105 keV (164 keV). For these reasons, the
3H(d,n)4He reaction will most likely fuel the first mag-
netic and inertial confinement fusion reactors for com-
mercial energy production [1, 2]. The reactors are ex-
pected to operate in the thermal energy range of kT=
1 − 30 keV, corresponding to temperatures of T= 12
− 350 MK. These values translate to kinetic energies
between 4 keV and 120 keV in the 3H + d center-of-
mass system, which can be compared with a Coulomb
barrier height of ≈ 280 keV. Accurate knowledge of the
3H(d,n)4He thermonuclear rate is of crucial importance
for the design of fusion reactors, plasma diagnostics,
fusion ignition determination, and break-even analysis.
The 3H(d,n)4He reaction also occurs during big bang
nucleosynthesis, at temperatures between 0.5 GK and
1.0 GK, corresponding to center-of-mass Gamow peak
energies in the range of 13 − 252 keV.

The 3H + d low-energy cross section is dominated by a
s-wave resonance with a spin-parity of Jπ = 3/2+, corre-
sponding to the second excited level near Ex ≈ 16.7 MeV
excitation energy in the 5He compound nucleus [3]. This
level decays via emission of d-wave neutrons. It has
mainly a 3H + d structure, corresponding to a large
deuteron spectroscopic factor [4], while shell model cal-
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culations predict a relatively small neutron spectrocopic
factor [5]. However, the neutron penetrability is much
larger than the deuteron penetrability at these low en-
ergies, so that incidentally the partial widths for the
deuteron and neutron channel (Γd, Γn), given by the
product of spectroscopic factor and penetrability, become
similar in magnitude. This near equality of the deuteron
and neutron partial widths causes the large low-energy
cross section of the 3H(d,n)4He reaction [6, 7] since, con-
sidering a simple Breit-Wigner expression, the cross sec-
tion maximum is proportional to ΓdΓn/(Γd+Γn)2, which
peaks for the condition Γd ≈ Γn.

Different strategies to analyze the data have been
adopted previously. Fits of the available 3H(d,n)4He data
using Breit-Wigner expressions were reported by Duane
[8] and Angulo et al. [9], while a Padé expansion was
used by Peres [10]. Single-level and multi-level R-matrix
fits to 3H(d,n)4He data were discussed by Jarmie, Brown
and Hardekopf [11], Brown, Jarmie and Hale [12], Barker
[4], and Descouvemont et al. [13]. A comprehensive R-
matrix approach that included elastic and inelastic cross
sections of the 3H + d and 4He + n systems in addition
to the 3H(d,n)4He data, incorporating 2664 data points
and 117 free parameters, was presented by Hale, Brown
and Jarmie [14] and Bosch and Hale [15, 16]. An analysis
of 3H(d,n)4He data using effective field theory, with only
three fitting parameters, can be found in Brown and Hale
[17].

Our first goal is to quantify the uncertainties in the
thermonuclear rates and reactivities for the 3H(d,n)4He
reaction. All previous works employed chi-square fit-
ting in the data analysis, assuming Gaussian likelihoods
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throughout, and disregarding any uncertainties in the
center-of-mass energies. Here, we will discuss an analy-
sis using Bayesian techniques. This approach has major
advantages, as discussed by Iliadis et al. [18] and Gómez
Iñesta, Iliadis and Coc [19], because it is not confined
to the use of Gaussian likelihoods, and instead allows
for implementing those likelihoods into the model that
best apply to the problem at hand. Also, all previous
R-matrix analyses kept the channel radii and boundary
condition parameters constant during the fitting. In re-
ality, these quantities are not rigidly constrained, and
their variation will impact the uncertainties of the de-
rived S-factors and fusion rates. Furthermore, uncertain-
ties affect not only the measured S-factors, but also the
experimental center-of-mass energies. Uncertainties in
both independent and dependent variables can be easily
implemented into a Bayesian model, whereas no simple
prescription for such a procedure exists in chi-square fit-
ting. Our second goal is to investigate the usefulness of
the Bayesian approach for estimating R-matrix parame-
ters. The results will prove useful in future studies that
involve multiple channels and resonances.

In Section II, we briefly present the S-factor data
adopted in the present analysis. Section III summarizes
the reaction formalism. Bayesian hierarchical models are
discussed in Section IV, including likelihoods, model pa-
rameters, and priors. Section V considers some prelimi-
nary ideas. Our Bayesian model for the 3H(d,n)4He re-
action is presented in Section VI. Results are presented
in Section VII. In Section VIII, we present Bayesian re-
action rates and reactivities. A summary and conclu-
sions are given in Section IX. An evaluation of the data
adopted in our analysis is presented in Appendix A.

II. DATA SELECTION

Several previous works have used all available 3H + d
cross section data in the fitting. A rigorous data analysis
requires a careful distinction between statistical and sys-
tematic uncertainties (Section IV B), because we aim to
implement these effects separately in our Bayesian model.
For this reason, we will consider only those experiments
for which we can quantify the two contributions indepen-
dently. Detailed information regarding the experimental
uncertainties is provided in Appendix A.

The 3H(d,n)4He low-energy cross section represents a
steep function of energy. For example, at 20 keV in the
center of mass, an energy variation of only 0.1 keV causes
a 2% change in cross section, while at 10 keV a varia-
tion of 0.1 keV causes a 6% change in the cross section.
Therefore, accurate knowledge of the incident beam en-
ergy becomes crucial for predicting cross sections and
thermonuclear rates. Experiments that employed thin
targets will be less prone to systemic effects than those
using thick targets. For example, consider the data mea-
sured by Argo et al. [7], which were adopted at face value
in previous fusion rate determinations. Argo et al. [7]
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FIG. 1. The data used in our analysis: (Red circles) Jarmie,
Brown and Hardekopf [11]; (Black diamonds) Brown, Jarmie
and Hale [12]; (Green squares) Kobzev, Salatskij and Telezh-
nikov [21]; (Blue triangles) Arnold et al. [22]; (Purple trian-
gles) Conner, Bonner and Smith [6]. Absolute cross sections
were not determined in Ref. [12] and their data were normal-
ized to those of Ref. [11]. Only statistical uncertainties are
shown, but for many of the data points they are smaller than
the symbol sizes. Details regarding the data evaluation are
given in Appendix A. The energy ranges important for fusion
reactors and big bang nucleosynthesis are 4 − 120 keV and
13 − 252 keV, respectively.

employed 1.5 mg/cm2 thick aluminum entrance foils for
their deuterium gas target. Under such conditions, tri-
tons that slowed down to a laboratory energy of 183 keV
after passing the entrance foil would have lost 568 keV in
the foil, giving rise to an overall beam straggling of about
31 keV. In this case, it is difficult to reliably correct the
cross section for the beam energy loss. Compare this sit-
uation to the measurement by Jarmie and collaborators
[11, 20], where the triton beam lost an energy less than
200 eV while traversing a windowless deuterium gas tar-
get. A detailed discussion of all data sets that have been
adopted or disregarded in the present analysis is given in
Appendix A.

All of our adopted data are shown in Figure 1. They
originated from the experiments by Jarmie, Brown and
Hardekopf [11], Brown, Jarmie and Hale [12], Kobzev,
Salatskij and Telezhnikov [21], Arnold et al. [22], and
Conner, Bonner and Smith [6], and contain 191 data
points in the center-of-mass energy region between 5 keV
and 270 keV. Notice that the results of Ref. [12] have
been used at face value in previous fusion rate estima-
tions, although these authors did not determine any ab-
solute cross sections. In Section VI we will discuss how
to implement such data into a Bayesian model.

III. REACTION FORMALISM

Since we are mainly interested in the low-energy re-
gion, where the 3/2+ s-wave resonance dominates the
cross section, we will describe the theoretical energy de-



3

pendence of the cross section using a one-level, two-
channel R-matrix approximation. This assumption is
justified by previous works that found that the measured
S-factor data are about equally well reproduced by single-
level and multi-level R-matrix analyses at center-of-mass
energies below ≈ 100 keV (see, e.g., Figure 4 in Ref. [23]).

The angle-integrated cross section of the 3He(d,n)4He
reaction is given by

σdn(E) =
π

k2
2J + 1

(2j1 + 1)(2j2 + 1)
|Sdn|2 (1)

where k and E are the wave number and energy, respec-
tively, in the 3H + d center-of-mass system, J = 3/2 is
the resonance spin, j1 = 1/2 and j2 = 1 are the spins of
the triton and deuteron, respectively, and Sdn is the scat-
tering matrix element. The corresponding astrophysical
S-factor is defined by

Sbare(E) ≡ Ee2πησdn(E) (2)

where η is the Sommerfeld parameter. The scattering
matrix element for a single level can be expressed as [24]

|Sdn|2 =
ΓdΓn

(E0 + ∆− E)2 + (Γ/2)2
(3)

where E0 denotes the level eigenenergy. The partial
widths of the 3H + d and 4He + n channels (Γd, Γn),
the total width (Γ), and total level shift (∆), which are
all energy dependent, are given by

Γ =
∑
c

Γc = Γd + Γn , Γc = 2γ2cPc (4)

∆ =
∑
c

∆c = ∆d + ∆n , ∆c = −γ2c (Sc −Bc) (5)

where γ2c is the reduced width1, and Bc is the boundary
condition parameter. The energy-dependent quantities
Pc and Sc denote the penetration factor and shift factor,
respectively, for channel c (either 3H + d or 4He + n).
They are computed numerically from the Coulomb wave
functions, F` and G`, according to

Pc =
kac

F 2
` +G2

`

, Sc =
kac(F`F

′
` +G`G

′
`)

F 2
` +G2

`

(6)

The Coulomb wave functions and their radial derivatives
are evaluated at the channel radius, ac, and the quan-
tity ` denotes the orbital angular momentum for a given
channel.

1 In this work, we are not using the Thomas approximation [25].
Therefore, our partial and reduced widths are “formal” R-matrix
parameters. Use of the Thomas approximation necessitates the
definition of “observed” R-matrix parameters, which has led to
significant confusion in the literature.

In some cases, the fit to the data can be improved
by adding a distant level in the analysis, located at a
fixed energy outside the range of interest. However, such
“background poles” have no physical meaning. As will
become apparent below, the single-level, two-channel ap-
proximation represents a satisfactory model for the low-
energy data of interest here.

Teichmann and Wigner [26] showed that the reduced
width, γ2λc, of an eigenstate λ cannot exceed, on average,
the single-particle limit, given by

〈
γ2λc
〉
.

3

2

~2

mca2c
(7)

where mc is the reduced mass of the interacting particle
pair in channel c. In this original formulation, Equa-
tion (7) only holds for a reduced width that is averaged
over many eigenstates, λ. Using the actual strength of
the residual interaction in nuclei, Dover, Mahaux and
Weidenmüller [27] found a single-particle limit of

γ2λc .
~2

mca2c
(8)

for an individual resonance in a nucleon channel. The
quantity γ2WL ≡ ~2/(mca

2
c) is often referred to as the

Wigner limit. Considering the various assumptions made
in deriving the above expressions, the Wigner limit pro-
vides only an approximation for the maximum value of
a reduced width. The Wigner limit can also be used to
define a “dimensionless reduced width”, θ2λc, according
to

γ2λc ≡
~2

mca2c
θ2λc (9)

We perform the S-factor fit to the data using the ex-
pression [28, 29]

S(E) ≈ Sbare(E)eπη(Ue/E) (10)

where Ue is the energy-independent electron screening
potential. The latter quantity has a positive value and
depends on the identities of target and projectile, i.e., it
differs for forward and inverse kinematics experiments.

R-matrix parameters and cross sections derived from
data have a well-known dependence on the channel (or
interaction) radius, which is usually expressed as

ac = r0

(
A

1/3
1 +A

1/3
2

)
(11)

where Ai are the mass numbers of the interacting nu-
clei, and r0 is the radius parameter, with a value usu-
ally chosen between 1.4 fm and 1.5 fm. The channel
radius dependence arises from the truncation of the R-
matrix to a restricted number of poles (i.e., a finite set
of eigenenergies). The radius of a given channel has no
rigorous physical meaning, except that the chosen value
should exceed the sum of the radii of the colliding nuclei



4

(see, e.g., Descouvemont and Baye [30], and references
therein). The radius dependence can likely be reduced
by including more levels (including background poles) in
the data analysis, but only at the cost of increasing the
number of fitting parameters. In any case, it is important
to include the effects of varying the channel radius in the
data analysis. We will address this issue in Section VI.

Another point that needs investigating is the effect of
the arbitrary choice of the boundary condition parame-
ter, Bc. It can be seen from Equations (3) and (5) that
changing Bc will result in a corresponding change of the
eigenenergy, E0, to reproduce the measured location of
the cross section maximum. Lane and Thomas [24] rec-
ommended to chose Bc in the one-level approximation
such that the eigenvalue E0 lies within the width of the
measured resonance.

For a relatively narrow resonance, one can assume that
the measured location of the cross section (or S-factor)
maximum, Er, coincides with the maximum of the scat-
tering matrix element, which occurs when the first term
in the denominator of Equation (3) is set equal to zero.
In that case, the resonance energy, Er, can be defined by

E0 + ∆(Er)− Er = 0 (12)

One (but not the only) choice for the boundary condi-
tion parameter is then Bc = Sc(Er). This choice results
in ∆(Er) = 0, or Er = E0, in agreement with the rec-
ommendation of Lane and Thomas [24]. This procedure,
which represents the standard assumption in the litera-
ture, cannot be easily applied in the case of the excep-
tionally broad low-energy resonance in 3H(d,n)4He, as
will be discussed in Section V.

IV. BAYESIAN INFERENCE

A. General Aspects

We analyze the S-factor data using Bayesian statis-
tics and Markov chain Monte Carlo (MCMC) algorithms.
The application of this method to nuclear astrophysics is
discussed in Iliadis et al. [18] and Gómez Iñesta, Iliadis
and Coc [19]. Bayes’ theorem is given by [31]

p(θ|y) =
L(y|θ)π(θ)∫
L(y|θ)π(θ)dθ

(13)

where the data are denoted by y and the complete set
of model parameters is described by the vector θ. All
factors entering in Equation (13) represent probability
densities: L(y|θ) is the likelihood, i.e., the probability
that the data, y, were obtained assuming given values
of the model parameters; π(θ) is called the prior, which
represents our state of knowledge about each parame-
ter before seeing the data; the product of likelihood and
prior defines the posterior, p(θ|y), i.e., the probability of
the values of a specific set of model parameters given the

data; the denominator, called the evidence, is a normal-
ization factor and is not important in the context of the
present work. It can be seen from Equation (13) that
the posterior represents an update of our prior state of
knowledge about the model parameters once new data
become available.

The random sampling of the posterior is usually per-
formed numerically over many parameter dimensions us-
ing MCMC algorithms [32–34]. A Markov chain is a ran-
dom walk, where a transition from state i to state j is
independent (memory-less) of how state i was populated.
The fundamental theorem of Markov chains states that
for a very long random walk the proportion of time (i.e.,
the probability) the chain spends in some state j is in-
dependent of the initial state it started from. This set of
limiting, long random walk, probabilities is called the sta-
tionary (or equilibrium) distribution of the Markov chain.
When a Markov chain is constructed with a station-
ary distribution equal to the posterior, p(θ|y), the sam-
ples drawn at every step during a sufficiently long ran-
dom walk will closely approximate the posterior density.
Several related algorithms (e.g., Metropolis, Metropolis-
Hastings, Gibbs) are known to solve this problem numer-
ically. The combination of Bayes theorem and MCMC
algorithms allows for computing models that are too dif-
ficult to estimate using chi-square fitting.

In this work, we use a MCMC sampler based on the
differential evolution adaptive Metropolis (DREAM) al-
gorithm [35, 36]. This method employs multiple Markov
chains in parallel and uses a discrete proposal distri-
bution to evolve the sampler to the posterior density.
It has been shown to perform well in solving complex
high-dimensional search problems. This sampler is im-
plemented in the “BayesianTools” package, which can be
installed within the R language [37]. Running a Bayesian
model refers to generating random samples from the pos-
terior distribution of model parameters. This involves
the definition of the model, likelihood, and priors, as well
as the initialization, adaptation, and monitoring of the
Markov chains.

B. Types of uncertainties

Of particular interest for the present work is the con-
cept of a hierarchical Bayesian model (see Hilbe, de Souza
and Ishida [38], and references therein). It allows us to
take all relevant effects and processes into account that
affect the measured data, which is often not possible with
chi-square fitting. We first need to define the different
types of uncertainties impacting both the measured en-
ergy and S-factor in a nuclear physics experiment.

Statistical (or random) uncertainties usually follow a
known probability distribution. When a series of inde-
pendent experiments is performed, statistical uncertain-
ties will give rise to different results in each individual
measurement. Statistical uncertainties can frequently be
reduced by improving the data collection procedure or
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by collecting more data. They have a number of differ-
ent causes. For example, for the S-factor, one source is
the Poisson uncertainty, which derives from measuring
N counts with an associated uncertainty of

√
N . An-

other source is caused by the background that needs to be
subtracted from the measured total intensity to find the
net intensity of the signal. A third source is introduced
by the detector, which is subject to additional random
uncertainties (e.g., corrections for detection efficiencies).
The cumulative effect causes the measured number of sig-
nal counts to fluctuate randomly from data point to data
point.

Systematic uncertainties originate from sources that
systematically shift the signal of interest either too high
or too low. They do not usually signal their existence
by a larger fluctuation of the data, and they are not re-
duced by combining the results from different measure-
ments or by collecting more data. When the experiment
is repeated, the presence of systematic effects may not
produce different answers. Reported systematic uncer-
tainties are at least partially based on assumptions made
by the experimenter, are model-dependent, and follow
vaguely known probability distributions [39]. In a nu-
clear physics experiment, systematic effects impact the
overall normalization by shifting all points of a given
data set into the same direction. They are correlated
from data point to data point, in the sense that if one
happened to know how to correct such an uncertainty for
one data point, then one could calculate the correction
for the other data points as well.

In many cases, the scatter about the best-fit model is
larger than can be explained by the reported measure-
ment uncertainties. It its useful in such situations to
introduce an extrinsic uncertainty, which describes addi-
tional sources of uncertainty in the data that were not
properly accounted for by the experimenter. For exam-
ple, the reported statistical uncertainties may have been
too optimistic because target thickness or ion beam strag-
gling effects were underestimated; or perhaps systematic
effects that impact data points differently in a given ex-
periment were unknown to the experimenter.

To summarize, we assume that three independent ef-
fects impact the measured energies and S-factors: (i)
statistical uncertainties, which perturb the true (but un-
known) energy or S-factor by an amount of εstat; (ii)
systematic uncertainties, which perturb the energy or S-
factor by an amount of εsyst; and (iii) extrinsic scatter,
which perturbs the energy or S-factor by an amount of
εextr. The overall goal is to estimate credible values for
the true energy and S-factor based on the measured data.

C. Likelihoods and Priors

For illustrative purposes, we will explain in this sec-
tion how to construct a hierarchical Bayesian model by
focussing on uncertainties in the dependent variable, i.e.,
the S-factor. Our full Bayesian model, including uncer-

tainties in both energy and S-factor, will be discussed in
a later section.

Suppose first that the experimental S-factor, Sexp,
is subject to experimental statistical uncertainties only
(εextr = εsyst = 0; εstat 6= 0). Then the likelihood is
given by

L(Sexp|θ) =

N∏
i=1

1

σstat,i
√

2π
e
− [Sexpi

−S(θ)i]
2

2σ2
stat,i (14)

where S(θ)i is the model S-factor (e.g., obtained from R-
matrix theory); the product runs over all data points, la-
beled by i. The likelihood represents a product of normal
distributions, each with a mean of S(θ)i and a standard
deviation of σstat,i, given by the experimental statistical
uncertainty of datum i. In symbolic notation, the above
expression can be abbreviated by

Sexpi ∼ N(S(θ)i, σ
2
stat,i) (15)

where N denotes a normal probability density, and the
symbol “∼” stands for “sampled from.” If, on the other
hand, only extrinsic uncertainties impact the S-factor
data (εsyst = εstat = 0; εextr 6= 0), and we assume
that these follow a normal probability distribution with a
standard deviation of σextr, the likelihood can be written
as

L(Sexp|θ) =

N∏
i=1

1

σextr
√

2π
e
− [Sexpi

−S(θ)i]
2

2σ2extr (16)

In symbolic notation, we obtain

Sexpi ∼ N(S(θ)i, σ
2
extr) (17)

When both effects are taken simultaneously into account
(εextr 6= 0; εstat 6= 0), the overall likelihood is given by
a nested (and cumbersome explicit) expression. In the
convenient symbolic notation, we can write

S′i ∼ N(S(θ)i, σ
2
stat,i) (18)

Sexpi ∼ N(S′i, σ
2
extr) (19)

The last two expressions show in an intuitive manner how
the overall likelihood is constructed: first, statistical un-
certainties, quantified by the standard deviation σstat,i
of a normal probability density, perturb the true (but
unknown) value of the S-factor at energy i, S(θ)i, to pro-
duce a value of S′i; second, the latter value is perturbed,
in turn, by the extrinsic uncertainty, quantified by the
standard deviation σextr of a normal probability density,
to produce the measured value of Sexpi .

The above discussion demonstrates how any effect im-
pacting the data can be implemented in a straightfor-
ward manner into a Bayesian hierarchical model. There
is nothing special about adopting normal distributions
in the example above, which we only chose to explain a
complex problem in simple words. As will be seen below,
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some of the likelihood functions used in the present work
are non-normal.

Each of the model parameters, contained in the vector
θ, requires a prior distribution. It contains the informa-
tion on the probability density of a given parameter prior
to analyzing the data under consideration. For example,
if our model has only one parameter, θ, and if all we
know is that the value of the parameter lies somewhere
in a region from zero to θmax, we can write in symbolical
notation for the prior

θ ∼ U(0, θmax) (20)

where U denotes a uniform probability density.
Normalization factors related to systematic uncertain-

ties represent a special case. For example, a systematic
uncertainty of, say, ±5%, implies that the systematic
factor uncertainty is 1.05. The true value of the nor-
malization factor, f , is unknown at this stage, otherwise
there would be no systematic uncertainty. However, we
do have one piece of information: the expectation value
of the normalization factor is unity. If this would not
be the case, we would have corrected the data for the
systematic effect.

A useful distribution for normalization factors is the
lognormal probability density, which is characterized by
two quantities, the location parameter, µ, and the spread
parameter, σ. The median value of the lognormal distri-
bution is given by xmed = eµ, while the factor uncer-
tainty, for a coverage probability of 68%, is f.u. = eσ.
We will include in our Bayesian model a systematic ef-
fect on the S-factor as an informative, lognormal prior
with a median of xmed = 1.0 (or µ = lnxmed = 0), and
a factor uncertainty given by the systematic uncertainty,
i.e., in the above example, f.u. = 1.05 (or σ = ln f.u. =
ln(1.05)). The prior is explicitly given by

π(fn) =
1

ln(f.u.)n
√

2πfn
e
− (ln fn)2

2[ln(f.u.)n]2 (21)

where the subscript n labels the different data sets. We
write in symbolic notation

fn ∼ LN(0, [ln(f.u.)n]2) (22)

where LN denotes a lognormal probability density. For
more information on this choice of prior, see Iliadis et al.
[18].

Notice that in chi-square fitting, normalization factors
are viewed as a systematic shift in the data (see, for ex-
ample, Brown and Hale [17]). In the Bayesian model, the
reported data are not modified. Instead, during the fit-
ting each data set “pulls” on the true S-factor curve with
a strength inversely proportional to the systematic un-
certainty: a data set with a small systematic uncertainty
will pull the true S-factor curve more strongly towards
it compared to a data set with a large systematic uncer-
tainty.

In the present work, we employ priors that best reflect
the physics involved. Depending on the parameter, we

use as priors uniform distributions, broad normal den-
sities truncated at zero, narrow normal densities, and
log-normal densities.

V. PRELIMINARY CONSIDERATIONS

Although the 3H(d,n)4He cross section is dominated
at low energies by only a single resonance, any fitting
procedure will face a number of interesting problems.

First, Argo et al. [7] noted that an equally good fit is
obtained for two possible solutions of the partial width
ratio (Γd/Γn > 1 or < 1), and that it is not possible
to chose between them without additional information
about the magnitude of the reduced widths γ2d and γ2n.
They also note, however, that the two solutions do not
give widely different parameter values since the Γd/Γn
ratio is of order unity.

Second, in addition to the ambiguity introduced by
the ratio of partial withs, there is another complication
related to their absolute magnitude. Consider the two
S-factor parameterizations shown in Figure 2, where the
data are the same as in Figure 1. The blue curve was
obtained using the best-fit values of Barker [4] for the
eigenenergy and the reduced widths (E0 = 0.0912 MeV,
γ2d = 2.93 MeV, γ2n = 0.0794 MeV); Barker’s fixed values
for the channel radii and boundary condition parame-
ters were ad = 6.0 fm, an = 5.0 fm, Bd = −0.285, Bn
= −0.197. Barker’s derived deuteron reduced width ex-
ceeds the Wigner limit by a factor of three, which hints
at the exceptional character of the low-energy resonance.
Although the data analyzed by Barker and the data eval-
uated in the present work (see Appendix A) are not iden-
tical, it can be seen that his best-fit curve (blue) describes
the observations well. The red curve was computed by
arbitrarily multiplying Barker’s reduced width values by
a factor of 10 (γ2d = 29.3 MeV, γ2n = 0.794 MeV) and
slightly adjusting the eigenenergy and boundary condi-
tion parameter (E0 = 0.102 MeV, Bd = −0.267). Notice
that the red curve does not represent any best-fit re-
sult, but its sole purpose is to demonstrate that similar
S-factors can be obtained for vastly different values of
the partial widths. However, the red curve represents an
unphysical result if we consider additional constraints: a
deuteron reduced width of γ2d = 29.3 MeV, obtained with
a channel radius of ad = 6.0 fm, exceeds the Wigner limit
(see Equation (8)) by a factor of 30 and is thus highly
unlikely.

The latter ambiguity is caused by the structure of
Equation (3). The large reduced width of the deuteron
channel dominates the level shift (see Equation (5)) and
also the factor (E0+∆−E) in Equation (3). Therefore, if
the reduced or partial widths for both channels are mul-
tiplied by a similar factor, the shape and magnitude of
the S-factor is only slightly changed. This ambiguity in
the parameter selection cannot be removed even when 3H
+ d elastic scattering data are simultaneously analyzed
together with the reaction data, as noted by Barit and
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FIG. 2. Astrophysical S-factors computed using the single-
level, two-channel approximation (see Equations (1)−(3)).
The data are the same as in Figure 1. The blue curve is
computed with the best-fit parameter values of Barker [4].
The red curve is obtained by arbitrarily multiplying Barker’s
reduced widths by a factor of 10 and adjusting the eigenen-
ergy and boundary condition parameters slightly. The red
curve does not represent any best-fit result and serves for il-
lustrative purposes only.

Sergeev [40].
Third, the large total width of the resonance is simi-

lar in magnitude to the resonance energy. The resonance
is so broad that the experimental values of the scatter-
ing matrix element, |Sdn|2, the cross section, σ, and the
S-factor, Sbare(E), peak at markedly different center-of-
mass energies (≈ 80 keV,≈ 65 keV, and≈ 50 keV, respec-
tively). The differences are caused by the energy depen-
dences of the wave number (k2 ∼ E) in Equation (1) and
the Gamow factor (e2πη) in Equation (2) over the width
of the resonance. Furthermore, for given values of E0 and
∆, the location of the |Sdn|2 maximum does not coincide
anymore with the energy at which the factor (E0+∆−E)
in Equation (3) is equal to zero, because of the energy de-
pendence of the penetration factors over the width of the
resonance. Therefore, there is no unique procedure for
defining an energy, Er, “at the center of the resonance”
[24], and there is no obvious advantage of adopting the
definition of Equation (12). In other words, for the ex-
ceptionally broad low-energy resonance in 3H(d,n)4He,
one cannot chose the boundary condition parameter, Bc
= Sc(Er), so that the level shift is zero at the location
of the maximum of either |Sdn|2, σ, or Sbare(E), and at
the same time expect the “center of the resonance”, Er,
to equal the eigenvalue E0 (see Section III).2

For example, consider again the blue curve shown in

2 Jarmie, Brown and Hardekopf [11] state that they “chose Bc so
that the level shifts ∆c are zero near the peak of the S function,
which results in the level energy Eλ being close to the c.m. en-
ergy at which the S function peaks.” Their Table VII lists the
values of ad = 5.0 fm, an = 3.0 fm and Bd = −0.27864, Bn =
−0.557 for the channel radii and boundary conditions, respec-
tively. However, the latter values correspond to an energy of Er

Figure 2, which was obtained with E0 = 0.0912 MeV
and Bd = Sd(Er) = −0.285 [4], where the latter value
corresponds to an energy of Er = 0.0912 MeV. Barker
used Equation (12) and assumed Er = E0 in the fitting,
but the fitted energies (Er, E0) do not coincide with the
measured peak location of the scattering matrix element,
or cross section, or S-factor. If we chose instead to set
the level shift equal to zero at the location of the |Sdn|2
maximum (i.e., Er = 80 keV), the eigenenergy needs to
be chosen near 152 keV to achieve a good fit to the data,
while keeping all other parameters constant. In other
words, the eigenenergy is not located near the |Sdn|2
maximum anymore. Conversely, if we set the eigenen-
ergy equal to the location of the maximum of |Sdn|2, σ,
or Sbare(E), good fits to the data require a level shift of
zero near energies of Er = 0.093 MeV, 0.097 MeV, and
0.100 MeV, respectively. We will explore the impact of
boundary condition parameter variations on the fit re-
sults in Section V.

VI. BAYESIAN MODEL FOR 3H(d,n)4He

All previous analyses of the 3H(d,n)4He reaction cross
section were performed assuming fixed values for the
channel radii and boundary condition parameters. How-
ever, as explained in Section III, there is considerable
freedom in the choice of these parameters, which, there-
fore, should be included in the sampling.

Our model includes the following parameters: (i) R-
matrix parameters, i.e., the eigenenergy (E0), reduced
deuteron and neutron widths (γ2d , γ2n), deuteron and neu-
tron channel radii (ad, an), and the boundary condition
parameters, Bc. (ii) The electron screening potential
(Ue). (iii) For each of the five data sets, the extrinsic
scatter for both energy (σE,extr) and S-factor (σS,extr),
the systematic energy shift (fE), and the S-factor nor-
malization (fS). Overall, our model contains 27 param-
eters3.

Normal likelihoods are used for the statistical and ex-
trinsic uncertainties (see also Equations (14) and (16)),
because their magnitudes are relatively small. We con-
sider five data sets (Section II), consisting of 191 data
points total. Experimental mean values for the mea-
sured energies and S-factors, together with estimates of

= 90 keV, which, contrary to their statement, is not near the
peak of the astrophysical S factor (50 keV).

3 Of these 27 parameters, only 7 describe uncertainties in the phys-
ical model (Equations 2, 3, and 10). The remaining 20 param-
eters describe measurement uncertainties, which we introduced
for treating the data in our Bayesian model. The large number
of the latter parameters does not result in “overfitting,” because
these parameters are independent of the physical model. In other
words, no matter how many measurement uncertainty parame-
ters are introduced in the fitting, our two-channel, single-level R-
matrix model will never produce, for example, a double-humped
S-factor curve.
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statistical and systematic uncertainties, are given in Ap-
pendix A. The priors are discussed next.

In previous analyses of the 3H(d,n)4He reaction cross
section, the energy Er has either been fixed at some arbi-
trarily value, or the condition Er = E0 has been arbirarily
imposed in the fitting [4, 41]. Neither of these assump-
tions is justified on fundamental grounds. In Section V,
we discussed the complications that arise when choosing
the arbitrary value of the boundary condition parameter
in the case of a broad resonance. Instead of providing
the boundary condition parameters, Bc, directly, we find
it more useful to report the equivalent results for the en-
ergy, EB , at which the level shift is zero according to Bc
= Sc(EB) (see Equation (5)). We use the notation EB
instead of Er to emphasize that the value of EB does not
correspond to any measured “resonance energy,” since
such a quantity cannot be determined unambiguously in
the present case. Lane and Thomas [24] recommended
to chose Bc in the one-level approximation such that the
eigenvalue E0 lies within the width of the measured res-
onance. Therefore, we will chose for E0 a uniform prior
between 20 keV and 80 keV (see Figure 3). For the energy
EB , at which the level shift is zero, we adopt a normal
density of zero mean value and 1.0 MeV standard devia-
tion, which is restricted to positive energies only (i.e., a
truncated normal density).

Truncated normal densities are also assumed for the
reduced widths (γ2d and γ2n), with standard deviations
given by the Wigner limits (γ2WL,d and γ2WL,n) for the

deuteron and neutron (see Equation (8)). This choice of
prior takes into account the approximate character of the
Wigner limit concept. For the electron screening poten-
tial, we chose a truncated normal density with a standard
deviation of 1.0 keV.

Descouvemont and Baye [30] recommended to chose
the channel radius so that its value exceeds the sum of
the radii of the colliding nuclei. In a given reaction, the
radii of the different channels do usually not have the
same value. Previous studies either adopted ad hoc val-
ues, or derived the channel radii from data. Argo et al.
[7] and Hale, Brown and Paris [23] assumed equal neu-
tron and deuteron channel radii, and find best-fit values
of 7.0 fm from analyzing 3H(d,n)4He data. Woods et al.
[42] measured the 4He(7Li,6Li)5He and 4He(7Li,6He)5Li
stripping reactions and found a value of an = 5.5 ± 1.0 fm
from fitting the experimental line shapes. Jarmie, Brown
and Hardekopf [11] and Brown, Jarmie and Hale [12] as-
sumed radii of ad = 5.0 fm and an = 3.0 fm. The latter
value presumably originated from Adair [43] and Dodder
and Gammel [44], who adopted an = 2.9 fm to fit the
low-energy 4He + nucleon phase shifts. In the present
work, we will chose for the channel radii uniform priors
between 2.5 fm and 8.0 fm.

The systematic uncertainty of the measured energies
is treated as a (positive or negative) offset (fE). The
original works report total energy uncertainties only, but
do not provide specific information about the relative
contributions of statistical and systematic effects. We

will assume that the prior, for each data set, j, is given
by a normal density with a mean value of zero and a
standard deviation equal to the average reported total
energy uncertainty in that experiment (Appendix A).

The systematic S-factor uncertainties for the data of
Jarmie, Brown and Hardekopf [11], Kobzev, Salatskij and
Telezhnikov [21], Arnold et al. [22], and Conner, Bonner
and Smith [6] amount to 1.26%, 2.5%, 2.0%, and 1.8%,
respectively (Appendix A). These correspond to factor
uncertainties of (f.u.)1 = 1.0126, (f.u.)3 = 1.025, (f.u.)4
= 1.020, and (f.u.)5 = 1.018, respectively. As explained
in Section IV C, we will use these values as shape parame-
ters of lognormal priors for the systematic normalization
factors, fS , of each experiment. We already mentioned
in Section II that Brown, Jarmie and Hale [12] did not
determine absolute cross sections, but normalized their
data to the results of Ref. [11]. We will include this data
set in our analysis by choosing a weakly informative prior
for the factor uncertainty, i.e., (f.u.)2 = 10.

Finally, the extrinsic uncertainties for both energy and
S-factor are inherently unknown to the experimenter.
Thus we will assume very broad truncated normal pri-
ors, with standard deviations of 10 keV for the energy
and 2 MeVb for the S-factor.

Our complete Bayesian model is summarized below in
symbolic notation as:

Parameters:

θ ≡ (E0, EB , γ
2
d , γ

2
n, ad, an, Ue,

σE,extr,j , σS,extr,j , fE,j , fS,j) (23)

Likelihoods for energy:

E′i ∼ N(Ei, σ
2
E,extr,j) (24)

E′′i,j = fE,j + E′i (25)

Eexpi,j ∼ N(E′′i,j , σ
2
E,stat,i) (26)

Likelihoods for S-factor:

S′i ∼ N(Si, σ
2
S,extr,j) (27)

S′′i,j = fS,j × S′i (28)

Sexpi,j ∼ N(S′′i,j , σ
2
S,stat,i) (29)

Priors:

E0 ∼ U(0.02, 0.08) (30)

EB ∼ N(0.0, 1.02)T (0, ) (31)

(γ2d , γ
2
n) ∼ N(0.0, (γ2WL)2)T (0, ) (32)

(ad, an) ∼ U(2.5, 8.0) (33)

Ue ∼ N(0.0, 0.0012)T (0, ) (34)

Ei ∼ U(0.001, 0.3) (35)

σE,extr,j ∼ N(0.0, 0.012)T (0, ) (36)

fE,j ∼ N(0.0, ξ2j ) (37)

σS,extr,j ∼ N(0.0, 2.02)T (0, ) (38)

fS,j ∼ LN(0, [ln(f.u.)j ]
2) (39)

where the indices j = 1, ..., 5 and i = 1, ..., 191 label the



9

data set and the data points, respectively. The symbols
have the following meaning: measured energy (Eexp) and
measured S-factor (Sexp); true energy (E); the true S-
factor (S) is calculated from the R-matrix expressions
(see Equations (1)−(3)) using the R-matrix parameters;
N , U , and LN denote normal, uniform, and lognormal
probability densities, respectively; T (0, ) indicates that
the distribution is only defined for positive random vari-
ables; “∼” stands for “sampled from.” The numerical
values of energies, S-factors, and radii are in units of
MeV, MeVb, and fm, respectively. For the standard de-
viation, ξj , of the prior for the systematic energy offset,
fE,j , we adopted the average value of the reported energy
uncertainties for a given experiment, j (see Appendix A).

VII. RESULTS

The MCMC sampling will provide the posteriors of all
27 parameters. We computed three MCMC chains, where
each chain had a length of 5×106 steps after the burn-
in samples (106 steps for each chain) were completed.
The autocorrelation approached zero for a lag of ≈ 3000.
Therefore, the effective sample size, i.e., the number of
independent Monte Carlo samples necessary to give the
same precision as the actual MCMC samples, amounted
to ≈ 5000. This ensured that the chains reached equilib-
rium and Monte Carlo fluctuations were negligible com-
pared to the statistical, systematic, and extrinsic uncer-
tainties.

A. S-factors and R-matrix parameters

The results for the S-factor are displayed in Figure 3.
For better visualization, the red lines represent only 500
S-factor samples that were chosen at random from the
complete set of 15×106 samples. The marginalized pos-
terior of the S-factor at a representative energy of 40 keV,
near the center of the energy range important for fui-
son reactors and big bang nucleosynthesis, is shown in
Figure 4. At this energy, we find a value of Spres0.04 =
25.438+0.080

−0.089 MeVb (Table I), where the uncertainties are
derived from the 16, 50, and 84 percentiles. This uncer-
tainty amounts to 0.4%. Our result can be compared
to the previous value of Sprev0.04 = 25.87±0.49 MeVb from
Bosch and Hale [15], which was obtained using different
methods and data selection. The present and previous
recommended values differ by 1.7% and our uncertainty
is smaller by a factor of 5.5.

Our results for the R-matrix parameters are listed in
Table I, together with previously obtained values. The
top panels in Figure 5 presents the marginalized posterior
densities of the eigenenergy (E0) and the energy at which
the shift factor is equal to zero (EB). We find values of
E0 = 0.0420+0.0051

−0.0047 MeV and EB = 0.09654+0.00084
−0.00090 MeV.

These cannot be directly compared to the result of Barker
[4], 0.0912 MeV, who assumed E0 = Er and fixed chan-
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FIG. 3. Astrophysical S-factors obtained from the Bayesian
R-matrix fit. The data are the same as in Figure 1. The red
lines represent credible S-factors computed using 500 sampled
parameter sets that were chosen at random from the complete
set of samples. The inset shows a magnified view of the cred-
ible S-factor samples.
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FIG. 4. Marginalized posterior of the S-factor at a respre-
sentative center-of-mass energy of 40 keV. Percentiles of the
distribution are listed in Table I.

nel radii (ad = 6 fm, an = 5 fm) in the fit. The middle
panels in Figure 5 show the posteriors of the deuteron
and neutron reduced widths. We obtain values of γ2d =

3.23+0.39
−0.32 MeV, and γ2n = 0.133+0.016

−0.013 MeV. Our deuteron
reduced width agrees with Barker’s result, but our neu-
tron reduced width is larger by a factor of 1.7. A more
quantitative comparison between present and previous
results is difficult, because no uncertainties are presented
in Ref. [4]. The bottom panels in Figure 5 display the
posteriors of the deuteron and neutron channel radii.
The present results are ad = 5.56+0.11

−0.15 fm and an =

3.633+0.072
−0.084 fm. Our deuteron channel radius is lower

than the value obtained in previous fitting [7, 23] (see
Section VI). Our neutron channel radius is larger than
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deuteron and neutron channel radii (ad, an). Percentiles of
the distributions are listed in Table I.

the value found previously by Refs. [43, 44], but smaller
than the results obtained in Refs. [7, 23, 42]. Again, no
uncertainties are provided in the previous works.

For completion, we also list in Table I the values of the
deuteron and neutron partial widths that are obtained
from our reduced widths according to Equation (4). We
obtain best-fit values of Γd = 0.897+0.095

−0.068 MeV and Γn
= 0.549+0.055

−0.041 MeV (Table I). Therefore, we confirm the
relation Γd ≈ Γn, which explains the large cross section
of the 3H(d,n)4He reaction at low energies, as explained
in Section I.

B. Electron screening

Motivated by electron screening effects observed in
3He(d,p)4He S-factor data, Langanke and Rolfs [45] in-
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FIG. 6. Marginalized posterior density for the electron
screening potential, Ue. No evidence for electron screening in
the 3H(d,n)4He reaction can be extracted from the available
data, contrary to the claims of Langanke and Rolfs [45], and
only an upper limit, Ue ≤ 14.7 eV, can be obtained (Table I).

vestigated the data of Jarmie, Brown and Hardekopf
[11] and Brown, Jarmie and Hale [12] of the analog
3H(d,n)4He reaction. Based on a one-level R-matrix
expression, Langanke and Rolfs [45] report evidence of
“electron screening effects caused by the electrons present
in the target” at the lowest center-of-mass energies (≤
16 keV). Since their R-matrix fit underpredicts the six
lowest data points (see Figure 3), they claim much bet-
ter agreement if a screening potential of 41 eV (Thomas-
Fermi model) or 27 eV (Hartree-Fock model) is included
in the data fitting.

Figure 6 shows our marginalized posterior density for
the electron screening potential, Ue. It clearly demon-
strates that there is no evidence of electron screening
effects in the 3H(d,n)4He data, and only an upper limit
can be extracted from the measurements. Integration of
the posterior from zero to a percentile of 97.5% results
in an upper limit of Ue ≤ 14.7 eV (Table I). We suspect
that the erroneous claim of electron screening effects in
the 3H(d,n)4He reaction by Langanke and Rolfs [45] is
most likely caused by the wrong sign of the level shift in
the denominator of their one-level R-matrix expression
(see their Equation 4).

C. Normalization and extrinsic scatter

Apart from the physical parameters discussed above,
our Bayesian model also provides interesting information
about systematic and extrinsic uncertainties in the data.
The marginalized posteriors of the S-factor normaliza-
tion factors, fS , are displayed in Figure 7. Values for the
percentiles of the distribution for each data set are listed
in Table II. The median values of fS are equal to unity
within ≈ 2.4%. They are also similar in magnitude to the
factor uncertainties, f.u. (Section VI), indicating that
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Figure 1. Percentiles of the distributions are listed in Table II.

reliable systematic S-factor uncertainties were adopted
in our analysis (Appendix A). Brown and Hale [17] find
“normalization factors” of 1.017 and 1.025 for the data
of Jarmie, Brown and Hardekopf [11] and Brown, Jarmie
and Hale [12], respectively, where the inverse of their
value corresponds to our value of fS , as explained in Sec-
tion IV C. Our derived value, fS = 0.9998+0.0030

−0.0037, for the

data of Ref. [11] is larger than the value of 1.017−1 =
0.983 from Brown and Hale [17], but our results for the
data of Ref. [12] are in agreement.

Table II also lists the extrinsic S-factor uncertainty
for each data set. The derived values can be compared
with the magnitude of the statistical S-factor uncertain-
ties, presented in Appendix A. It can be seen that for
the data of Refs. [11, 12, 21] the extrinsic scatter is
smaller, or of similar magnitude, compared to the re-
ported statistical uncertainties. However, our derived ex-
trinsic scatter for the data of Arnold et al. [22], σS,extr
= 0.471+0.043

−0.038 MeVb, exceeds their reported statistical
uncertainties by more than an order of magnitude (Ta-
ble VIII). This indicates that the latter authors under-
estimated their statistical uncertainties. A similar prob-
lem, but less severe, persists for the data set of Conner,
Bonner and Smith [6].

Regarding the energies, all of our predicted systematic
shifts, fE , are consistent with zero. Furthermore, for
the extrinsic scatter we only find upper limits, which are
smaller than the reported statistical energy uncertain-
ties. Thus we conclude that the energies were reliably
estimated in the original works.

Notice that even when we identify problems with cer-
tain data sets, all effects are naturally accounted for in
our Bayesian model. Specifically, there is no need to ar-
bitraily disregard data.

VIII. THERMONUCLEAR REACTION RATES

In the nuclear astrophysics literature, the thermonu-
clear reaction rate per particle pair, NA〈σv〉, at a given
plasma temperature, T , is defined by [46]

NA〈σv〉 =

(
8

πm01

)1/2
NA

(kT )3/2

∫ ∞
0

e−2πη S(E) e−E/kT dE

(40)

where m01 is the reduced mass of projectile and target,
NA is Avogadro’s constant, and k is the Boltzmann con-
stant. In the fusion research community, the quantity
〈σv〉 is called thermal reactivity and is usually presented
as a function of the thermal energy, kT (i.e., the maxi-
mum of the Mawell-Boltzmann velocity distribution).

We computed reaction rates and reactivities by numer-
ical integration of Equation (40). The S-factor is calcu-
lated from the samples of the 27-parameter Bayesian R-
matrix fit, discussed in Section VII, and thus our new val-
ues ofNA〈σv〉 and 〈σv〉 fully contain the effects of varying
channel radii, varying boundary condition parameters,
systematic and extrinsic uncertainties. We base these
results on 5,000 random MCMC S-factor samples, which
ensures that Monte Carlo fluctuations are negligible com-
pared to the reaction rate or reactivity uncertainties. Our
lower integration limit was set at 1 eV. Reaction rates are
computed for 46 different temperatures between 1 MK
and 1 GK, and reactivities are calculated for 25 different
values of kT between 0.2 keV and 50 keV. Recommended
rates or reactivities are computed as the 50th percentile
of the probability density, while the factor uncertainty,
f.u., is obtained from the 16th and 84th percentiles [47].
Numerical values of reaction rates and reactivities are
listed in Table III and IV, respectively.

Reaction rates are displayed in the top panel of Fig-
ure 8. Our low (16th percentile) and high (84th per-
centile) rates, normalized to the present median rates
(50th percentile), are shown as a gray band. The rate un-
certainties in the temperature region between 1 MK and
1 GK are between 0.2% and 0.6%. While a number of pre-
vious works have presented 3H(d,n)4He thermonuclear
rates, most do not present uncertainties and, therefore,
a direct comparison to our results is not very meaning-
ful. The only recently published 3H(d,n)4He rates with
uncertainties can be found in Descouvemont et al. [13].
Their “lower”, “adopted”, and “upper” rates, normal-
ized to our median rate, are shown as the purple band
in the top panel of Figure 8. Present and previous rates
agree below a temperature of 0.1 GK, although the pre-
vious rate uncertainties (0.8% to 1.0%), estimated us-
ing chi-square fitting, are larger compared to our results.
At higher temperatures, present and previous rates start
to diverge. At a temperature of 1 GK, the difference
amounts to 2.9%.

Reactivities are displayed in the bottom panel of Fig-
ure 8. Our low (16th percentile) and high (84th per-
centile) reactivities, normalized to the present median
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compared with the results of Bosch and Hale [16] (green).
The gray bands signify 68% coverage probabilities. For a bet-
ter comparison, all rates or reactivities are normalized to our
new recommended (i.e., median) values (see Tables III and
IV). The solid lines shows the ratio of previous and present
recommended results.

reactivites (50th percentile), are shown as a gray band.
We compare our results with those listed in Table VIII
of Bosch and Hale [16]. Notice that their quoted un-
certainty of 0.25% (see Table VII in Ref. [15]) has no
rigorous statistical meaning but signifies the “maximum
deviation of the fit from the input data.” The previously
recommended reactivities are higher than our values at
all thermal energies, with the largest deviation of 2.9%
occuring at an energy of kT = 4 keV.

IX. SUMMARY AND CONCLUSIONS

We presented the first Bayesian R-matrix analysis of
3H(d,n)4He S-factors, reaction rates, and reactivities.
This approach has major advantages, because it is not

confined to the use of Gaussian likelihoods, and instead
allows for implementing those likelihoods into the model
that best apply to the problem at hand. Also, all previ-
ous R-matrix analyses kept the channel radii and bound-
ary condition parameters constant during the fitting. In
reality, these quantities are not rigidly constrained, and
their variation will impact the uncertainties of the de-
rived S-factors and fusion rates. Furthermore, uncertain-
ties affect not only the measured S-factors, but also the
experimental center-of-mass energies. Uncertainties in
both independent and dependent variables can be easily
implemented into a Bayesian model, whereas no simple
prescription for such a procedure exists in chi-square fit-
ting.

We evaluated the published data and adopted those
experiments for which separate estimates of systematic
and statistical uncertainties can be obtained: Jarmie,
Brown and Hardekopf [11]; Brown, Jarmie and Hale [12];
Kobzev, Salatskij and Telezhnikov [21]; Arnold et al.
[22]; and Conner, Bonner and Smith [6]. The difficul-
ties and special circumstances when studying the excep-
tionally broad low-energy resonance in this reaction are
discussed in detail. We analyzed the low-energy S-factor
data using a two-channel, single-level R-matrix approxi-
mation that is implemented in a Bayesian analysis. The
model has 27 parameters, including R-matrix parame-
ters (e.g., energies and reduced widths), systematic un-
certainties, and extrinsic uncertainties. In particluar, we
included in the sampling the channel radii, boundary con-
dition parameters, and data set normalization factors.
Our resulting S-factor uncertainty amounts to only 0.4%
near an energy of 40 keV. Thermonuclear reaction rates
and reactivities are found by numerically integrating the
Bayesian S-factor samples. Our resulting rate or reac-
tivity uncertainties are between 0.2% and 0.6%. Above
0.1 GK, our reaction rates are larger than the values of
Descouvemont et al. [13]. Our reactivities are smaller
than the results of Bosch and Hale [16] at all relevant
thermal energies. Finally, unlike previous claims, we find
no evidence for the electron screening effect in any of the
published 3H(d,n)4He reaction data.

The present study demonstrates the usefulness of the
Bayesian approach for estimating R-matrix parameters,
S-factors, reaction rates, and reactivities. The results
will prove useful in future R-matrix studies that involve
multiple channels and resonances.
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Appendix A: Nuclear Cross Section Data for 3H + d
→ n + 4He

We discuss here the current status of the available data
for the 3H(d,n)4He reaction. Several works have mea-
sured only differential cross sections at a single angle,
and assumed an isotropic angular distribution to derive
the total cross section. Figure 4 in Conner, Bonner and
Smith [6] shows that the integrated cross section data
points agree with the theoretical single-level dispersion
curve (solid line) at deuteron bombarding energies of ≤
450 keV. Therefore, at these low energies, the cross sec-
tion is determined by the 3/2+ (s-wave) resonance in 3H
+ d (see Section I), and the angular distribution can be
assumed to be nearly isotropic; see also Bém et al. [48].
At higher energies, higher-lying levels in 5He will im-
pact the cross section, giving rise to anisotropies in the
differential cross section. In the present work, we only
take data in this low-energy range into account (corre-
sponding to bombarding triton energies of ≤ 680 keV, or
center-of-mass energies of ≤ 270 keV), which is of pri-
mary interest for 3H + d thermonuclear fusion. As noted
in Section II, we will adopt in our analysis only those
data sets for which we can separately estimate statistical
and systematic uncertainties.

1. The 2H(t,α)n Data of Jarmie, Brown and
Hardekopf [11]

The measurement of Jarmie, Brown and Hardekopf
[11] was performed using a triton beam incident on a
windowless deuterium gas target. This technique mini-
mizes systematic beam energy uncertainties compared to
other measurements that used a gas target contained by
foils. Our adopted center-of-mass energies and astrophys-
ical S-factors are listed in Table V. The energies (Ecm =
5 − 47 keV) correspond to the center of the gas target
and were calculated from the laboratory energies listed
in column 2 of Table V in Ref. [11]. The total (system-
atic plus statistical) uncertainties of the center-of-mass
energies are less than 6 eV. The S-factors are taken from
column 3 of their Table VI. Their statistical uncertainties
amount to 0.5% − 4.6%, depending on energy (see their
Table III). The systematic S-factor uncertainty is 1.26%
(see their Table IV).

2. The 3H(d,α)n Data of Brown, Jarmie and Hale
[12]

The 3H(d,α)n measurement of Brown, Jarmie and Hale
[12] was performed with an apparatus similar to the one
described in Ref. [11], except that a deuteron beam (Ed
= 80 − 116 keV) was incident on a triton gas target.
However, no absolute normalization was determined in
Brown, Jarmie and Hale [12]. For the purpose of re-
porting their data, Ref. [12] determined an approximate

scale by matching the cross sections in the overlapping
energy region to the earlier absolute measurement of
Ref. [11]. The reported astrophysical S-factors versus
center-of-mass energies are listed in Table VI. Since they
represent relative results only, we implemented these data
into our analysis using a weakly informative prior for the
normalization factor (Section IV). The statistical S-factor
uncertainties amount to 0.8%.

3. The 2H(t,α)n Data of Kobzev, Salatskij and
Telezhnikov [21]

Kobzev, Salatskij and Telezhnikov [21] measured the
2H(t,α)n cross section at 90◦ in the triton bombarding
energy range of Et = 115 − 1650 keV. They employed
mica foils of 0.16 mg/cm2 and 0.31 mg/cm2 thickness as
entrance windows of their deuterium gas target. Below
a triton bombarding energy of ≈ 660 keV, the differ-
ential cross section is isotropic [6, 7] and, therefore, we
calculated the total cross section by multiplying the val-
ues listed in their table by a factor of 4π. Our adopted
S-factors are given in Table VII. Kobzev, Salatskij and
Telezhnikov [21] state “The differential cross section was
measured from 115 to 400 keV with 2% accuracy[,] in
the range 400 − 800 keV with 2.5% accuracy...” Al-
though Kobzev, Salatskij and Telezhnikov [21] do not
provide separate estimates of statistical and systematic
uncertanties, we will assume that the quoted values are
of statistical nature. For the systematic S-factor uncer-
tainty in their measurement, we assume a value of 2.5%.
Regarding the uncertainties in the bombarding energy,
Kobzev, Salatskij and Telezhnikov [21] write “The inter-
action energy of tritium and deuterium nuclei was deter-
mined with 2.5% accuracy in the range 115 − 150 keV,
with 2% accuracy in the range 150 − 1200 keV.....” We
adopted these uncertainties (see Table VII) and assume
that they refer to statistical effects.

4. The 3H(d,n)4He Data of Arnold et al. [22]

Arnold et al. [22] measured cross sections of the
3H(d,n)4He reaction between 10 keV and 120 keV
deuteron bombarding energy, using thin (5 − 10 µg/cm2)
SiO entrance foils for their tritium gas target. Their re-
sults were later published in Arnold et al.[49], and Ta-
ble III in the latter paper served as the main source for
their cross sections in most previous analyses; see, e.g.,
Ref. [9]. However, Ref. [49] did not report the originally
measured cross sections of Arnold et al. [22] in their Ta-
ble III. What is listed there are energies and cross sections
derived from a “smoothed curve” based on the energy de-
pendence of the Gamow factor. These values should not
be used in fitting the data. The original data are pro-
vided in Table VI of Ref. [22], which we adopted in our
analysis.

We disregarded the data points at the lowest deuteron
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bombarding energies of 7 − 11 keV “...because failure of
the counter collimating system and excess production of
condensable vapor gave good reason to expect that the
experimental value of the cross sections at these ener-
gies might be low.” Furthermore, the listed cross section
values at Ed = 24.96 keV, 24.91 keV, and 24.89 keV are
certainly affected by a decimal-point error, since they are
too large by one order of magnitude. Similarly, the listed
cross section values at Ed = 49.62 keV and 49.60 keV
are too low by one order of magnitude. Therefore, we
disregarded these five data points.

Arnold et al. [22] provide a detailed list of uncertain-
ties in their Table VIII. Statistical S-factor uncertainties
amount to 0.2% and 0.1% at deuteron bombarding en-
ergies below and above ≈ 40 keV, respectively. Our de-
rived center-of-mass energies and S-factors are listed in
Table VIII. Arnold et al. [22] quoted systematic S-factor
uncertainties (“standard error”) of 1.8%, 1.5%, and 1.4%
at deuteron bombarding energies of 25 keV, 50 keV, and
100 keV, respectively. In the present work, we adopted
a constant systematic S-factor uncertainty of 2.0%. The
uncertainty in the center-of-mass energy is not directly
stated in Ref. [22], but can be estimated based on the
information provided. They write “...at 10 keV, 100 V of
change cause a 6 percent change in cross section...” From
their Table II, considering only the S-factor uncertainties
listed under “5. Energy,” we estimate an uncertainty of
about ±75 eV for the center-of-mass energy. We will
adopt this value for all of their measured energies.

5. The 3H(d,n)4He Data of Conner, Bonner and
Smith [6]

The cross section data of Conner, Bonner and Smith
[6] were obtained in two experiments, using different ion
accelerators, for deuteron bombarding energies between
10 keV and 1732 keV. We adopted the differential cross
sections measured at 90◦ from their Tables I and II. We
assumed an isotropic angular distribution at low ener-
gies and multiplied their differential cross section by 4π
to find the total reaction cross section. Our adopted S-
factors are given in Table IX. Conner, Bonner and Smith
[6] state that the “statistical probable error of the val-
ues from each target was about 1 percent except for the
points at 10.3 and 15.4 keV.” We disregarded these lowest
energy data points because no other information is pro-
vided regarding their cross section uncertainty. For the
systematic S-factor uncertainty, based on the effects of
the finite solid angle, number of target atoms, and num-
ber of incident beam particles, they quote a combined
uncertainty of 1.8%. The uncertainty in the center-of-
mass energy is not directly stated in Conner, Bonner and
Smith [6], but can be estimated based on the number of
significant figures shown in their Tables I and II. We es-
timate an energy uncertainty of ±60 eV at 12.4 keV and
±600 eV at 214 keV center-of-mass energy.

6. Other Data

The following data sets were excluded from our anal-
ysis. The data of Bretscher and French [50] are much
smaller in magnitude compared to other data, and do
not show the maximum of the resonance. The S-factor
data of Jarvis and Roaf [51] display an energy dependence
that contradicts all other measurements; see, for exam-
ple, Figure 2 in Refs. [15]. The 2H(t,n)4He measurement
of Argo et al. [7] employed relatively thick (1.5 mg/cm2)
aluminum entrance foils for their deuterium gas target.
For example, tritons of 183 keV laboratory energy, after
passing the entrance foil, would have lost an energy of
568 keV in the foil, giving rise to a beam straggling of ≈
31 keV. Consequently, the uncertainties of the effective
beam energy will be significant. Argo et al. [7] stated
that the beam energy loss was determined “to within
±5 keV,” but not enough information was provided re-
garding the total uncertainty of the effective beam en-
ergy. Also, Argo et al. [7] stated that their cross section
data “...have an estimated over-all accuracy of ±10%;
this ±10 percent arises almost entirely from the strag-
gling and energy correction uncertainties up to energies
of about 300 keV...” However, insufficient information
is provided to disentangle the contributions of statistical
and systematic effects to the total uncertainty.
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TABLE I. Results of Bayesian fits (I) and comparison to lit-
erature. More results are listed in Table II.

Parameter Presenta Previous

E0 (MeV) 0.0420+0.0051
−0.0047 0.0912b

EB (MeV) 0.09654+0.00084
−0.00090 0.0912b

γ2
d (MeV) 3.23+0.39

−0.32 2.93f

γ2
n (MeV) 0.133+0.016

−0.013 0.0794f

ad (fm) 5.56+0.11
−0.15 7.0c

an (fm) 3.633+0.072
−0.084 7.0c, 5.5±1.0d, 2.9e

Γd (MeV) 0.897+0.095
−0.068

g

Γn (MeV) 0.549+0.055
−0.041

g

Ue (eV) ≤ 14.7 41 or 27h

S0.04 (MeVb)i 25.438+0.080
−0.089 25.87±0.49j

a Uncertainties represent 16th, 50th, and 84th percentiles, while
upper limits correspond to 97.5% credibility.

b From Ref. [4]; his fit was performed with the condition E0 =
Er and with fixed channel radii (ad = 6.0 fm, an = 5.0 fm). No
uncertainty estimates were provided.

c From Refs. [7, 23]. No uncertainty estimates were provided,
and both works assumed ad = an.

d From Ref. [42], who assumed ad = an.
e From Refs. [43, 44]; no uncertainty estimates were provided.
f From Ref. [4]; no uncertainty estimates were provided.
g Calculated from the sampled reduced width values, γ2d and γ2n,

at the sampled energy values, EB .
h From Ref. [45]; the first and second value is obtained from the

Thomas-Fermi model and the Hartree-Fock model, respectively.
i S-factor at 40 keV.
j From Table V of Ref. [15]; the uncertainty of 1.9% provided in

their Table IV has no rigorous statistical meaning, but signifies
the “maximum deviation of the approximations from the
original R-matrix cross-sections.”

TABLE II. Results of Bayesian fits (II). Results listed here
complement those listed in Table I.

Parametera Valueb

fE,1 (eV) −0.23+0.79
−0.92

fE,2 (eV) 0.5+2.2
−2.3

fE,3 (eV) 81+241
−231

fE,4 (eV) 3.5+9.3
−8.3

fE,5 (eV) 6+18
−19

σE,extr,1 (eV) ≤1.1

σE,extr,2 (eV) ≤3.0

σE,extr,3 (eV) ≤153

σE,extr,4 (eV) ≤2.9

σE,extr,5 (eV) ≤11

fS,1 0.9998+0.0030
−0.0037

c

fS,2 0.9786+0.0035
−0.0036

c

fS,3 0.9756+0.0032
−0.0031

fS,4 1.0143+0.0040
−0.0038

fS,5 0.9936+0.0035
−0.0034

σS,extr,1 (MeVb) 0.112+0.048
−0.028

σS,extr,2 (MeVb) 0.181+0.069
−0.052

σS,extr,3 (MeVb) 0.0285+0.0102
−0.0066

σS,extr,4 (MeVb) 0.471+0.043
−0.038

σS,extr,5 (MeVb) 0.559+0.050
−0.053

a The symbols σE,extr, σS,extr, fE , and fS denote the extrinsic
uncertainty in energy and S-factor, the systematic energy shift,
and the S-factor normalization, respectively; the indices, j =
1...5, label the five different data sets: (1) Jarmie, Brown and
Hardekopf [11]; (2) Brown, Jarmie and Hale [12]; (3) Kobzev,
Salatskij and Telezhnikov [21]; (4) Arnold et al. [22]; (5)
Conner, Bonner and Smith [6].

b Uncertainties represent 16th, 50th, and 84th percentiles, while
upper limits correspond to 97.5% credibility.

c Ref. [17] report normalization factors of 1.017 and 1.025 for the
data of Ref. [11] and Ref. [12], respectively, where their value
corresponds to the inverse of our value of fS (see Section IV C).
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TABLE III. Recommended 3H(d,n)4He Thermonuclear Reac-
tion Rates, NA〈σv〉.

T (GK) Mediana f.u.a T (GK) Mediana f.u.a

0.001 1.998×10−07 1.0059 0.070 1.527×10+07 1.0041

0.002 1.445×10−03 1.0058 0.080 2.348×10+07 1.0039

0.003 1.046×10−01 1.0058 0.090 3.356×10+07 1.0037

0.004 1.539×10+00 1.0057 0.100 4.536×10+07 1.0035

0.005 1.034×10+01 1.0057 0.110 5.866×10+07 1.0033

0.006 4.405×10+01 1.0056 0.120 7.320×10+07 1.0032

0.007 1.397×10+02 1.0056 0.130 8.872×10+07 1.0031

0.008 3.614×10+02 1.0056 0.140 1.050×10+08 1.0030

0.009 8.060×10+02 1.0056 0.150 1.217×10+08 1.0029

0.010 1.606×10+03 1.0055 0.160 1.388×10+08 1.0028

0.011 2.934×10+03 1.0055 0.180 1.732×10+08 1.0027

0.012 4.998×10+03 1.0055 0.200 2.069×10+08 1.0026

0.013 8.044×10+03 1.0054 0.250 2.843×10+08 1.0025

0.014 1.235×10+04 1.0054 0.300 3.483×10+08 1.0024

0.015 1.824×10+04 1.0054 0.350 3.988×10+08 1.0024

0.016 2.604×10+04 1.0054 0.400 4.375×10+08 1.0024

0.018 4.891×10+04 1.0053 0.450 4.663×10+08 1.0025

0.020 8.416×10+04 1.0053 0.500 4.873×10+08 1.0025

0.025 2.499×10+05 1.0052 0.600 5.119×10+08 1.0026

0.030 5.743×10+05 1.0050 0.700 5.210×10+08 1.0026

0.040 1.942×10+06 1.0048 0.800 5.206×10+08 1.0027

0.050 4.638×10+06 1.0046 0.900 5.145×10+08 1.0028

0.060 9.013×10+06 1.0043 1.000 5.050×10+08 1.0028

a Reaction rates in units of cm3 mol−1 s−1, corresponding to the
50th percentile of the rate probability density function. The
rate factor uncertainty, f.u., is obtained from the 16th and 84th
percentiles (see the text).

TABLE IV. Recommended 3H(d,n)4He Reactivities, 〈σv〉.

kT (keV) Mediana f.u.a kT (keV) Mediana f.u.a

0.2 1.241×10−26 1.0058 3.0 1.816×10−18 1.0049

0.3 7.221×10−25 1.0057 4.0 5.803×10−18 1.0046

0.4 9.257×10−24 1.0057 5.0 1.329×10−17 1.0043

0.5 5.643×10−23 1.0056 6.0 2.491×10−17 1.0040

0.6 2.231×10−22 1.0056 8.0 6.101×10−17 1.0036

0.7 6.671×10−22 1.0056 10.0 1.118×10−16 1.0032

0.8 1.644×10−21 1.0055 12.0 1.723×10−16 1.0029

1.0 6.772×10−21 1.0054 15.0 2.707×10−16 1.0027

1.3 3.126×10−20 1.0054 20.0 4.284×10−16 1.0025

1.5 6.805×10−20 1.0053 30.0 6.596×10−16 1.0024

1.8 1.738×10−19 1.0052 40.0 7.854×10−16 1.0025

2.0 2.913×10−19 1.0052 50.0 8.444×10−16 1.0026

2.5 8.212×10−19 1.0050

a Reactivities in units of cm3 s−1, corresponding to the 50th
percentile of the rate probability density function. The rate
factor uncertainty, f.u., is obtained from the 16th and 84th
percentiles (see the text).

TABLE V. The 2H(t,α)n Data of Jarmie, Brown and Hard-
ekopf [11].

Ecm
a S ±∆Sstat

b Ecm
a S ±∆Sstat

b

(keV) (MeVb) (keV) (MeVb)

4.992 12.63±0.58 27.996 20.70±0.09

5.990 13.48±0.39 31.998 22.19±0.11

6.990 12.83±0.40 36.001 24.02±0.11

7.990 13.43±0.27 40.004 25.28±0.14

9.989 13.92±0.14 42.005 26.00±0.12

11.989 14.32±0.10 44.007 26.30±0.14

15.990 15.81±0.13 46.009 26.74±0.13

19.992 17.35±0.09 46.809 26.64±0.14

23.994 18.87±0.08

a Total uncertainty varies from ±2.4 eV at Ecm = 5 keV to
±6.4 eV at Ecm = 47 keV.

b Systematic uncertainty: 1.26%.

TABLE VI. The 3H(d,α)n Data of Brown, Jarmie and Hale
[12].

Ecm
a Srel ±∆Sstat

b Ecm
a Srel ±∆Sstat

b

(keV) (MeVb) (keV) (MeVb)

47.948 26.48±0.21 59.941 24.33±0.19

50.947 26.84±0.21 62.941 23.44±0.19

53.942 25.89±0.21 65.941 22.02±0.18

56.942 25.50±0.20 69.541 20.34±0.16

a Total uncertainty of center-of-mass energy is ±9 eV.
b The values reported in Ref. [12] were normalized relative to the

data of Ref. [11], listed in Table V.
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TABLE VII. The 2H(t,α)n Data of Kobzev, Salatskij and
Telezhnikov [21].

Ecm ±∆Ecm
a S ±∆Sstat

b Ecm ±∆Ecm
a S ±∆Sstat

b

(keV) (MeVb) (keV) (MeVb)

46.0±1.2 25.93±0.52 132.0±2.6 5.23±0.10

48.0±1.2 25.96±0.52 136.0±2.7 4.89±0.10

52.0±1.3 25.76±0.52 140.0±2.8 4.60±0.09

56.0±1.4 25.28±0.51 144.0±2.9 4.32±0.09

60.0±1.5 24.77±0.50 148.0±3.0 4.11±0.08

64.0±1.3 23.66±0.47 152.0±3.0 3.88±0.08

66.0±1.3 22.85±0.46 156.0±3.1 3.69±0.07

68.0±1.4 21.89±0.44 160.0±3.2 3.50±0.07

72.0±1.4 19.98±0.40 164.0±3.3 3.32±0.08

76.0±1.5 18.14±0.36 168.0±3.4 3.15±0.08

80.0±1.6 16.53±0.33 176.0±3.5 2.84±0.07

84.0±1.7 15.01±0.30 184.0±3.7 2.62±0.07

88.0±1.8 13.65±0.27 192.0±3.8 2.42±0.06

92.0±1.8 12.50±0.25 200.0±4.0 2.26±0.06

96.0±1.9 11.41±0.23 208.0±4.2 2.13±0.05

100.0±2.0 10.45±0.21 216.0±4.3 2.00±0.05

104.0±2.1 9.59±0.19 224.0±4.5 1.89±0.05

108.0±2.2 8.76±0.18 232.0±4.6 1.79±0.04

112.0±2.2 7.98±0.16 240.0±4.8 1.69±0.04

116.0±2.3 7.28±0.15 248.2±5.0 1.60±0.04

120.0±2.4 6.65±0.13 256.2±5.1 1.51±0.04

124.0±2.5 6.08±0.12 264.3±5.3 1.44±0.04

128.0±2.6 5.61±0.11

a Triton laboratory energies have a 2.5% accuracy in the range
115 − 150 keV, and a 2% accuracy in the range 150 −
1200 keV (see text).

b Assumed systematic uncertainty: 2.5% (see text).

TABLE VIII. The 3H(d,n)4He Data of Arnold et al. [22].

Ecm
a S ±∆Sstat

b Ecm
a S ±∆Sstat

b

(keV) (MeVb) (keV) (MeVb)

8.98 13.340±0.026 31.52 22.695±0.023

9.32 13.703±0.027 35.36 24.314±0.024

9.47 13.508±0.027 35.38 24.589±0.024

9.52 13.600±0.027 37.00 24.967±0.025

11.95 14.068±0.028 37.16 25.184±0.025

11.99 13.849±0.028 41.23 26.600±0.027

12.03 13.680±0.027 41.25 26.514±0.026

12.81 14.302±0.029 43.29 27.067±0.027

12.83 14.957±0.030 42.49 26.847±0.027

14.48 14.939±0.030 46.61 27.466±0.027

14.68 15.753±0.031 46.64 27.365±0.027

14.89 15.448±0.030 46.65 27.489±0.027

18.33 16.921±0.034 47.22 27.505±0.027

18.35 16.989±0.032 47.25 27.542±0.027

19.92 17.249±0.034 52.80 26.975±0.027

20.27 17.721±0.035 52.83 27.085±0.027

23.95 18.969±0.038 58.66 25.621±0.025

23.97 18.366±0.036 58.68 25.669±0.026

25.17 20.718±0.021 61.39 24.593±0.024

25.26 20.755±0.021 61.43 24.492±0.024

25.32 19.969±0.020 64.51 23.071±0.023

25.66 19.920±0.020 64.54 23.157±0.023

25.72 20.596±0.020 67.37 22.002±0.022

26.09 20.277±0.020 67.39 21.951±0.022

26.38 20.525±0.020 70.39 20.445±0.020

29.95 21.766±0.022 70.44 20.227±0.020

31.16 22.749±0.023

a Total uncertainty of center-of-mass energy is about ±75 eV (see
text).

b Adopted systematic uncertainty: 2.0% (see text).
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TABLE IX. The 3H(d,n)4He Data of Conner, Bonner and
Smith [6].

Ecm
a S ±∆Sstat

b Ecm
a S ±∆Sstat

b

(keV) (MeVb) (keV) (MeVb)

12.42 13.23±0.13 65.40 23.43±0.23

15.48 15.17±0.15 66.60 22.90±0.23

18.60 15.79±0.16 69.00 21.82±0.22

20.70 17.33±0.17 75.00 19.23±0.20

21.78 17.38±0.17 80.40 16.97±0.17

24.90 18.23±0.18 81.60 16.60±0.17

28.02 19.70±0.20 85.80 14.96±0.15

29.10 20.13±0.20 87.60 14.27±0.14

31.20 21.80±0.22 91.80 12.90±0.13

33.24 22.91±0.23 93.60 12.33±0.12

34.26 21.59±0.21 97.20 11.02±0.11

37.38 23.80±0.24 100.2 10.63±0.11

40.50 25.31±0.25 103.8 9.91±0.10

41.58 25.72±0.26 109.8 8.99±0.09

43.68 25.93±0.26 123.0 6.79±0.07

45.72 25.90±0.26 136.2 5.44±0.05

46.80 25.44±0.25 150.6 4.43±0.04

49.98 26.83±0.27 165.6 3.55±0.04

54.18 25.53±0.26 181.2 2.89±0.03

56.22 26.60±0.27 197.4 2.51±0.03

58.26 25.89±0.26 214.2 2.16±0.02

62.40 24.61±0.25

a We assumed that the uncertainty varies from ±60 eV at 12.4
keV to ±600 eV at 214 keV center-of-mass energy (see text).

b Adopted systematic uncertainty: 1.8% (see text).
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