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We quantify the theoretical uncertainties of chiral effective-field-theory predictions of the muon-
deuteron capture rate. Theoretical error estimates of this low-energy process are important for a
reliable interpretation of forthcoming experimental results by the MuSun collaboration. Specifically,
we estimate the three dominant sources of uncertainties that impact theoretical calculations of this
rate: those resulting from uncertainties in the pool of fit data used to constrain the coupling constants
in the nuclear interaction, those due to the truncation of the effective field theory, and those due to
uncertainties in the axial radius of the nucleon. For the capture rate into the 1S0 channel, we find
an uncertainty of approximately 4.6 s−1 due to the truncation in the effective field theory and an
uncertainty of 3.9 s−1 due to the uncertainty in the axial radius of the nucleon, both of which are
similar in size to the targeted experimental precision of a few percent.

I. INTRODUCTION

Effective field theories (EFTs) have become a widely
used tool in particle and nuclear physics. They are used
to obtain a systematic low-energy expansion of observ-
ables when a separation of scales is present in a given
problem. In particular, chiral EFT had a transforma-
tive effect on low-energy nuclear theory [1–3] by pro-
viding a clear path towards a nuclear Hamiltonian that
can describe the properties of atomic nuclei to high ac-
curacy. Within this framework, nucleons and pions are
the degrees of freedom used to build up the nuclear po-
tential that is used to describe the spectra of nuclei.
The expansion parameter Q of chiral EFT is given by
max(mπ/Λb, q/Λb) where mπ denotes the pion mass, q
a low momentum scale and Λb denotes the breakdown
scale of the theory, which is expected to be compara-
ble to the lightest degree of freedom not taken into ac-
count in the theory. An additional advantage over previ-
ous approaches to the internuclear potential is that EFT
also provides clear guidance on how to construct the cou-
pling to external sources. Indeed, the electroweak current
is also calculated order-by-order in a low-energy expan-
sion in chiral EFT and thus shares a large number of
low-energy constants (LECs) with the nuclear potential.
Thus, chiral dynamics constrains the form of the nuclear
currents significantly.

Uncertainty quantification of theoretical calculations
is particularly important in the nuclear electroweak sec-
tor where observables that are very challenging, or even
impossible, to measure experimentally serve as input to
astrophysical models. Fortunately, uncertainty quantifi-
cation was one of the initial promises of EFT calculations.
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However, it should be pointed out that there remain sev-
eral open questions on the meaning and understanding
of renormalization group invariance of chiral EFT [4–6]
and therefore also the interpretation of truncation errors.

In this paper we build on recent progress in uncertainty
quantification for EFTs [7–11] and present new results for
the different sources of theoretical uncertainties in the
EFT description of muon capture on the deuteron, i.e.
the process

µ− + d→ νµ + n+ n . (1)

Currently, the MuSun Collaboration is performing an ex-
periment at the Paul Scherrer Institut to measure the
rate of this reaction to percentage precision [12]. This
will be the first precise measurement of a weak nuclear
process in the two-nucleon (NN) system, and the aim is
to determine the LEC cD that parameterizes the strength
of the short-distance part of the axial two-body current as
well as the one-pion-exchange contact-term in the leading
three-nucleon (NNN) interaction in EFT approaches to
nuclear forces and currents.

Muon capture on the deuteron has long been expected
to provide understanding of the electroweak nuclear op-
erator (see Ref. [13] and references therein). A first chi-
ral EFT calculation of muon capture into the neutron-
neutron (nn) singlet S-wave was carried out by Ando et
al. [14]. More recently, more complete calculations of the
muon capture rate were carried out in Refs. [15–17].

Here, we focus on the three dominant sources of uncer-
tainties of an EFT calculation of the capture rate: those
resulting from uncertainties in the the nucleon-nucleon
scattering database, those due to the truncation of the
EFT and those due to uncertainties in the nucleon axial
form factor. We will focus on capture from the S-wave
doublet state of the muonic deuterium atom to the singlet

S-wave state of the nn system, Γ
1S0

D , which is the only
contribution to ΓD that is relevant to the contact part
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of the axial current. Furthermore, this part can be ex-
tracted by subtracting from ΓD the higher partial wave
contributions calculated in Refs. [15–17]. While these
contributions have theoretical uncertainties of their own,
they are not sensitive to physics at range shorter than
that of pion exchange at the chiral order we are operat-
ing at.

We follow two approaches. (i) We use a family of 42
potentials at order Q3 that have been fitted at 7 dif-
ferent regulator cutoffs Λ in the range 450 − 600 MeV
to 6 different Tlab ranges in the NN scattering data
base. The LECs in this family of NN+NNN interac-
tions were simultaneously fitted to pion-nucleon (πN)
and selected NN scattering data, the energies and charge
radii of 2,3H and 3He, the quadrupole moment of 2H, as
well as the comparative β-decay half-life of 3H. A simple
momentum-dependent error term with EFT-like scaling
was included in the fits to scattering data, and all 42
potentials reproduce the pool of fit data equally well,
see Ref. [7] for details. Clearly, calculating the muon-
capture rate with this family of interactions probes an
important component of the total theoretical uncertainty.
(ii) We also use a set of chiral interactions with regula-
tor cutoff Λ = 500 MeV at orders Q0, Q2, Q3 with the
sub-leading πN couplings c1, c3, c4 according to the pre-
cise Roy-Steiner analysis presented in Refs. [8, 18]. The
corresponding NN contact-potentials of this set of inter-
actions are constrained to reproduce the NN phase shifts
of the Granada PWA [19] up to 200 MeV lab scattering
energy as well as the binding energy and radius of the
deuteron. This second class of interactions enables us to
parameterize Γ

1S0

D in terms of only one LEC, either d̂R or

cD, which are related by d̂R = − m
4gAΛb

cD+ 1
3 ĉ3 + 2

3 ĉ4 + 1
6 ,

where ĉi ≡ cim and m is the nucleon mass [15, 20–23] 1.
Indeed, after extracting the LEC cE of the leading NNN
contact from the energy and radius of 3H and 3He, the
three-nucleon force is completely predicted up to order

Q3 by Γ
1S0

D .
In the following we show that the capture rates ex-

tracted from approaches (i) and (ii) agree with each
other. Furthermore, we discuss the relative size of the
uncertainties of our predictions that arise from the afore-
mentioned sources, and their implications for the inter-
pretation of the impending experimental MuSun results.

II. THE 1S0 CAPTURE RATE

At nuclear energies, the charge-changing weak inter-
action Hamiltonian ĤW can be written in terms of the

1 An error in the coefficient of cD in Ref. [20] was recently corrected
by Ref. [23]. The LECs of Ref. [7] have been re-optimized with

a corrected relation between the LECs cD and d̂R [23]. The new
values [33] are used throughout in this work.

leptonic and the nuclear weak current operators as

ĤW =
GV√

2

∫
d3x [jα(x)Jα(x) + h.c.] , (2)

where GV is the vector coupling constant which is related
to the Fermi coupling constant GF and the Cabibbo mix-
ing angle θC by GV = GF cos θC , and “h.c.” stands for
the Hermitian conjugate of the preceding term. The ma-
trix element of the leptonic weak current operator jα is
lα e−iq·x, where lα is the Dirac current of the leptons.
The matrix element for the process in Eq. (1) can then
be written as

Tfi =
GV√

2
φ1S(0)

∑
sµsd

〈1
2
sµ, 1sd|(

1

2
1)

1

2
sµd〉 lα(h, sµ)

〈ψnn|Jα(q)|ψd; sd〉 , (3)

where φ1S(0) = [αmµmd/(mµ + md)]
3/2/π1/2 is the

ground-state wavefunction of the muonic deuterium atom
at the origin, and |ψnn〉 and |ψd; sd〉 are, respectively, the
states of the nn system and that of the spin-polarized
deuteron with projection sd. Here we have ignored the
quartet channel of muonic deuterium and only coupled
the muon and the deuteron spins to 1/2. For capture
into the 1S0 singlet nn state with relative momentum p,
the differential doublet capture rate is given by

dΓ
1S0

D

dp
=

1

2π3
p2E2

ν

(
1− Eν

mµ +md

)
|Tfi|2 , (4)

where the spin-averaged squared matrix element |Tfi|2
can be obtained from Eq. (3) by averaging over the spin
projections sµd of the muonic deuterium atom and sum-
ming over neutrino helicities h, which gives

|Tfi|2 =
1

6
G2
V φ

2
1S(0) |

√
2〈ψnn|J1(q)− iJ2(q)|ψd; 1〉

− 〈ψnn|J0(q) + J3(q)|ψd; 0〉|2. (5)

The neutrino energy is Eν = 1
2mµd

[
m2
µd − 4

(
m2
n + p2

)]
,

where mµd and mn are the masses of the muonic deu-
terium atom and the neutron, respectively. The inte-

grated capture rate Γ
1S0

D can be obtained by integrat-
ing Eq. (4) with respect to p between the limits 0 and
pmax = (m2

µd/4−m2
n)1/2.

III. WEAK CURRENTS

The expressions for the charge-changing nuclear elec-
troweak currents, Jα ≡ V α1B+Aα1B+V α2B+Aα2B, have been
derived in chiral effective field theory in Refs. [24–27].
We take into account operators that give non-vanishing
contributions to Eq. (1) up to O(Q3) in the chiral ex-
pansion. The nuclear wavefunctions are also consistently
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calculated up to the same order. In both, the current op-
erators and the wavefunction, we count Q/m as O(Q2)
[7, 28]. The Gamow-Teller operator,

AGT
1B (q) = −FA(q2)

∑
i

e−iq·riτ−i σi , (6)

enters at O(Q0). Here, FA is the axial form-factor
which is a function of the four-vector inner product q2 =
mµ(mµ− 2Eν). We use FA(q2) = gA(1 + r2

Aq
2/6), where

rA is the axial radius of the nucleon. This truncation is
consistent with the chiral order to which we work in this
paper, and with both dipole- and z-parameterizations
of the axial form-factor [29]. The pseudo-scalar opera-
tor [26],

A0
1B(q) = −gA

∑
i

e−iq·riτ−i
σi · p̄i
m

, (7)

where p̄i = (pi + p′i)/2 = pi + q/2 is the average
of the momenta of the nucleons before and after cou-
pling with the leptons, only appears at O(Q2). Addi-
tionally both Eqs. (6) and (7) also include an induced-
pseudoscalar contribution [14] that gives Aα1B(q) →
Aα1B(q) + qαqβA

β
1B(q)/(m2

π − q2). The one-body vector
operator appears at O(Q2) and consists of the so-called
convection current and the weak-magnetism terms,

V1B(q) =
∑
i

e−iq·riτ−i
1

m

(
p̄ + i

µV
2

q× σi

)
, (8)

where µV is the nucleon isovector magnetic moment,
whose value is 4.706. In Eqs. (7) and (8), and also in the
two-body currents discussed below, we have used the zero
four-momentum transfer values for the axial and elec-
tromagnetic form factors since their q2 dependences are
higher order in the EFT expansion.

The axial two-body operators, which enter at O(Q3),
can be written as [14, 26]

Aα2B(q) = Âα2B(q) +
qα
[
qβÂ

β
2B(q) + ÂPS

2B(q)
]

m2
π − q2

, (9)

where

Â0
2B(q) = −i gA

4f2
π

τ−×

[
σ1 · k1

m2
π − k2

1

− σ2 · k2

m2
π − k2

2

]
+

2gA
mf2

π

(
ĉ2 + ĉ3 −

g2
A

8

)∑
i

τ−i
σi · kik0

i

m2
π − k2

i

, (10)

Â2B(q) =
gA

2mf2
π

{
σ2 · k2

m2
π − k2

2

[
i

2
τ−× p̄1 + 4ĉ3τ

−
2 k2

+

(
ĉ4 +

1

4

)
τ−×σ1 × k2 +

µV
4
τ−×σ1 × q

]
+ 2d̂1

∑
i

τ−i σi + d̂2τ
−
×σ× + (1↔ 2)

}
, (11)

and

ÂPS
2B(q) =

4gAm
2
π

mf2
π

ĉ1

[
τ−2

σ2 · k2

m2
π − k2

2

+ (1↔ 2)

]
. (12)

The µV term in Eq. (11) and the pion pole contribu-
tion given by the second term in Eq. (9) were ignored
by Ref. [26] in their proton-proton fusion calculation but
were included by Ref. [14] since they are non-negligible
for the muon capture process. In these equations, ki =
p′i−pi, τ

−
× = (τ1× τ2)x− i(τ1× τ2)y, σ× = σ1×σ2 and

fπ is the pion decay constant. The linear combination

gAΛb (d̂1 + 2d̂2) = cD is conventionally used to combine

the d̂1 and d̂2 terms, which are rendered redundant by the
Pauli principle [26]. The LECs ci in the pion-exchange
current also appear in πN andNN interactions and in the
long-range part of the NNN interaction, whereas cD (or

d̂R) simultaneously parameterizes both the strength of
the short-range part of the meson-exchange axial currents
and that of the intermediate-range part of the NNN in-
teraction. The vector part of the two-body current is
given by the sum of the so-called seagull and pion-in-
flight terms [14],

V2B(q) = −iτ−×
g2
A

4f2
π

[
σ1σ2 · k2

m2
π − k2

2

− σ2σ1 · k1

m2
π − k2

1

+
σ1 · k1

m2
π − k2

1

σ2 · k2

m2
π − k2

2

(k2 − k1)

]
. (13)

The two-body vector charge operator, V 0
2B, is sup-

pressed by an additional factor of the chiral EFT ex-
pansion parameter.

IV. COVARIANCE ANALYSIS

The covariance matrices provided in Ref. [7] offer
a straightforward handle on the statistical uncertain-
ties in the integrated and differential muon-capture rate
stemming from the experimental uncertainties in the fit

data. The Jacobians of of Γ
1S0

D with respect to rele-
vant LECs were computed in a simple finite difference
scheme and derivatives could be reliably extracted us-
ing splines. For the nuclear wavefunctions we do not
allow any variation in the axial coupling constant gA.
We start from gA = 1.276 [30] which after renormaliza-
tion to account for the Goldberger-Treiman discrepancy
is matched to the empirically determined πN coupling
strength g2

πNN/4π = 13.7 [31]. This value for gA is
slightly larger than the most recently adopted Particle
Data Group (PDG) value gA = 1.2723(23) but in fair
agreement with the value gA = 1.2749(9) employed by
Hill et al. [32].

It is sufficient to use the first-order statistical methods
described in Ref. [7]. From this we can establish that

the uncertainty in Γ
1S0

D due to uncertainties in the deter-
mination of the LECs at Q3 from experimental data is
very small and certainly not of any primary concern. We
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FIG. 1. Distribution of central values for the muon-capture

rate Γ
1S0
D when using the family of 42 chiral EFT potentials

at order Q3 from Ref. [7]. The vertical bars indicate the
respective statistical uncertainty propagated from the under-
lying uncertainties in the LECs. Calculations with identical
regulator cutoffs Λ but different truncations Tmax

Lab in the NN
scattering database are connected with a line to guide the
eye. The weighted average of all calculations and conserva-
tive error limits are indicated with dashed and solid lines,
respectively. The numerical values of the combined model
error is given in Eq. (14).

find that the typical size of the statistical uncertainties in

Γ
1S0

D is 0.5 s−1. The sensitivity to different truncations of
the NN scattering database is of similar size, while vari-
ations of the regulator cutoff is up to five times larger,
see Fig. 1

Based on the covariance analysis, variations of the reg-
ulator cutoff, and the pool of fit data for extracting the
LECs we obtain a conservative estimate for the model
uncertainty at order Q3 in chiral EFT. Using a weighted
average of the results shown in Fig. 1, we find

Γ
1S0

D = 252.4+1.5
−2.1 s

−1. (14)

V. CORRELATION WITH THE
ASTROPHYSICAL PROTON-PROTON

S-FACTOR

Using the chiral interactions at orders Q3 with the πN
LECs, c1,2,3,4 = (−0.74, 1.81,−3.61, 2.44) GeV−1, de-
termined in a Roy-Steiner analysis [18], we can analyze
the relation between different observables via a variation
of the short-distance LEC cD. For example, in Fig. 2
we trace out the correlation between the proton-proton
(pp) Spp-factor at zero energy and the muon-capture rate

Γ
1S0

D . Different points on the black line in this figure only
differ in the values of the LEC cD and cE that reproduce
the binding energies and radii of 3H and 3He while the
two-body interaction remain unchanged.

As in Ref [20], we can also use the triton binding energy
and β-decay half-life, corresponding to a reduced matrix

element of the J = 1 electric multipole of the axial-vector
current |〈3He||EA1 ||3H〉| = 0.6848± 0.0011, to fix cD and
cE , and thus also the muon-capture rate and the pp fusion
S-factor, see Fig. 2 (dashed lines). With cD = −0.39 and
cE = −0.44, we find that Spp(0) = 4.058 × 10−23 MeV
fm2 , which is consistent with our previously published
result [34], and a muon-capture rate

Γ
1S0

D = 252.8± 4.6± 3.9 s−1 . (15)

These results are not sensitive to variations of the tri-
tium β-decay matrix element within the range of uncer-
tainty quoted above. The first uncertainty in the above

expression for Γ
1S0

D estimates the effect of truncating the
chiral EFT expansion at order Q3. The second uncer-
tainty indicates the sensitivity to variations of the axial
radius within the error budget r2

A = 0.46(22) fm2 [35].
The truncation error is extracted by following the method
discussed in Ref. [9]. In brief, we calculate the capture
rate at the lower orders Q0 and Q2, in the currents as well
as the wavefunctions, and express the results as an ex-

pansion of the form Γ
1S0

D = Γ
1S0

LO

∑3
n=0 cn(p/Λb)

n, where
we assume that the breakdown scale of theory is Λb =
500 MeV and the inherent momentum p of the problem
is provided by the soft scale of chiral EFT, i.e. p = mπ.
Note that the maximum of the momentum-differential
doublet-capture rate in Eq. 4 occurs at a momentum scale
p ∼ 25 MeV. We obtain an estimate for the EFT trun-
cation error by calculating (p/Λb)

4 max(|c0|, |c2|, |c3|) .
The order-by-order capture rates with a cD that repro-
duces the comparative inverse β-decay half-life of triton
are (186.3, 247.3, 252.8) s−1 at orders (Q0, Q2, Q3), re-
spectively. We find that the uncertainty estimate result-
ing from an analysis of the EFT truncation is comparable
to the error induced by the imprecise value of the axial
radius. In turn, both of these errors are twice as large
as the uncertainty related to the cutoff variation of the
chiral potential and truncations in the pool of fit data.

VI. CONCLUSION

We have analyzed uncertainties in calculations for the
muon-capture rate using two classes of interactions: (i)
order Q3 interactions constructed as described above
and in Ref. [7], and (ii) a set of interactions at order
Q0, Q2, Q3, whose πN couplings c1, c3 and c4 were taken
from Ref. [18].

The analysis carried out in Ref. [8, 18] has reduced the
uncertainties in the πN LECs significantly. This leaves
cD as the only undetermined LEC in the weak axial two-
body current. We demonstrated that this leads to linear
correlations between electroweak observables in the two-
nucleon sector that involve phaseshift equivalent NN in-
teractions.

We focused on the singlet S-wave nn channel, which
is the only channel sensitive to the weak axial two-body
contact current. Our results for muon-capture and the
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FIG. 2. The muon-capture rate Γ
1S0
D as a function of the pp

fusion Spp-factor at zero energy parameterized by the axial
current LEC cD ∈ [−3.6,+3.6] at order Q3 using the Roy-
Steiner based interaction. The grey band indicates the un-
certainty in the muon-capture rate due to the uncertainty
in the axial radius of the nucleon r2A = 0.46(22) fm2. The
dashed lines indicates the values for Spp(0) and ΓD when the
experimental value for the triton β-decay half-life is used to
determine the LEC cD.

associated uncertainties are shown in Eqs. (14) and (15).
These uncertainty estimates are rooted in the descrip-
tion of the strong-interaction part of the calculation. We
also emphasize the importance of the additional ∼ 1.5%
uncertainty due to the uncertainty in the nucleon axial
radius. We note that the central value we obtain is in ex-
cellent agreement with a prior chiral EFT calculation [15]
even though our error estimate is larger because we per-
form a more rigourous treatment of uncertainties.

Using the result for muon-capture into the single S-
wave from Eq. (15) and the results from Ref. [15] for
muon-capture into higher partial waves, we can obtain an

estimate of 397.8 s−1 for the total capture rate, ΓD. We
expect that higher accuracy can be obtained for capture
into higher partial waves since these are less sensitive to
the axial two-body current. However, we refrain from
giving a total uncertainty for this capture rate.

We have also studied the correlation of the capture rate
with other NN observables. In agreement with previous
work [36], we find that the capture rate depends only
weakly on the nn scattering length ann provided that it
is negative. However, the capture rate would be signifi-
cantly smaller if ann was positive due to the existence of
a shallow dineutron.

In the future, we will carry out a complete uncertainty
analysis for pp fusion and muon capture on the deuteron,
including the effect of higher partial waves. This analysis
will provide a full picture on the uncertainties and cor-
relations of electroweak processes in the NN sector. We
emphasize that the axial radius rA is a significant source
of uncertainty in our analysis. Future improvements in
experimental precision and lattice QCD results [37] will
lead to important insights into how the nuclear Hamilto-
nian correlates various electroweak observables.
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G. R. Jansen, O. Lilja, M. Lindby, B. A. Mattsson,
and K. A. Wendt, Phys. Rev. X6, 011019 (2016),
arXiv:1506.02466 [nucl-th].

[8] M. Hoferichter, J. Ruiz de Elvira, B. Kubis, and U.-G.
Meissner, Phys. Rept. 625, 1 (2016), arXiv:1510.06039
[hep-ph].

[9] R. J. Furnstahl, N. Klco, D. R. Phillips, and
S. Wesolowski, Phys. Rev. C92, 024005 (2015),
arXiv:1506.01343 [nucl-th].
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