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Abstract

We investigate the constraints on the mass and radius of neutron stars by considering the tidal

deformability in the merge of neutron star binaries. We employ models based upon the Skyrme

force and density functional theory and select models that are consistent with empirical data of

finite nuclei, measured properties of nuclear matter around the saturation density, and observation

of the maximum mass of neutron stars. From the selected models, we calculate the Love number

k2, dimensionless tidal deformability Λ, and mass-weighted deformability Λ̃ in the binary system.

We find that all the models considered in this work give Λ̃ less than 800 which is the constraint

obtained from the measurement of GW170817. The results from our models show a relationship

between Λ and radius (Λ ∼ R7.5) for a neutron star with a fixed mass of 1.4M�, which is consistent

with the recent statistical analyses.
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I. INTRODUCTION

A series of detections of gravitational wave (GW170817), short γ-ray burst (GRB

170817A), and electromagnetic waves from X-ray to radio bands (AT2017gfo) made it possi-

ble to identify the source of the event as the coalescence of two neutron stars [1–3]. From the

detection of the phase evolution of gravitational wave during the inspiral phase of merge, one

can extract tidal deformability, which characterizes the quadrupole deformation of a neu-

tron star in response to the external quadrupolar gravitational field (i.e., order l = 2) [4, 5].

The extent of deformation is closely related to the structure of a neutron star and equation

of state (EoS) of matter that consists of the neutron star. Measurement of GW170817 at

advanced LIGO and Virgo and its analysis put strong limit on the range of tidal deforma-

bility such as Λ̃ ≤ 800 and Λ(1.4M�) ≤ 800 1 for the case of low-spin priors with 90%

confidence level, where Λ̃ is combined dimensionless tidal deformability of the binary system

and Λ(1.4M�) is dimensionless tidal deformability of a single neutron star having a mass of

1.4M� [1]. The constraints on Λ̃ and Λ(1.4M�) obtained from GW170817 exclude stiff EoSs

which predict their values larger than 800. In contrast, observations of massive neutron

stars with mass (1.97±0.04)M� [8] and (2.01±0.04)M� [9] prefer stiff EoSs, ruling out soft

EoSs which cannot produce maximum mass larger than these values. Compared with the

mass measurement alone, measuring Λ̃ has a more advantageous implication that it provides

simultaneous constraint on both mass and radius. For example, Ref. [10] performs a model

analysis of UV/optical/IR counterpart of GW170817 and obtains a lower bound Λ̃ ≥ 400.

However it is shown in Ref. [11] that the models with Λ̃ smaller than 400 could still support

masses in the interval (2.1− 2.3)M� which are expected to be compatible with AT2017gfo.

With both upper and lower bounds of Λ̃, it is now possible to put unprecedented constraint

on the EoS of dense nuclear matter.

EoS of nuclear matter is developed and tested in various ways, but data of finite nuclei

provide the most essential and fundamental laboratory for them. Depending on the choice

of input data and methods of fitting, the number of models that are adjusted to the data

1 The estimated values are dependent on waveform models and prior assumptions for Bayesian analysis.

The dependences and the recent estimations are well described in Ref. [6, 7]. In this work, we use the

value of tidal deformability estimated by the initial and minimal-assumption analysis of GW170817 [1],

but our results are still consistent with the recent estimation, Λ(1.4M�) = 190+390
−120 at 90% confidence

level [7].
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of finite nuclei amounts to several hundreds [12]. It has been known that most models are

good at producing results consistent with the properties of stable nuclei in the nuclear chart.

However, if one moves out of the valley of stability (i.e., moves into the regime of unstable

nuclei) and/or calculates EoS at densities away from the saturation density (ρ0 = 0.16 fm−3),

model predictions do not converge. In this case, models are tested against the properties

of nuclear matter which are generally different from those of stable nuclei but can still be

measured and/or derived from experiments. A good example can be found in Ref. [12]

which calculates the properties of nuclear matter around the saturation density with 240

Skyrme force models and compares them with 11 experimental and/or empirical (i.e, derived

from experiments) data (denoted as Exp/Emp). It is found that only 16 models satisfy all

11 Exp/Emp constraints. Additional test for EoS comes from the observation of neutron

stars’ mass. As mentioned earlier, imposing maximum mass of a neutron star equal to or

larger than 2M� can rule out models that cannot predict this value of maximum mass. In

summary, three sets of constraints, data of stable nuclei, properties of nuclear matter, and

the maximum mass of neutron stars, can be used simultaneously for the selection of models

in a wide range of density and neutron-proton asymmetry because they provide stringent

constraints together.

Recent works on tidal deformability have been focusing on a wide range of EoSs in sta-

tistical ways by using a parameterized method (e.g., [11, 13, 14]) or based on the calculation

done with about a dozen of representative relativistic mean field models [15]. The conclu-

sions from these works provide a general guideline such that too stiff EoSs are inconsistent

with the observation of tidal deformability. What we aim at in the present work is to under-

stand (1) whether non-relativistic models like Skyrme force models give results consistent

with preceding works and (2) whether one can have new constraints on the EoS of dense

nuclear matter from tidal deformability. For these purposes, it may not be necessary to con-

sider stiff EoSs whose results were already shown in the previous works. More importantly,

it is necessary to test EoS based upon both the nuclear physics data and tidal deformability

as in this work because as mentioned above, EoS models have been generally tested against

the known properties of finite nuclei and nuclear matter before the observation of tidal de-

formability is available. With this approach, which was not taken in the previous works, we

selected our models from the total of 240 Skyrme force models analyzed in Ref. [12].

Our selection is done by applying the aforementioned three constraints and it turns out
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that three out of the 240 Skyrme force models have satisfied the three constraints; SkI4

[16], SGI [17], and SLy4 [18]. For comparison, we also include GSkI [19], a model from the

generalized Skyrme force models and KIDS [20] from the density functional theory (DFT)

models, both of which also satisfy the three constraints.

Note that three selected Skyrme force models are representative Skyrme force models that

have been frequently used in many works. For example, our previous works on neutron star

with kaons and hyperons, and neutron star cooling showed that these models could provide a

framework applicable for the extrapolation to high densities in nuclear matter [21–23]. GSkI

is also a well-known extended Skyrme force model and KIDS incorporates a perturbation

scheme for the expansion of energy density functional (EDF). Main reason to include these

two models is that the structure of the density-dependent interaction terms in GSkI is exactly

the same to that in KIDS, so direct comparison of the two models is possible. More details

of these models are discussed in a later section. From these models, we obtain the combined

dimensionless tidal deformability Λ̃ in the range of 360 ≤ Λ̃ (Mchirp = 1.188M�) ≤ 700.

This result is consistent with that from GW170817 and AT2017gfo, 400 ≤ Λ̃ ≤ 800 [1, 10].

We organize the paper as follows. In Section II, properties and behaviors of selected

models are explained. In Section III, we present the results and discuss them in comparison

with measurements and predictions from other theoretical works. Section IV concludes our

work.

II. MODEL

As mentioned in Sec. I, we consider four representative models, SLy4, SkI4, SGI, and GSkI

based upon the Skyrme force model, and a recently developed generalized EDF model, KIDS

in this work. We applied three rules to select these models: (i) data of finite nuclei, (ii)

properties of nuclear matter near saturation, and (iii) the maximum mass of neutron stars.

Fitting protocol of finite nuclei varies from model to model, so we review and compare

them briefly. For the GSkI model fitting data are the binding energies, charge rms radii,

single particle energies, and rms radii of valence neutron orbits for 13 spherical nuclei 16O,

24O, 40Ca, 48Ca, 48Ni, 56Ni, 68Ni, 78Ni, 88Sr, 90Zr, 100Sn, 132Sn and 208Pb. In the SLy4 model

input data consist of nuclear matter properties, and binding energies, charge radii of doubly

closed shell nuclei 16O, 40Ca, 48Ca, 56Ni, 78Ni, 100Sn, 132Sn and 208Pb, and the splitting of
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Model ρ0 E0 K0 −Q0 J L −Kτ Mmax

Exp/Emp ' 0.16 ' 16.0 200− 260 200− 1200 30− 35 40− 76 372− 760 ≥ 1.93

CSkP - - 202.0− 240.3 362.5− 425.6 30.0− 35.5 48.6− 67.1 360.1− 407.1 -

GSkI 0.159 16.02 230.2 405.6 32.0 63.5 364.2 1.98

SLy4 0.160 15.97 229.9 363.1 32.0 45.9 322.8 2.07

SkI4 0.160 15.95 248.0 331.2 29.5 60.4 322.2 2.19

SGI 0.154 15.89 261.8 297.9 28.3 63.9 362.5 2.25

KIDS 0.160 16.00 240.0 372.7 32.8 49.1 375.1 2.14

TABLE I: Properties of nuclear matter and maximum mass of a neutron star calculated with

five selected models. Saturation density (ρ0) is in unit of fm−3. Exp/Emp and CSkP values are

quoted from Ref. [12]. E0, K0, and Q0 are binding energy per particle, compression modulus, and

skewness (the third derivative of energy per particle) at the saturation density in the symmetric

nuclear matter, respectively. J , L, and Kτ are related to the symmetry energy of nuclear matter

(see the text for details). E0, K0, Q0, J , L, and Kτ are in unit of MeV and the maximum mass of

neutron star (Mmax) in unit of the solar mass (M�).

neutron 3p shell in 208Pb. SkI4 model makes use of the binding energies, diffraction radii,

surface thickness of 16O, 40Ca, 48Ca, 56Ni, 58Ni, 84Sr, 88Sr, 90Zr, 112Sn, 124Sn, 132Sn, 146Gd,

208Pb, 214Pb, and the spin-orbit splitting between the 1p3/2 and 1p1/2 levels in 16O. Compared

to these conventional models, KIDS model uses minimal number of data, 17 data from the

nuclear matter properties, and 6 data from nuclei, binding energies and charge radii of 40Ca,

48Ca, and 208Pb.

The Skyrme force models have an advantage over the KIDS model that they automatically

satisfy well-known properties of finite nuclei since their model parameters are designed to fit

them. In contrast, the KIDS model assumes rules to expand nuclear EDF in powers of the

Fermi momentum kF in homogeneous nuclear matter and determines the model parameters

in order to reproduce well-known EoS of infinite nuclear matter. After the model parameters

are fixed in this way, the model is applied back to calculating the properties of finite nuclei.

As a result, in many cases, the properties of finite nuclei calculated with the KIDS model are

pure prediction. Therefore, in principle they don’t have to be as good as those obtained with
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Skyrme force models in reproducing the properties of finite nuclei. However, it is shown that

the KIDS model produces a good hierarchical structure in powers of kF in the homogeneous

nuclear matter [20] and reproduces the properties of magic nuclei to an accuracy as good as

conventional models [24, 25].

Table I summarizes the properties of nuclear matter at the saturation density and the

maximum mass of neutron star calculated from five selected models that have passed our

three criteria. Exp/Emp values are also included in the table for comparison. These values

were used for the model selection. At the saturation density, the baryon number density of

nuclear matter reaches a value of ρ0 ≈ 0.16 fm−3. In the symmetric nuclear matter, binding

energy (per particle), compression modulus (second derivative of energy per particle), and

skewness (third derivative of energy per particle) are denoted as E0, K0, and Q0, respectively,

at the saturation density (ρ0). Nuclear symmetry energy S(ρ), which is caused by the

difference in the number of neutron and proton in the nuclear matter, depends on the

particle number density (ρ) and is conventionally expanded in powers of x ≡ (ρ − ρ0)/3ρ0
as

S(ρ) = J + Lx+
1

2
Ksym x

2 +O(x3) , (1)

where J , L, and Ksym are measured and/or derived from experiments on non-symmetric

nuclear matter like (heavy) nuclei having different numbers of protons and neutrons. Kτ in

Tab. I is defined as

Kτ ≡ Ksym − 6L− Q0

K0

L . (2)

Table I shows that the properties of nuclear matter calculated with five selected models are

in good agreement with those of Exp/Emp 2.

Considering observational uncertainties in the maximum mass of neutron star, the lowest

limit becomes 1.9 M�, which we use as a third criterion to select models. Note that five

models in Table I can produce the maximum mass above this lowest limit. As indicated

in Sec. I, only 16 out of 240 Skyrme force models satisfy all of 11 constraints (denoted by

CSkP) based upon the Exp/Emp data of nuclear matter [12]. Eleven constraints are K0,

Q0, J , L and Kτ at ρ = ρ0, S(0.5ρ0)/J , PPNM(ρ0)/Lρ0 where PPNM is the pressure in pure

2 According to Ref. [12], realistic Skyrme force models (denoted by CSkP in Tab. I) predict negative Q0

values. However a recent analysis with relativistic mean field models shows opposite predictions, positive

Q0 values [26].
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neutron matter (PNM), pressure in symmetric nuclear matter (SNM) PSNM in 2ρ0 < ρ < 3ρ0

and 1.2ρ0 < ρ < 2.2ρ0 from two independent data sets, PPNM in 2ρ0 < ρ < 3ρ0, and EPNM

in 0.014ρ0 < ρ < 0.106ρ0 where EPNM is the energy per particle in PNM. However, even

these 16 “successful” models predict a wide range of the maximum mass of neutron star.

For instance, the GSkI model satisfies the maximum mass constraint, while the LNS model

[27], which belongs to the 16 “successful” models, gives the maximum mass less than 1.8M�.

This difference is mainly caused by the fact that the behavior of EoS at high densities varies

significantly model to model because it has been known that the maximum mass of neutron

star is sensitive to EoS at high densities. We note that among the five models in the current

work, GSkI and KIDS satisfy all of 11 constraints of nuclear matter in [12]. (Note that

they also satisfy the other two criteria, properties of finite nuclei and the maximum mass of

neutron star.) Thus, these two models could be regarded as the most refined model that is

consistent with presently available data of finite nuclei, nuclear matter, and neutron star.

It is worth emphasizing again that the maximum mass of neutron star provides a crucial

criterion for EoS because it allows us to select specific models whose behavior at the densities

much higher than ρ0 must result in the proper maximum mass of neutron star. As we will see

from the results in the following section, tidal deformability can also provide more stringent

constraints on both mass and radius of a neutron star.

Phase transition may play an important role in determining the structure of a neutron star

and could affect the tidal deformability as well. It can be considered in two major directions,

creation of strange hadrons and transition to deconfined quark phase. Hyperons may play

an important role in neutron stars because they can reduce the maximum mass of neutron

stars by making EoS soft. However, their role is still uncertain; especially, three body effects

among hyperons or hyperons and nucleons are quite uncertain. Hence, we decided not to

include the results of hyperons in the present work. Concerning the transition to quark

matter, it is well known that EoS of quark matter depends heavily on the parameters in the

model for deconfined quarks, although existence of quark matter may not satisfy the 2 M�

maximum mass constraint unless one uses super-stiff models like NL3. Since the uncertainty

in quark phase is also large in dense nuclear matter, we do not consider the topic in the

present work, either.
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III. RESULT

Tidal deformability (λ) parameterizes the connection between the external quadrupolar

tidal field (Eij) and the induced quadrupole moment of a neutron star (Qij) as

Qij = −λEij. (3)

Tidal deformability can be represented by the dimensionless tidal Love number k2,

k2 =
3

2
λR−5, (4)

where R is the radius of a neutron star. In the detection of gravitational waves, the tidal

deformability is measured by accumulating the phase differences of gravitational waves.

Hence, the dimensionless deformability Λ which naturally appears in the dimensionless phase

is commonly used [1, 28, 29];

Λ =
2

3

(
R

M

)5

k2. (5)

In a binary system, mass weighted tidal deformability Λ̃ is defined with individual deforma-

bilities, Λ1 and Λ2, as

Λ̃ =
16

13

(M1 + 12M2)M
4
1Λ1 + (M2 + 12M1)M

4
2Λ2

(M1 +M2)5
, (6)

where M1 and M2 are masses of two neutron stars in the binary [1]. Note that Λ̃ = Λ1 = Λ2

when M1 = M2.

Before presenting the results of tidal deformability, we examine the bulk properties of

neutron stars predicted from the five selected EoS models in Fig. 1. The upper panel,

Fig. 1(a), shows the neutron star mass M as a function of the central density. As expected,

all of five models reach the mass 2.0M�, but the central density (ρc) for which the neutron

star mass is equal to 2.0M� varies from model to model. Similarly, the central density at

which the neutron star mass becomes 1.4M� also varies among the models. For example,

M = 1.4M� when ρc ∼ 2.7ρ0 for SkI4 and SGI and ρc ∼ 3.3ρ0 for GSkI, SLy4, and KIDS.

The lower panel, Fig. 1(b), plots the predicted mass and radius simultaneously. As in

Fig. 1(a), stiff (SkI4 and SGI) and soft (GSkI, SLy4, and KIDS) models behave differently

for the mass-radius relation. Note that the three soft models satisfy the constraints of the

mass-radius obtained from the Bayesian analyses of X-ray burst observations [30], better

than the other two stiff models.
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GSkI SLy4 SkI4 SGI KIDS

R1.4M� [km] 11.94 11.82 12.46 12.77 11.79

k2(1.4M�) 0.079 0.077 0.092 0.097 0.076

λ(1.4M�) [1036g cm2s2] 1.906 1.770 2.772 3.292 1.737

Λ(1.4M�) 337.2 312.9 490.9 583.0 307.5

TABLE II: Radius, tidal Love number, and tidal deformability with and without dimension of a

single neutron star with M = 1.4M� calculated from our five EoS models.

The dimensionless tidal deformability (Λ) calculated for a single neutron star is shown

as a function of the neutron star mass in Fig. 2. For five models selected in this work,

Λ decreases as the neutron star mass increases. As in Fig. 1, our five selected models are

divided into two groups, soft (GSkI, SLy4, and KIDS) and stiff (SkI4 and SGI). Note that for

M = 1.4M�, the soft models predict Λ < 400 while the stiff models Λ > 400. However, all

the five models satisfy the constraint of the dimensionless tidal deformability (Λ < 800) at

M = 1.4M� which was estimated from GW170817 [1]. For the quantitative comparison with

other models, we provide the radius, tidal Love number, and dimensionful and dimensionless

tidal deformability calculated for a single neutron star with 1.4M� from the five selected

models in Table II.

The tidal effect measured in the LIGO/Virgo observations is obtained from the gravi-

tational wave emitted from the merger of two neutron stars. Therefore the quantity most

relevant to measurement is the mass-weighted tidal deformability (Λ̃) of a binary system.

The observations of GW170817 put a constraint on Λ̃ such as Λ̃ ≤ 800 for the low-spin prior.

With the probable mass ratio q = 0.7− 1.0 which is also estimated from GW170817 for the

low-spin prior [1], our selected five EoS models satisfy this constraint of Λ̃ in the binary of

two neutron stars (see the upper panel of Fig. 3). Note that Λ̃ is calculated with Eq. (6)

for the merger of two neutron stars with masses M1 and M2. Similar to the behaviors of

a single neutron star as seen in Fig. 2, the two stiff models (SGI and SkI4) predict larger

values of Λ̃ than the other three soft models (GSkI, SLy4, and KIDS). Note that the value

of Λ̃ predicted from the soft models could be less than 400 which is the lower limit estimated

in [10]. The mass–weighted tidal deformability (Λ̃) can be also drawn as a contour in the

Λ1–Λ2 space, where Λ1 and Λ2 are dimensionless tidal deformability of each neutron star in
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the binary. The lower panel of Fig. 3 shows the contour plots obtained from our five models

in the Λ1–Λ2 space. Note that upper and lower panel of Fig. 3 show the same results in

different ways.

Since the first measurement of tidal deformability (Λ and Λ̃) from GW170817, several

papers have been published already comparing predictions from various models with the

measured values. Because it is worth comparing our results obtained from the five selected

EoS models with those from previous works, we review some of recent works [13–15, 33] and

compare our results with them in the following.

By using tri-tropic and quadru-tropic functions, Ref. [13] constructs more than 20,000

EoSs which are interpolated between the low-density EoS computed with chiral effective

field theory [34] and the high-density EoS obtained from non-perturbative QCD [35]. These

EoSs are tested against the constraint of Λ(1.4M�) < 800 and the maximum mass of a

neutron star (Mmax > 2.0M�). Radius of a neutron star with 1.4M� (R1.4M�) is found to be

bound between 11.1 km and 13.4 km, consistent with the constraint of the maximum mass

and the tidal deformability. If the constraint of Λ(1.4M�) were lowered to 400, the radius

of the 1.4M� neutron star could decrease to 12.3 km. The results obtained for the selected

models in our work are in good agreement with those in [13].

In Ref. [15], the EoS models based upon the relativistic mean field (RMF) theory are

considered. Ten models are selected first, all of which satisfy the maximum mass of neutron

star (∼ 2M�), and tested against the tidal deformability. For additional comparison with

models they also include measurement of the neutron skin thickness of 208Pb (R208
np ). This

measurement was done by the Lead Radius Experiment (PREX) at the Jefferson Laboratory

[36, 37]. Because the radius of a neutron star with 1.4M� (R1.4M�), tidal deformability

(Λ(1.4M�) and Λ̃), and R208
np are predicted together by a given EoS, their correlation can

be used to constrain each other. When the constraint of Λ(1.4M�) < 800 is applied to ten

models which predict various radii at a given neutron star mass of 1.4M�, only four models

having relatively soft EoS pass the test. By applying Λ(1.4M�) < 800 to a radius function

fitted to ten models, R1.4M� is estimated less than 13.76 km. Note that this limit on R1.4M� is

in good agreement with ours and that in Ref. [13]. The condition Λ(1.4M�) < 800 also sets

an upper limit on the neutron skin thickness as R208
np < (0.25− 0.28) fm, which is obtained

with predictions from ten models. However, PREX reports a wide range of measured values,

R208
np = 0.33+0.16

−0.18 fm [36, 37]. It is interesting that a substantial portion of PREX value is
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ruled out with the constraint of Λ(1.4M�) < 800. Alternatively, the lower limit of PREX

data (R208
np ≈ 0.15 fm) can provide a constraint on the minimum value of Λ(1.4M�). Fitted

to predictions from ten models, the lower limit on R208
np leads to R1.4M� ≈ 12.55 km and

Λ(1.4M�) ≈ 490. If an equal mass binary were assumed, Λ̃ = Λ(1.4M�) ≈ 490. This lower

limit on Λ̃ is larger than 400 which is estimated from AT2017gfo [10]. Note that the lower

limit calculated from the models in this work is about 300 as shown in Table II.

Ref. [33] focuses on the role of symmetry energy in EoS. Employing the momentum-

dependent interaction (MDI) model, and varying the parameter x in the model which con-

trols stiffness of the EoS such as x = 0 (softest limit) to x = −1 (stiffest limit), 300 ≤ Λ̃ ≤ 690

is obtained for an equal mass binary composed of two 1.4M� stars. Note that the lower

(upper) limit on Λ̃ comes from x = 0 (x = −1). When applied to a single neutron star,

the MDI model predicts 11.5 km ≤ R1.4M� ≤ 13.6 km which also corresponds to between

x = 0 (lower limit) and x = −1 (upper limit). Note that the range of the tidal deformability

predicted in [33] is consistent with the results from GW170817 and AT2017gfo, and that the

range of R1.4M� is similar to that obtained in [13].

Ref. [14] calculates the tidal deformability with the EoS constrained by chiral effective field

theory (EFT) up to twice nuclear saturation density. The effect of uncertainties from high

orders and dependence on the momentum cutoff values are analyzed statistically. For the

1.4M� mass neutron star, they obtain the radius in the range 10.36 ≤ R1.4M� ≤ 12.87 km,

and the single star tidal deformability 136 ≤ Λ(1.4M�) ≤ 519 at the 2σ (95%) confidence

level. In Ref. [11] the authors consider a minimal model which is an extrapolation of EoS

obtained from EFT up to 2ρ0. They obtain 280 ≤ Λ̃ ≤ 480 for GW170817, which is smaller

than another EFT result of [14].

Fig. 4 shows the tidal deformability Λ(1.4M�) from the models discussed above. The

results from our five selected models are in good agreement with those from the other

models [13–15, 33]. In particular, all the data points of the five selected models are on the

curve (Λ ∼ R7.5) from [13]. Our results are also consistent with the lower bounds on the

deformability and radii of neutron stars estimated using the gravitational waves based on

the Bayesian analysis [38].
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IV. CONCLUSIONS

The first detection of gravitational wave from the merge of neutron star binary

(GW170817) provided valuable information on tidal deformability of merging neutron stars

which is determined by the EoS of dense matter inside the neutron star. In order to in-

vestigate whether the measured tidal deformability can be predicted with reasonable EoS

models which have been tested already against the other sets of criteria, we select five

specific EoS models based upon the Skyrme force model and density functional theory.

The selected models are SkI4, SGI, SLy4, GSkI, and KIDS and their predictions are in

good agreement with three criteria, data of finite nuclei, nuclear matter, and the maxi-

mum mass of neutron star. For these five models, dimensionless tidal deformability (Λ)

of a single neutron star and mass–weighted tidal deformability (Λ̃) of the binary neutron

stars are calculated. For a single neutron star with 1.4M�, our five models predict a range

of radius 11.8 km ≤ R1.4M� ≤ 12.8 km and a range of dimensionless tidal deformability

308 ≤ Λ(1.4M�) ≤ 583 which satisfies the measured constraint Λ(1.4M�) ≤ 800 (see Fig. 2,

4 and Table II). For the mass-weighted tidal deformability (Λ̃) of the binary neutron stars,

our five models predict 360 ≤ Λ̃ ≤ 700 for the fixed chirp mass of Mchirp = 1.188M� and a

range of mass ratio 0.7 ≤ q = M2/M1 ≤ 1.0 which are also estimated from the GW170817

observations for the low-spin prior (see Fig. 3). The predicted range of Λ̃ also satisfies the

measured constraint Λ̃ ≤ 800, but the lower value of the predicted range is marginal in

comparison with the estimated lower limit Λ̃ ≥ 400 from AT2017gfo in [10]. We compare

our results with those of recent works and find that our results are in good agreement with

them [13–15, 33, 38] while providing a narrower range of predictions due to a smaller number

of models in consideration and the absence of phase transition. From our results, however,

we can conclude that the first measured tidal deformability from GW170817 is consistent

with predictions of models which have been successfully explaining the properties of finite

nuclei and nuclear matter as well as the maximum mass of neutron star.
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(a) Mass vs. Central Density

(b) Mass vs. Radius

FIG. 1: Bulk properties of neutron stars predicted from the five selected EoS models described in

Sec. II. Top (a) and bottom (b) panels show the neutron star mass as a function of the central

density and the mass-radius relationship, respectively. In the bottom panel, yellow and green

bands represent the 2M� constraint [8, 9], while blue and red bands indicate a neutron star mass

of primary (M1) and secondary (M2) in the binary merger, respectively, estimated from GW170817

[1]. Horizontal error bars in the bottom panel (b) indicate the probable (2σ region) radii of neutron

stars estimated from the Bayesian analyses of photospheric radius expansion (PRE) X-ray bursts

(XRBs) and thermal emission from quiescent low-mass X-ray binaries (qLMXBs) [30]. More recent

and updated results on the analyses of PRE XRBs and qLMXBs can be found in Ref. [31, 32].

(Color online)
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FIG. 2: Dimensionless tidal deformability (Λ) of a single neutron star as a function of mass. A

horizontal grey line indicates the constraint of Λ estimated from GW170817 [1]. A vertical grey

dotted line corresponds to 1.4M�. (Color online)
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(a) Mass–weighted tidal deformability (Λ̃) as a

function of mass ratio

(b) Mass–weighted tidal deformability (Λ̃) in the

Λ1–Λ2 space

FIG. 3: Mass-weighted tidal deformability (Λ̃) in the binary of two neutron stars. We fix the chirp

mass of the binary at Mchirp = 1.188M� as observed by LIGO/Virgo [1] but allow the mass ratio

to vary. The top (a) and bottom (b) panels show Λ̃ as a function of mass ratio (M1/M2) and in

the Λ1–Λ2 space, respectively. The horizontal grey line in the top panel is Λ̃ = 800, the constraint

estimated from GW170817. In the bottom panel, a similar constraint is indicated by the grey

dashed curve which represents the 90% confidence level of Λ̃ ≤ 800 in the Λ1–Λ2 space (i.e., the

region below the curve corresponds to Λ̃ ≤ 800 with 90% confidence). The diagonal grey dotted

line in the bottom panel corresponds to the case of an equal-mass binary, i.e., M1 = M2 = 1.36M�.

In this case, Λ̃ = Λ1 = Λ2. (Color online)
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FIG. 4: Dimensionless tidal deformability (Λ) of a single neutron star as a function of radius when

the mass of neutron star is fixed at 1.4 M�. The results from our five models are indicated with

color symbols. The shaded rectangles are adopted from the following references: purple (A) [15],

brown (B) [33], green (C) [13], and gold (D) [14]. The red dashed curve corresponds to Λ ∼ R7.5

shown in [13] and it overlaps the results from our five models very well. The horizontal blue dashed

line (Λ = 800) indicates again the constraint of Λ estimated from GW170817 [1]. (Color online)
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