

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Nuclear isovector valence-shell excitation of ^{202}Hg

R. Kern, R. Stegmann, N. Pietralla, G. Rainovski, M. P. Carpenter, R. V. F. Janssens, M. Lettmann, O. Möller, T. Möller, C. Stahl, V. Werner, and S. Zhu
Phys. Rev. C 99, 011303 — Published 9 January 2019
DOI: 10.1103/PhysRevC.99.011303

Nuclear Isovector Valence-Shell Excitation of ²⁰²Hg

R. Kern¹,* R. Stegmann¹, N. Pietralla¹, G. Rainovski², M. P. Carpenter³, R. V. F. Janssens^{4,5},

M. Lettmann¹, T. Möller¹, O. Möller¹, C. Stahl¹, V. Werner¹, and S. Zhu³

¹ Institut für Kernphysik, Technische Universität Darmstadt, 64283 Darmstadt, Germany

² Faculty of Physics, University of Sofia St. Kliment Ohridski, 1164 Sofia, Bulgaria

³ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

⁴ Department of Physics and Astronomy, University of North

Carolina at Chapel Hill, Chapel Hill, North Carolina 27559, USA and

⁵ Triangle Universities Nuclear Labratory, Duke University, Dunham, North Carolina 27708, USA

(Dated: December 6, 2018)

Excited states of ²⁰²Hg have been studied via the ¹²C(²⁰²Hg,²⁰²Hg^{*}) Coulomb excitation reaction at a beam energy of 890 MeV. The γ -ray transitions from the excited states of ²⁰²Hg were detected by the Gammasphere array. The intensities of the observed γ rays determined the relative populations of the excited states which were used to extract the absolute M1 and E2 transition strength distributions for excited 2⁺ states of ²⁰²Hg up to 2 MeV. The measured absolute $B(M1; 2_7^+ \rightarrow 2_1^+)$ strength of 0.18 (8) μ_N^2 indicates that the 2⁺₇ level of ²⁰²Hg is the main fragment of the proton-neutron mixed-symmetry 2⁺_{1,ms} state. Upper limits for the F-spin mixing matrix elements of ^{202,204}Hg are determined as well.

The emergence of nuclear collectivity from the effective nucleon-nucleon interactions represents one of the outstanding challenges in nuclear structure physics. One of these effective interactions is the attractive quadrupolequadrupole interaction between valence protons and neutrons. It is known to be the reason for quadrupole collectivity in most heavy, open-shell nuclei. It leads to a coherent mixing of collective quadrupole excitations of the proton and neutron sub-spaces and, thus, to low-energy nuclear states in which protons and neutrons collectively move in phase. This collective mode can successfully be described by geometrical models which consider the nucleus as a homogeneous object with a certain shape which can vibrate or rotate [1]. The main disadvantage of this approach is the complete loss of the fundamental manybody character of the nuclear system.

A theoretical approach to the modeling of quadrupolecollective heavy nuclei which provides an attempt to bridge the calculation of nuclear properties from fundamental nucleon-nucleon interactions to the collective model is the Interacting Boson Model [2]. Its sd-IBM-2 version [3, 4], which describes the quadrupole-collective excitations in even-even nuclei, uses the approximation that valence nucleons are pairwise coupled to N_{π} proton or N_{ν} neutron monopole (s) or quadrupole (d) bosons. In a panoply of case studies, the IBM has been demonstrated [4] to successfully describe the main features of quadrupole-collective nuclear structures and the shape transitions between them as a function of valence nucleon numbers. The sd-IBM-2 yields quantum states that are characterized by a certain degree of coherence of protonboson and neutron-boson contributions. This coherence is quantified by the F-spin which is, for valence bosons, the analogue to isospin for nucleons. The lowest-lying states are characterized by the F-spin quantum number $F = F_{max} = (N_{\pi} + N_{\nu})/2$ and their boson wave functions are completely symmetric under pairwise exchange of proton and neutron bosons.

Besides these full-symmetry states (FSS), the sd-IBM-2 predicts, in addition, the existence of an entire class of states with wave functions that contain parts that are antisymmetric under the pairwise exchange of proton and neutron bosons [3]. These mixed-symmetry states (MSS) are characterized by F-spin quantum numbers $F \leq F_{max} - 1$. Their properties, such as excitation energy, electromagnetic decay or F-spin purity, are sensitive to some parameters of the sd-IBM-2 space that are not accessible otherwise, such as the strength of the Majorana interaction, F-vector boson transition charges, or the size of the mixing matrix element between FSS and MSS.

According to the IBM-2, the lowest-lying isovector valence-shell excitation in vibrational nuclei is the onequadrupole-phonon $2^+_{1,ms}$ state [3, 4]. The isovector character leads to unique decay properties of this $2^+_{1,ms}$ state. The most indicative signature is a strong M1 transition to the fully-symmetric one-quadrupole-phonon 2^+_1 state, as well as a weakly-collective E2 transition (≈ 1 W.u.) to the ground state [5-9]. This strong M1 matrix element $(|\langle 2_1^+||M1||2_{1,\mathrm{ms}}^+\rangle| \approx 1\,\mu_{\mathrm{N}})$ [9], which is forbidden for isoscalar transitions [10], serves as the main experimental signature used for identification of one-phonon MSSs. A further signature is an enhanced E1 transition between the full-symmetry octupole state and the $2^+_{1,ms}$ state in comparison to the 2^+_1 state [9]. This is due to the isovector nature of the E1 transition operator in the same manner as the isovector nature of the M1 transition operator enhances the M1 transition strengths between MSSs and FSSs [11].

One-quadrupole-phonon MSSs were identified all across the nuclear chart; in the mass $A \approx 90$ region [6, 12, 13], as well in the mass $A \approx 130$ region [14–19] and, most recently, in the mass $A \approx 200$ region [20, 21]. The experimental information accumulated up to now suggests that pronounced one-phonon MSSs can

^{*} rkern@ikp.tu-darmstadt.de

be expected when both protons and neutrons occupy orbitals with high angular momenta as in the case of ²¹²Po [20]. However, ²⁰⁴Hg offers an opposite example - even though its valence structure is dominated by orbitals with small angular momenta for both protons and neutrons, ²⁰⁴Hg exhibits a 2⁺_{1,ms} state with an even larger M1 decay strength than in ²¹²Po [20, 21]. ²⁰²Hg exhibits a similar valence structure as ²⁰⁴Hg, but with two additional neutron holes. Low-lying states of ²⁰²Hg can be formed from excitations of the valence holes to the $\pi(2d_{3/2})^{-2} \nu(2f_{5/2})^{-2}(3p_{3/2})^{-2}$ orbitals. Its structure is dominated by orbitals with small angular momenta similar to the structure of ²⁰⁴Hg. The extent to which a model space of several low-spin orbitals is capable of supporting F-spin symmetry is unknown as more bosons contribute to the wave functions.

This experiment aims to identify the $2^+_{1,\text{ms}}$ state of 202 Hg and to determine how its properties change in comparison to the known $2^+_{1,\text{ms}}$ states of isotopes in the vicinity of the doubly-magic nucleus 208 Pb, especially 204 Hg. Furthermore, it is intriguing to analyze and compare the evolution of F-spin mixing of Z = 80 isotopes to the one observed in N = 80 isotones. Hence, a projectile Coulomb excitation measurement was carried out to populate 2^+ states and to search for the one-quadrupole-phonon MSS of 202 Hg.

The experiment was performed with a beam of stable ²⁰²Hg ions at the ATLAS facility at Argonne National Laboratory. The pulsed (12 MHz) beam was accelerated up to 890 MeV and impinged on a $1 \,\mathrm{mg/cm^2}$ thick ^{nat}C target. The target chamber was surrounded by Gammasphere [22], which for this experiment was composed of 100 HPGe detectors arranged in 16 rings. Data were recorded when one γ ray was detected in any HPGe detector. The chosen beam energy is equivalent to $\approx 85\%$ of the Coulomb barrier for the $^{202}\text{Hg} + ^{12}\text{C}$ reaction. A total of 8.4×10^8 events of γ -ray fold ≥ 1 was collected over a period of 20 h. To suppress the background, the "beam-off" (with respect to the accelerator radio frequency) spectrum was subtracted from the "beam-on" spectrum, appropriately scaled to minimize the 1461-keV ⁴⁰K room background transition. The Doppler-corrected, background-subtracted singles spectrum of this high statistics measurement is dominated by the 439-keV, $2_1^+ \rightarrow 0_1^+$ transition in 202 Hg, with 2.5×10^8 events (see Fig. 1 a). About 2% of the data consists of γ ray coincidence events of fold 2 or higher and was sorted in an E_{γ} - E_{γ} matrix. A spectrum of γ rays in coincidence with the $2^+_1 \rightarrow 0^+_1$ transition is provided in Fig. 1 b. In the present experiment, 39 peaks have been observed which can be firmly assigned to transitions between excited levels of 202 Hg [23–33]. The resulting level scheme is shown in Fig. 2. Spin and parity quantum numbers were adopted from Ref. [34]. In the present reaction, eight 2^+ states of 202 Hg were populated. The lowest-lying 2^+ level at 439 keV is the fully-symmetric one-quadrupole-phonon excitation. Concerning the assignment of the $2^+_{1,ms}$ state with the decay signature described above, the 2^+ level at 1794 keV appears to be the most promising candidate as

FIG. 1. (color online). Doppler-corrected, time-background subtracted γ -ray spectra after projectile Coulomb excitation on a ^{nat}C target; (a) singles spectrum; (b) spectrum of γ rays in coincidence with the $2_1^+ \rightarrow 0_1^+$ transition. In both spectra the transitions relevant for this study are highlighted.

the main fragment. In the region of ≈ 2 MeV excitation, where the $2^+_{1,ms}$ level is expected, it is the state populated with the highest intensity. It decays predominantly via the 1354-keV transition to the 2^+_1 state with an additional small branch to the 2^+_2 state via the 833-keV γ ray. The 2^+ state at 1823 keV exhibits a similar decay pattern and appears to be a small fragment of the $2^+_{1,ms}$ state. The intensity of its strongest decay, via the 1384keV transition, to the 2^+_1 state is only one fifth that of the 1354-keV transition of the 1794-keV level. Negativeparity states of ²⁰²Hg have also been populated in the present measurement. Three 3^- levels were observed at 2357, 2709 and 3166 keV, with the largest feeding reaching the second state. Besides the 3^- states, one further negative-parity state, a 5^- state at 1966 keV, was populated. In addition to the 2^+ and negative-parity levels. two 4^+ states were observed at 1120 and 1312 keV, two 0^+ levels at 1564 and 1643 keV, as well as a single 6^+ level at 1989 keV. Finally, it is worth noting that six additional levels with unknown spin and parity quantum numbers are also present in our data with respective energies of 1348, 2134, 2293, 2456, 2516 and 2681 keV. Only the 2681-keV state has not been observed in earlier work [34]. Table I reports on the properties of the levels seen in the present work.

The Coulomb-excitation yields for the populated 202 Hg levels are determined through the intensities of the observed γ rays, complemented with known branching ratios, and calculated electron-conversion coefficients [35]. The yields of excited levels relative to that of the 2^+_1 state measure their Coulomb excitation cross section relative to the 2^+_1 state. The experimental relative yields were fitted to the Winther-de Boer theory [36] using the mul-

FIG. 2. (color online). Experimental level scheme of 202 Hg from this work. The thickness of the arrows corresponds to the intensities measured in the present work. The $2_1^+ \rightarrow 0^+$ transition intensity is scaled down to fit into the figure. Newly observed transitions and levels are highlighted (red). The transition $2_7^+ \rightarrow 2_1^+$ is also highlighted (blue) as the 2_7^+ state is proposed to correspond to the dominant fragment of the $2_{1,ms}^+$ state.

FIG. 3. (color online). Angular distributions measured for the 1354- (a), 439- (b) and 1747-keV (c) transitions. The solid line are fits, in (a) and (c) to a sum of Legendre polynomials, and in (b) to a constant. The resulting A_2/A_0 and A_4/A_0 coefficients of the 1354-keV transition are compared to an angular distribution ellipse (d) calculated with the statistical tensor for the 2_7^+ state. The numbers on the ellipse denote the multipole mixing ratio δ for the $2_7^+ \rightarrow 2_1^+$ transition.

tiple Coulomb excitation code CLX [37], while taking the energy loss of the beam in the target into account. Absolute cross sections were derived using the previously measured values for the reduced transition probability; i.e., $B(E2; 2_1^+ \rightarrow 0_1^+) = 17.35 (14)$ W.u. [27, 38] and the quadrupole moment $Q(2_1^+) = 1.01 (13) e^2 b^2$ [38], providing an unambiguous set of transition matrix elements for one-step excitation. This information in combination with the experimental branching and multipole mixing ratios can be used to obtain the E2 and M1 strengths distributions for the deexcitation of the excited 2^+ states. The 4π coverage and the resulting high detection efficiency of Gammasphere enable measurements of angular distributions (cf. Fig. 3) for sufficiently intense transitions. This allows to extract the A_2/A_0 and A_4/A_0 coefficients given in Table I. A good example for a γ ray with pronounced anisotropy is the $3_2^- \rightarrow 2_2^+$ transition at 1747 keV with its clear dipole character. States with lifetimes of a few tens of picoseconds show flat or attenuated distributions due to the recoil in vacuum effect [39]. This effect causes the isotropy of the $2_1^+ \rightarrow 0_1^+ [\tau(2_1^+) = 39.3(3) \,\mathrm{ps}]$ transition and the attenuation of the angular distribution of the $4^+_1 \rightarrow 2^+_1$ $[\tau(4_1^+) = 3.0 (1) \text{ ps}] \text{ and } 2_2^+ \rightarrow 2_1^+ [\tau(2_2^+) = 20 (4) \text{ ps}]$ ones. For the $2_3^+ \rightarrow 2_2^+, 2_3^+ \rightarrow 2_1^+ \text{ and } 2_7^+ \rightarrow 2_1^+$ transitions, the extracted angular distribution coefficients are presented in Table I. Wherever possible, the measured angular distributions agree with the previously adopted spin-parity assignments found in Ref. [34]. The multipole mixing ratios of $2^+ \rightarrow 2^+_1$ transitions were worked out with an iterative procedure. The technique is described in Ref. [21] and is based on fitting, with the Coulomb excitation code GOSIA [41], transition matrix elements for a subset of states to Coulomb cross sections; e.g., the 2^+ level of interest, the most populated 3^- state, the 2^+_1 level and the ground state. The only free parameter in this procedure is the E2/M1 multipole mixing ratio of the $2^+ \rightarrow 2^+_1$ transition being considered. The outcome of this method is a decisively small multipole mixing ratio $\delta = 0.06 \, (4)$ for the $2^+_7 \rightarrow 2^+_1$ transition (cf. Table I and Fig. 3), which indicates its predominant M1character making the assignment of δ from the angular distribution (cf. Fig. 3 d) unique.

This experiment was performed to determine M1strengths of $2^+ \rightarrow 2^+_1$ transitions in order to identify the $2^+_{1,\rm ms}$ state of 202 Hg. For the 2^+_7 state at 1794 keV, a transition strength of $B(M1; 2^+_7 \rightarrow 2^+_1) = 0.18$ (8) $\mu_{\rm N}^2$ was measured, a value significantly larger than the $10^{-2} \mu_{\rm N}^2$ one typically observes between FSSs [9]. This should

$\begin{split} \begin{split} & E_{Level}(\text{dev}) & J^{-} \overline{[6]}_{(keV)} J^{-}_{j} I_{j} - A_{2}/A_{0} - A_{4}/A_{0} & \delta & Eb \ B(EA) \downarrow^{\pm b} \ B(M1) \downarrow^{b} - B(EA)_{1} \downarrow^{b} \\ & A(B) & 2_{2}^{+} 439 & 0^{+}_{1} - 100(1) - 10^{0} 0.012(7) - 0.002(11) & E2 \\ & 52 & 0.039(3) & 0.087(21) 27, 28 \\ & 52 & 0.239(3) & 0.087(21) 27, 28 \\ & 52 & 0.239(3) & 0.087(21) 27, 28 \\ & 52 & 0.239(3) & 0.087(21) 27, 28 \\ & 1120 & 4_{1}^{+} 680 & 2_{1}^{+} 408(41) & 0.11(1) & 0.012(16) & 0.9(1)[40] \ E2 \ 2.6(5) & E2 & 6(5) \\ & 22 & 2_{1} & 138(41) & 0.21(4) & -0.039(54) 2 \ 1.14 & E2 \ 0.5(41) & 22 \ -0.5(5) & 2.26(5) \\ & 22 & 2_{2} & 2_{1}^{+} 356(15) & 0.12(2) & -0.007(22) \ -0.13(3) \ E2 \ 2.6(5) & 1.3^{+} \frac{0.7}{0.12} \\ & 1320 & 2_{1}^{+} 872 & 2_{1}^{+} 231(3) & E2 \ 1.37(1) &$,	-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_{Level} (\mathrm{keV})$	J^{π}	$E_{\gamma} (\mathrm{keV})$	J_f^{π}	I_{γ}	A_2/A_0	A_{4}/A_{0}	δ	$E\lambda$	$B(E\lambda)\downarrow^{\mathrm{ab}}$	$B(M1)\downarrow^{\mathrm{b}}$	$B(E\lambda)_{\rm lit}$ bc
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	439	2_{1}^{+}	439	0^{+}_{1}	$1.00(1) \cdot 10^{6}$	0.012(7)	0.002(11)		E2			17.35(14) [27, 38]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	960	2^{+}_{2}	960	0^{+}_{1}	620(13)				E2	0.039(3)		0.087(21) [27, 28]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			520	2^{+}_{1}	4444(44)	0.11(1)	0.012(16)	0.9(1)[40]	E2	2.7(3)	$43(8) \cdot 10^{-4}$	5.6(15)[40]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1120	4_{1}^{+}	680	$2^{\hat{+}}_{1}$	4008(41)	0.16(2)	-0.01(3)		E2	26.6(5)		26.5(8) [27, 28]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1182	2^{+}_{3}	1182	$0^{\hat{+}}_{1}$	$< 50^{\rm d}$				E2	< 0.015		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	743	$2^{\hat{+}}_{1}$	183(4)	0.21(4)	-0.039(54)	2.1(4)	E2	$0.54^{+0.09}_{-0.47}$	$33^{+5}_{-29} \cdot 10^{-5}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			222	2^{+}_{2}	356(15)	0.12(2)	-0.007(22)	-0.13(3)	E2	9^{+5}_{-8}	$0.13_{-0.12}^{+0.07}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1312	4^{+}_{2}	872	2^{2}_{1}	113(13)	~ /	~ /		E2	0.74(6)	-0.12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	352	2^{1}_{2}	221(9)				E2	137(17)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			129	2^{2}_{2}	38(17)				E2	3413(1216)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1348	$(2^{+})^{e}$	908	2^{+}_{1}	73(7)				E2	1.52(4)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1390	2^{+}	1390	0^{+}_{1}	$15(6)^{d}$				E2	0.013(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-4	950	2^{+}_{1}	136(6)				E2	< 1	$< 6 \cdot 10^{-3}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			429	$2^{\frac{1}{2}}$	39(4)				E2	12(4)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			207	$\frac{-2}{2^+}$	20(5)				E2	234(96)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1564	0^{+}_{2}	1125	$\frac{-3}{2^+}$	114(6)				E2	5.8(2)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1575	2^{+}_{-}	1136	2^{+}	$15(5)^{d}$				E_2	0.47(2)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1010	-5	615	2^{+}	26(3)				E_2	17(6)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1643	0^{+}	1204	$\frac{2}{2^+}$	44(6)				E_2	2.6(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1794	2^{+}_{-}	1794	0^{+}_{+}	$30(14)^{d}$				E2	0.13(6)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1104	27	1354	2^{+}	1086(17)	0.23(2)	0.028(25)	0.06(4)	E_2	0.10(0)	0.18(8)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			833f	$\frac{2}{2^+}$	33(7)	0.20(2)	0.020(20)	0.00(4)	E_2	6(3)	0.10(0)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1823	2^{+}	1823	0^{2}_{+}	$18(7)^{d}$				E2	0.052(3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1020	-8	1384	2^{+}	221(13)				E2	< 4	< 0.027	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			864	$2^{1}{2^{+}}$	91(7)				E_2	11(4)	< 0.021	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			641	$\frac{2}{2^+}$	37(3)				E2	19(7)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1966	57	654	$^{-3}_{4^+}$	78(5)				E1	10(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1966	2^{+}	1527	2^{+2}	171(30)				E_{2}	10.0(3)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1500	210	655	$^{21}_{4^+}$	14(3)				E_2	55(22)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1989	6^{+}	868	$^{-12}_{4^+}$	21(2)				E_2	24.9(1)		25 [28]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2134	$(2^+)^{e}$	1014	$^{-1}_{4^+}$	94(6)				E_2	24.5(1)		20 [20]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2104	(2)	1853	$\frac{1}{2^+}$	$\frac{34(0)}{117(8)}$				E_2	3.40(5)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2255	3-	2357	0^{21}	117(0)				E3	2.5(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2001	0_1	1017	2^{+}	328(13)				E1	2.0(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1396	$2^{1}{2^{+}}$	247(16)				E_1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1174^{f}	$\frac{2}{2^{+}}$	100(8)				E_1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1045^{f}	$^{25}_{4^+}$	100(9)				E_1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2456	$(2^{+})^{e}$	1495^{f}	$2^{+}{2^{+}}$	42(15)				E2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2516	$(2)^{(2)}$	2516	0^{2}	181(11)				E_2	0.11(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2681 ^f	(1,2) $(2+)^{e}$	2610 2681 ^f	0^{1}	226(14)				E_2	0.11(1) 0.20(2)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2001	3-	2700	0^{+}	220(14)				E2	21(1)		< 25[20]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2103	5_2	2103 2264 ^f	2^{+}	611(23)				E1	21(1)		< 20[23]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1747 ^f	$2^{-1}{2^+}$	2/31(51)	-0.17(2)	0.04(3)		E_1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1524^{f}	$\frac{2}{2^{+}}$	373(29)	0.11(2)	0.04(0)		E^{1}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			01/f	$\frac{23}{2^+}$	199(14)				E^{1}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3166	3-	3166	$^{27}_{0^+}$	144(14)				E2	1.0(1)		
$\frac{1}{200} \frac{2}{1} \frac{1}{1} \frac{1}{1} \frac{1}{100} $	9100	J ₃	1080f	$\frac{0}{2^+}$	74(36)				<u>Б</u> 3 Е1	1.0(1)		
		<i>a</i> ,	1900	² 1	1	1			<i>L</i> /1			

TABLE I. Measured properties of the levels and γ -ray transitions in ²⁰²Hg. Level energies and spin assignments are adopted from Ref. [34], unless otherwise noted. The relative γ -ray intensities are corrected for efficiency.

^a Extracted via Coulomb-excitation analysis in the present experiment. ^b B(M1) values are given in μ_N^2 , B(E2), B(E3) and B(E4) values are given in W.u. (1W.u.(E1) = 2.22 e²fm², 1W.u.(E2) = 70.4 e²fm⁴, 1W.u.(E3) = 2.42 \times 10³ e²fm⁶). ^c The values in this column are the ones given in Ref. [34], converted to single-particle units.

^d Calculated via literature branching ratio [34].

 $^{\rm e}$ Assumed 2^+ state in the analysis.

^f Newly observed.

^g Assumed 4^+ state in the analysis.

be viewed as a strong indication that the 2_7^+ level is of mixed-symmetric nature. For the close-lying 2_8^+ state, an upper limit $B(M1; 2_8^+ \rightarrow 2_1^+) < 0.027 \,\mu_N^2$, could be extracted. This maximum applies to the extreme assumption of a pure M1 character for the $2_8^+ \rightarrow 2_1^+$ transition. The M1 strength distribution (cf. Fig. 4) supports the notion that the 2_7^+ level at 1794 keV is the main fragment of the $2_{1,\rm ms}^+$ state of 202 Hg, and that the

 2_8^+ state represents at most a small fragment of it. The weakly collective (~ 0.1 W.u.) E2 decay of the 2^+_7 level to the ground state is in line with the expected decay behavior of a MSS. The 3^-_2 state at 2709 keV is the most strongly populated negative-parity excitation observed. The measured branching ratio of the γ decays of the 3_2^- state allows to determine the E1 ratio [42] $R_{E1} = \frac{\hat{B}(E1;3_2^- \to 2_7^+)}{B(E1;3_2^- \to 2_1^+)} \approx 3.$ The enhancement of the E1 transition to the 2^+_7 state in comparison to the 2^+_1 state is another indication of the mixed-symmetric nature of the 2_7^+ state, provided that the 3_2^- state is understood as the dominant fragment of the isoscalar octupole vibration of 202 Hg. Analogous E1-decay behaviors of fully-symmetric octupole excitations were observed in the case of ²⁰⁴Hg [21], and of ⁹²Zr and ⁹⁴Mo [42]. ²⁰²Hg exhibits an nearly unmixed, isolated $2^+_{1,ms}$ state as was also observed earlier for ²⁰⁴Hg [21] and ²¹²Po [20] in the vicinity of the doubly-magic nucleus ²⁰⁸Pb. The $B(M1; 2_i^+ \rightarrow 2_1^+)$ strength distributions observed in ^{202,204}Hg are compared in Fig. 4. In both Hg isotopes, a 2^+ level lies within an energy

FIG. 4. *M*1 strength distributions $B(M1; 2_i^+ \rightarrow 2_1^+)$ of ²⁰²Hg (a) and ²⁰⁴Hg (b). Upper limits are illustrated as arrow heads. The y-axes are divided into two parts with different scales.

range of 50 keV of the dominant $2^+_{1,\text{ms}}$ fragment (cf. Fig. 4). It carries a small fraction of the total M1 strength to the 2^+_1 state. The upper limits for this M1 strength are $0.027\mu_{\text{N}}^2$ in 202 Hg and $0.018\mu_{\text{N}}^2$ in 204 Hg, respectively. For the quantification of the fragmentation of the $2^+_{1,\text{ms}}$ states of 202,204 Hg, one determines the F-spin mixing matrix element V_{mix} in a two-state mixing scenario between the $2^+_{1,\text{ms}}$ state and a close-lying 2^+ FSS [14]. Here, the M1 strength between FSSs has to be considered and is estimated as $B(M1; 2^+_2 \rightarrow 2^+_1) = 0.0043(8)\mu_{\text{N}}^2$ for 202 Hg and is also applied to 204 Hg. Upper limits of the F-spin mixing matrix elements in Hg isotopes can then be determined: $V_{\text{mix}}(^{202}$ Hg) $< 9(2)^{+3}_{-3}$ keV and $V_{\text{mix}}(^{204}$ Hg) $< 11(1)^{+5}_{-5}$ keV. The F-spin mixing matrix elements determined for the Z = 80 isotopes are plotted in Fig. 5 as a function of the P factor [43] and compared to the literature values for the N = 80 isotones [14, 44]. The low F-spin mixing of Z = 80 isotopes and the N = 80isotone ¹³⁶Ba V_{mix}(¹³⁶Ba) < 10 keV [14] demonstrates the preservation of the F-spin quantum number in the vicinity of shell closures in heavy nuclei and highlights the more strongly broken F-spin symmetry observed in ¹³⁸Ce V_{mix}(¹³⁸Ce) = 44(3) $^{+3}_{-14}$ keV [14].

FIG. 5. (color online). F-spin mixing matrix elements V_{mix} of N = 80 isotones and Z = 80 isotopes as a function of P with statistical (color) and systematical error (black).

In conclusion, a projectile Coulomb excitation experiment was performed to identify the $2^+_{1,ms}$ state of 202 Hg. In total, 39 transitions from excited states of 202 Hg, ten previously unknown, were observed and their branching ratios determined. These 39 transitions are assigned to 24 excited states, including a previously unknown one at 2681 keV. Information on 40 electromagnetic transition rates was deduced. In particular, the decay properties of the 2^+_7 state at 1794 keV were determined. Its comparatively large M1 strength justifies its assignment as the main fragment of the $2^+_{1,ms}$ state of 202 Hg. This assumption is supported further by the measured absolute E2 transition strengths to the ground state and to the 2_1^+ state as well as by the R_{E1} ratio. Upper limits for F-spin mixing matrix elements V_{mix} in 202,204 Hg were determined. These indicate that F-spin is a well-conserved quantum number in these Z = 80 isotopes.

G.R. acknowledges the support from the Alexander von Humboldt foundation. N.P. and V.W. are supported by the DFG under Grant No. SFB 1245. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant Nos. DE-FG02-97ER41041(UNC) and DE-FG02-97ER41033(TUNL). This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility. This work was supported by BgNSF No. DN08/23, and by the BMBF under Grant Nos. 05P15(/18)RDFN1 and 05P15(/18)RDCIA.

- A. Bohr and B. Mottelson, Nuclear structure, vol. II (Benjamin, Reading, MA, 1975).
- [2] A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. B 66, 205 (1977).
- [3] F. Iachello, Phys. Rev. Lett. **53**, 1427 (1984).
- [4] F. Iachello and A. Arima, *The interacting boson model* (Cambridge University Press, 1987).
- [5] W. D. Hamilton, A. Irbäck, and J. P. Elliott, Phys. Rev. Lett. 53, 2469 (1984).
- [6] N. Pietralla et al., Phys. Rev. Lett. 83, 1303 (1999).
- [7] N. Pietralla *et al.*, Phys. Rev. Lett. **84**, 3775 (2000).
- [8] U. Kneissl, N. Pietralla, and A. Zilges, J. Phys. G 32, R217 (2006).
- [9] N. Pietralla, P. von Brentano, and A. Lisetskiy, Prog. Part. and Nucl. Phys. 60, 225 (2008).
- [10] P. van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann. Phys.(NY) **171**, 253 (1986).
- [11] N. A. Smirnova, N. Pietralla, T. Mizusaki, and P. V. Isacker, Nucl. Phys. A 678, 235 (2000).
- [12] N. Pietralla *et al.*, Phys. Rev. C **64**, 031301 (2001).
- [13] V. Werner *et al.*, Phys. Lett. B **550**, 140 (2002).
- [14] G. Rainovski et al., Phys. Rev. Lett. 96, 122501 (2006).
- [15] T. Ahn *et al.*, Phys. Lett. B **679**, 19 (2009).
- [16] L. Coquard et al., Phys. Rev. C 82, 024317 (2010).
- [17] K. A. Gladnishki *et al.*, Phys. Rev. C **82**, 037302 (2010).
- [18] M. Danchev et al., Phys. Rev. C 84, 061306 (2011).
- [19] T. Ahn *et al.*, Phys. Rev. C **86**, 014303 (2012).
- [20] D. Kocheva *et al.*, Phys. Rev. C **93**, 011303 (2016).
- [21] R. Stegmann *et al.*, Phys. Lett. B **770**, 77 (2017).
- [22] I.-Y. Lee, Nucl. Phys. A **520**, c641 (1990).
- [23] R. Gatenby, E. Kleppinger, and S. Yates, Nucl. Phys. A 492, 45 (1989).
- [24] A. Hogenbirk, H. Blok, and M. Harakeh, Nucl. Phys. A

524, 251 (1991).

- [25] P. Schuler et al., Z.Phys. A317, 313 (1984).
- [26] R. A. Moyer, Phys. Rev. C 5, 1678 (1972).
- [27] A. Bockisch, K. Bharuth-Ram, A. M. Kleinfeld, and K. P. Lieb, Z. Phys. A291, 245 (1979).
- [28] Y. K. Agarwal et al., Z. Phys. A320, 295 (1985).
- [29] C. Lim, W. Catford, and R. Spear, Nucl. Phys. A 522, 635 (1991).
- [30] M. Lone, E. Earle, and G. Bartholomew, Nucl. Phys. A 243, 413 (1975).
- [31] A. Pakkanen, T. Komppa, and H. Helppi, Nucl. Phys. A 184, 157 (1972).
- [32] D. A. Craig and H. W. Taylor, J. Phys. G 10, 1133 (1984).
- [33] D. Breitig, R. F. Casten, W. R. Kane, G. W. Cole, and J. A. Cizewski, Phys. Rev. C 11, 546 (1975).
- [34] S. Zhu and F. G. Kondev, Nucl. Data Sheets 109, 699 (2008).
- [35] T. Kibèdi *et al.*, Nucl. Instrum. and Methods in Phys. Res. Sec. A 589, 202 (2008).
- [36] K. Alder, A. Winther, and J. L. Gammel, Physics Today 29, 63 (1976).
- [37] H. Ower, Dissertation, Johann Wolfgang Goethe-Universität Frankfurt am Main (1980).
- [38] R. Spear *et al.*, Nucl. Phys. A **345**, 252 (1980).
- [39] A. E. Stuchbery, P. F. Mantica, and A. N. Wilson, Phys. Rev. C 71, 047302 (2005).
- [40] W. Lewin, J. Bezemer, and C. V. Eijk, Nucl. Phys. 62, 337 (1965).
- [41] T. Czosnyka, D. Cline, and C. Y. Wu, Coulomb Excitation Data Analysis Code (Rochester, 2008).
- [42] N. Pietralla et al., Phys. Rev. C 68, 031305 (2003).
- [43] R. Casten and N. Zamfir, J. Phys. G 22, 1521 (1996).
- [44] N. Pietralla et al., Phys. Rev. C 58, 796 (1998).