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In high energy heavy-ion collisions, the two colliding nuclei pass through each other leaving behind
an almost baryon free central rapidity region. Most of the baryons are carried away by the nuclear
remnants and are located in the so-called fragmentation regions. In previous papers [1, 2], it has
been argued that very high baryon densities, more than ten times larger than the normal nuclear
density, can be achieved in these fragmentation regions. In this paper, we assume the high baryon
density matter is thermalized at the same time as the baryon-free quark-gluon plasma in the central
rapidity region. We perform a 1+1D (temporal + longitudinal) hydrodynamic simulation covering
both the fragmentation regions and the central rapidity region with the baryon diffusion equation
included. Baryons are found to diffuse from the fragmentation regions to the central rapidity region
driven by fugacity gradients. The baryon chemical potential at freezeout monotonically increases
from the central rapidity region to the fragmentation regions, suggesting a rapidity scan in high
energy heavy-ion collisions might be helpful in searching for the critical point of the QCD phase
diagram.

I. INTRODUCTION

Understanding the QCD phase diagram is one of the
main goals of the heavy-ion collision experiments. For
heavy-ion collisions at high collisional energy, such as the
top RHIC energy and the energies attainable at LHC, the
Quark-Gluon Plasma (QGP) created in the central region
has almost zero net baryons. Lattice simulations demon-
strated that at zero baryon chemical potential the tran-
sition from the deconfined state of quarks and gluons to
the confined state of hadrons is a rapid, smooth crossover
[3]. At finite baryon chemical potential, the nature of
the transition is unknown from the Lattice approach due
to the intrinsic sign problem, although there are some
theoretical model-dependent predictions on the nature of
possible phase transitions [4]. To create the QGP exper-
imentally with finite baryon chemical potential, the con-
ventional approach is to lower the center-of-momentum
collision energy and measure observables around zero ra-
pidity. For example, the Beam Energy Scan program at
RHIC carries out a series of Au+Au collisions ranging
from

√
sNN = 200 GeV down to 7.7 GeV with the corre-

sponding baryon chemical potential at chemical freezeout
being µB ' 20 Mev to 420 MeV [5]. Even larger values
of the baryon chemical potential can be achieved by fur-
ther lowering the collision energy in the proposed BES
phase III fixed target experiments and also in the FAIR
and the NICA experiments in Europe [6, 7]. This ap-
proach is based on the observation that at lower collision
energies, more baryons are stopped in the central rapid-
ity region while at higher collision energies, the central
rapidity region becomes more transparent [8, 9]. One
possible problem with creating QGP with finite baryon
chemical potential using low energy heavy-ion beams is

that the energy deposited in the central region might not
be large enough to create a deconfined state of quarks
and gluons. Instead, it might just produce a system of
hadrons. In addition, modeling the initial states of low
energy heavy-ion collisions are more involved than that of
the high energy collisions [10, 11]. In high energy heavy-
ion collisions, however, an alternative approach in scan-
ning through the rapidities might be helpful in exploring
the QCD phase diagram at finite baryon chemical poten-
tial.

Depending on the reference frame in which high energy
heavy-ion collisions are described, there are two different
paradigms [12, 13]. Bjorken’s paradigm [12], which is pre-
sented in the center-of-momentum frame, concerns the
boost-invariant central rapidity region and argues that
the energy density deposited is large enough for the for-
mation of the QGP. This paradigm completely ignores
the baryons which are carried away from the central ra-
pidity region by the nuclear remnants. Also, the collid-
ing nuclei are highly Lorentz contracted in the center-of-
momentum Cartesian reference frame. Attempting to
resolve the longitudinal structure of the nuclear rem-
nants turns out to be unrealistic in the Cartesian ref-
erence frame. The AKM paradigm (Anishetty, Koehler
and McLerran) [13], which is characterized in the lab
frame of a fixed-target experiment, concerns the frag-
mentation regions and argues that the baryon densities
inside the target fireball after the collisions are enhanced
due to the nuclear compression. The energy densities of
the target fireball could also be large enough for the for-
mation of the QGP. In the lab frame of a fixed-target
experiment, before the collision, the projectile nucleus
is highly Lorentz contracted while the target nucleus
retains its longitudinal structure. These two different
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paradigms describe the same physical process and com-
plement each other. Physics that are Lorentz invariant
should be incorporated in either paradigm to be consid-
ered complete. In particular, the nuclear compression
and its resulting enhancement of baryon densities em-
phasized in the AKM paradigm, which were later veri-
fied in [14], should be included in the fragmentation re-
gions of Bjorken’s paradigm. In references [1, 2], the ini-
tial baryon densities and energy densities achievable in
the fragmentation regions of central Au+Au collisions at√
sNN = 200 GeV were estimated using the McLerran-

Venugopalan model [15, 16]. The baryon densities were
found to be more than ten times larger than the normal
nuclear density while the energy densities are also more
than ten times larger than the critical energy density for
the formation of the QGP. With such large initial baryon
and energy densities, quarks and gluons are very likely
to be liberated and thermalized in the fragmentation re-
gions just like that happened in the central rapidity re-
gion. The exact mechanism of the thermalization in the
fragmentation regions is expected to be as challenging as
the early thermalization problem in the central rapidity
region [17, 18] and beyond the scope of the current paper.

Assuming the high baryon densities in the fragmenta-
tion regions of high energy heavy-ion collisions are ther-
malized, we focus on the subsequent dynamical evolu-
tion of the high baryon density matter. Unlike the QGP
with almost zero baryon chemical potential in the cen-
tral rapidity region, the high baryon density matter in
the fragmentation regions naturally involves finite/large
baryon chemical potential. Probing the fragmentation
regions of high energy heavy-ion collisions thus provides
an alternative experimental approach in studying quark-
gluon plasma with finite/large baryon chemical potential.
In this sense, exploring the dynamical evolution of the
high baryon density matter is important as it will reveal
the redistribution of baryons as the system evolves. In
this paper, we will concentrate on the central collision of
Au+Au at

√
sNN = 200 GeV. To be precise, we use the

1+1D (temporal + longitudinal) hydrodynamic model to
simulate the subsequent space-time evolution of the high
baryon density matter. In doing so, we combine the QGP
in the central rapidity region and the high baryon density
QGP at the fragmentation region as one fluid and exam-
ine the longitudinal dynamics of the baryon diffusion.

The paper is organized as follows. In Sect. II, the rel-
ativistic diffusive equations to simulate the high baryon
density matter are presented. Section III discusses the
input to the hydrodynamic equations including the ini-
tial conditions, the equation of state, the transport co-
efficients and the final freezeout. Results are given and
discussed in Sect. IV.

II. RELATIVISTIC DIFFUSIVE
HYDRODYNAMIC EQUATIONS

We briefly summarize the relativistic hydrodynamic
equations and notations used in the paper. The readers
are referred to [19–24] for more thorough discussions on
the application of hydrodynamics in relativistic heavy-
ion collisions. The hydrodynamic equations are

∂µT
µν = 0, ∂µJ

µ
B = 0. (1)

with the energy-momentum tensor Tµν and the baryon
current for an relativistic diffusive fluid having the ex-
pressions

Tµν = εuµuν − P∆µν ,

JµB = nBu
µ + V µ.

(2)

Here ε ≡ ε(x), P ≡ P (x), uµ ≡ uµ(x), nB ≡ nB(x) and
V µ ≡ V µ(x) are the local energy density, the thermal
pressure, the velocity field, the local baryon density and
the diffusive baryon current, respectively. The time-like
velocity field uµ is chosen to be along the energy current
satisfying Tµνu

ν = εuµ, the so-called Landau frame. The
velocity field is further normalized to be uµuµ = 1. Rais-
ing or lowering tensor indexes are through the Minkowski
metric gµν = diag(1,−1,−1,−1). The ∆µν = gµν−uµuν
is a symmetric projection operator orthogonal to the ve-
locity field ∆µνuν = ∆µνuµ = 0. The diffusive part of
the baryon current is perpendicular to the four velocity
uµV

µ = 0. Also, V µ(x) is the diffusive correction to
the baryon current of ideal fluid JµB,id = nBu

µ. It allows
baryon charges to flow with a different velocity compared
to the local energy density. The baryon diffusive current
V µ(x) follow its own dynamical equation that asymptot-
ically approaches the Navier-Stokes limit [21]

τV ∆µνDVν + V µ = κBI
µ + X µ . (3)

Here τV is the relaxation time for the baryon diffusive
current and κB is the baryon transport coefficient. The
comoving time derivative D = uµ∂µ reduces to ∂t in
the fluid local rest frame where uµ = (1, 0, 0, 0). The
∇µ = ∆µν∂ν is the space-like gradient. The vector
Iµ = ∇µ(µB/T ) with µB and T the baryon chemical
potential and temperature is due to the gradient of
the fugacity. The X µ represents other possible terms
that can be higher oder gradients of hydrodynamical
and thermodynamical variables. For example, Israel
and Stewart [25] predicted there are terms −τV θV µ in
X µ. How many terms there are and what the relative
importance of these terms to the study of QGP are still
under active research and debate [24, 26].

The study of the QGP in the central region using hy-
drodynamics usually ignores the baryon current conser-
vation equation in Eq. (1) and the associated baryon
diffusion equation Eq. (3) because the net baryon charge
is close to zero and boost-invariance is usually assumed in
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high energy heavy-ion collisions. Most of the efforts are
focused on the effects of shear viscosity in reproducing
the anisotropic flow data and extracting the tempera-
ture dependence of shear viscosity over entropy density
[19, 27]. With the high baryon density initial conditions
in the fragmentation regions of high energy heavy-ion col-
lisions, baryon conservation and diffusion equations must
be included in the hydrodynamic description of the QGP
evolution, and the boost-invariance assumption becomes
invalid. A full 3+1D numerical computation of Eqs.(1)
and (3) with high baryon density initial conditions are
challenging [28]. Instead, we focus on the 1+1D (tem-
poral+longitudinal) situation and study the longitudi-
nal dynamics of the high baryon density matter, given
the initial conditions. We also ignore the viscous effects
and focus on the baryon diffusion effect. This is comple-
mentary to the conventional hydrodynamic simulations
of the QGP evolution in high energy heavy-ion collision
which usually ignore the longitudinal dynamics by as-
suming boost-invariance and not taking into account the
high baryon densities in the fragmentation regions. We
hope this 1+1D study will give us a physical picture of
the longitudinal dynamics of the baryons before a full
3+1D description is developed.

There are several studies of the 1+1D hydrodynam-
ics for high energy heavy-ion collisions without assuming
boost-invariance [29–32]. However, none of these studies
take into account the high baryon density initial condi-
tions in the fragmentation regions. For the baryon diffu-
sion equation Eq.(3), only the fugacity gradient term is
kept on the right hand side ignoring the X µ terms. This
simplified baryon diffusion equation is sometimes known
as the Cattaneo equation [33] and it has been used in the
study of hydrodynamic fluctuations in relativistic heavy-
ion collisions [34, 35]. We rewrite the equations using
Milne coordinates (τ, η) defined from the Cartesian co-

ordinates by τ =
√
t2 − z2 and η = 1

2 ln
(
t+z
t−z

)
. The set

of equations we are solving in terms of the Milne coordi-
nates are

∂τ (τT ττ ) + ∂ηT̃
τη + T̃ ηη = 0,

∂τ (τ T̃ τη) + ∂ηT̃
ηη + T̃ τη = 0,

∂τ (τJτ ) + ∂η(τJη) = SB ,

∂τ (Ṽ η) + ∂η

(
uη

uτ
Ṽ η
)

= SV .

(4)

with the source terms being

SB = −∂τ
(
τ2uη

uτ
Ṽ η
)
− ∂ηṼ η,

SV =
Ṽ η

uτ
(∂τu

τ + ∂ηu
η)− 1

τV

Ṽ η

uτ

− κB
τV

[uττ−1∂η + τuη∂τ ]
(µB
T

)
.

(5)

Here

T ττ = (ε+ P )uτuτ − P ,
T̃ τη = τT τη = (ε+ P )τuτuη ,

T̃ ηη = τ2T ηη = (ε+ P )τ2uηuη + P ,

Jτ = nBu
τ ,

Jη = nBu
η,

Ṽ η = τV η.

(6)

The 1+1D hydrodynamic equations Eq.(4) are written in
a form that is suitable for numerical calculations using
the Central-Upwind scheme (Kurganov-Tadmor scheme)
[36–38]. The Kurganov-Tadmor scheme is a finite-volume
method in solving hyperbolic partial differential equa-
tions and is used in the MUSIC package [39–41] for a
3+1D simulation of heavy-ion collisions.

III. INPUTS TO 1+1D DIFFUSIVE
HYDRODYNAMIC EQUATIONS

A. Initial Conditions

We assume the hydrodynamic evolution of the high
baryon density matter starts from τ0 = 0.6 fm/c for cen-
tral Au+Au collisions at

√
sNN = 200 GeV. This is

the typical starting time chosen to simulate the almost
baryon-free central region of high energy heavy-ion col-
lisions using hydrodynamics [42]. To initialize the 1+1D
diffusive hydrodynamic equations Eqs.(4), one needs to
specify the energy density ε(η), the baryon density nB(η),
the velocity field uτ (η) and the baryon diffusion current
V η(η) as functions of the pseudo-rapidity η at the initial
time τ0.

The high baryon density initial conditions developed
in [1, 2] concern the forward/backward large rapidity re-
gions while assuming the central region around η ∼ 0
to be boost-invariant. Lorentz scalars like the energy
density and baryon density are independent of η in the
central region. For central Au+Au collisions at

√
sNN =

200 GeV the magnitude of the energy density is chosen to
be ε(η = 0) = 30 GeV/fm

3
in the central region [42] while

the net baryon density is chosen to be nB(η = 0) = 0. In
the forward/backward rapidity regions where the high
baryon densities are located, the boost-invariance as-
sumption is invalid and the pseudo-rapidity dependence
of ε(η) and nB(η) are given by the high baryon density
initial conditions in [1, 2]. We have to combine the for-
ward/backward rapidity regions with the central region
to obtain the initial distributions across the whole range
of the pseudo-rapidity. In principle, a detailed dynami-
cal study of the interplay between the forward/backward
rapidity regions and the central regions is needed to give
a realistic initial distributions. Lacking such a study,
we instead take a more practical approach by smoothly
connecting the forward/backward rapidity regions to the
central regions using a half-Gaussian distribution. The
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center and the width of the half-Gaussian distribution
are free parameters chosen appropriately in the numeri-
cal calculations. The half-Gaussian distribution has the
expression [39, 43, 44]

H(η) = exp

[
− (|η| − ηf/2)2

2σ2
η

θ(|η| − ηf/2)

]
. (7)

Here ηf characterizes the range of the central boost-
invariant region and ση is the Gaussian width at the
boundaries ±ηf/2 between the central region and the for-
ward/backward rapidity regions. The θ(x) is the Heavi-
side step function.

For 1+1D studies of central Au+Au collisions at√
sNN = 200 GeV, we focus on the position r⊥ = 0 in

the transverse plane. The initial energy density distri-
bution ε(η) at τ0 = 0.6 fm/c is shown in Fig. 1. The
range of the central boost-invariant region is chosen to be
ηf = 3.6 and the Gaussian width is chosen to be ση = 0.1.

In the central region, the energy density is 30 GeV/fm
3

and smoothly connects to the forward/backward rapid-
ity regions where the largest energy density is around
20 GeV/fm

3
. The rapidity regions 1.8 ≤ |η| ≤ 3.2 are

where the high baryon densities are located. Figure 2
shows the initial baryon density distribution. The half-
Gaussian connection has not been used for the baryon
density distribution as the baryon density in the central
region is also assumed to be zero in the discussions in
Refs. [1, 2]. For fluid longitudinal rapidity yf (η) which
characterizes the velocity fields, one might as well expect
the half-Gaussian connection should apply: yf = η for
|η| ≤ 1.8 and yf = 2.47 for 1.8 ≤ |η| ≤ 3.2. Thermal
motions of baryons inside the baryonic fireballs are ig-
nored in our initial state model in Refs. [1, 2] and this
constant fluid rapidity yf = 2.47 reflects the overall ve-
locities of the receding baryonic fireballs. However, ther-
modynamic variables are very sensitive to the change of
the velocity fields; the half-Gaussian connection for yf (η)
introduces artificial sudden changes of the velocity fields
in the connection region. This consequently causes un-
physical drops in the energy density profile as the system
evolves. On the other hand, the matter in the central
regions is pushed to the large fluid rapidity regions as
the system evolves and the fluid rapidity profile quickly
adjusts itself to be close to the boost-invariant distribu-
tion for the velocity fields. In this sense, we will choose
the initial fluid rapidity profile to be yf = η, which is
essentially equivalent to turning off initial flows and let
the system adjust itself.

B. Equation of State (EoS) and Transport
Coefficient

To study the space-time evolution of the matter cre-
ated both in the central region and the forward/backward
rapidity regions at the same time in high energy heavy-
ion collisions, the EoS should include the crossover fea-

FIG. 1: 1+1D initial energy density distribution ε(η) at
τ0 = 0.6 fm/c.

FIG. 2: 1+1D initial baryon density distribution nB(η)
at τ0 = 0.6 fm/c.

ture at zero baryon chemical potential as well as the pos-
sible critical point and first order phase transition line
at finite baryon chemical potential. Unfortunately, such
an EoS has not been obtained from lattice calculations,
although there are some model-dependent theoretical pa-
rameterizations [45]. In the numerical study of the hy-
drodynamic evolution of the high baryon density matter,
we will instead use the crossover EoS developed by Al-
bright, Kapusta and Young in [46, 47]. The crossover
EoS is valid for finite baryon chemical potential and does
not contain any critical points or first order phase tran-
sitions. Although it might not be a realistic EoS due to
the lack of the critical point and the first order phase
transition line, it is smooth and analytic at finite baryon
chemical potential and is sufficient for our study of high
baryon density matter as long as we are not focused on
any critical phenomena.

Apart from the equation of state, we also need expres-
sions for the baryon transport coefficient κB and the re-
laxation time τV at finite baryon chemical potential. Like
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the equation of state, κB and τV are determined by the
microscopic dynamics of the high baryon density mat-
ter and are calculable should we knew the microscopic
degrees of freedom and their interactions. However, first
principle calculations of κB and τV at finite baryon chem-
ical potential are very difficult if near impossible. There
are expressions for κB and τV at finite baryon chemical
potential from weakly coupled theory using the kinetic
theory approach [28, 48–50] and strongly coupled theory
using the AdS/CFT correspondence [51, 52]. In [28], the
Boltzmann equation for the single particle distribution
function is solved in the relaxation time approximation
using the Chapman-Enskog expansion. In the massless
limit using the classical Boltzmann distribution for equi-
librium distribution, the baryon transport coefficient has
the form

κB = τV nB

(
1

3
coth

(µB
T

)
− nBT

ε+ P

)
. (8)

The relaxation time τV is assumed to be inversely pro-
portional to the temperature τV = CB/T with a free
parameter CB . It is worth emphasizing that the baryon
transport coefficient Eq.(8) comes from the kinetic the-
ory approach. The kinetic theory approach serves as
a good description of the hadronic phase particularly
in a hadronic quasiparticle model [48]. This approach
might be still applicable in the extremely large tempera-
ture and/or baryon chemical potential regions where the
quark-gluon plasma can be approximated as a weakly-
coupled system so that perturbative QCD approach is
justified [49, 53–56]. However, one should not expect this
approach to be applicable in the strongly coupled QGP
regime. There are no known results of the baryon trans-
port coefficient from the Lattice QCD calculations. Our
current understanding of the baryon transport coefficient
in the QGP phase across a wide range of temperatures
and baryon chemical potentials is very little [57]. In Ref.
[51] the thermal conductivity of an R-charged N = 4 su-
persymmetric Yang-Mills theory was calculated using the
AdS/CFT correspondence. Translating into the baryon
transport coefficient, it has the form

κB = 2π
Ts

µ2
B

(
nBT

ε+ P

)2

. (9)

The expression is quoted here and will be used in the
numerical simulation of the 1+1D diffusive hydrodynam-
ics merely to compare with results obtained when using
Eq.(8). Finally, it is worth pointing out that the baryon
transport coefficients in Eq. (8) and Eq. (9) have finite
values at the limit of vanishing baryon chemical poten-
tial.

C. Freeze-Out

At late times of the hydrodynamic evolution of the
QGP, the temperature decreases and the system becomes

dilute. The deconfined quarks and gluons recombine into
confined states of hadrons. The hadronic system ex-
pands further until the mean free path of the constituent
particles becomes comparable to the typical macroscopic
length size, and hydrodynamics breaks down. It would
be more appropriate to describe the subsequent evolution
of the hadronic system using kinetic theory, such as the
hadronic cascade model UrQMD [58, 59]. As the system
continues expanding, the chemical freeze-out and kinetic
freeze-out follow when inelastic collisions, particle decays
and elastic collisions gradually stop. The resulting stable
particles freely travel to the detectors. While it is more
realistic to use a hybrid model (hydrodynamics + trans-
port model) to describe the particle productions, in this
simple 1+1D study, we use the Cooper-Frye freeze-out
mechanism [60] to estimate the final particle distribution
which comes directly from the end of the hydrodynam-
ics. We also take into account of the resonance decay
contribution to the particle production.

1. Direct Thermal Production

At the moment that hydrodynamics is assumed to
break down, particles are thermally emitted from the in-
dividual fluid cells. The momentum space distributions
of the emitted particles are given by the Cooper-Frye for-
mula [60]

E
dN th

i

d3p
=

dN th
i

dyd2pT
=

gi
(2π)3

∫
Σ

f i(x, p) pµd3Σµ. (10)

Here Σ represents the freeze-out hypersurface in the four
dimensional spacetime. The d3Σµ is the normal four vec-
tor of the hypersurface. Its magnitude tells the size of
the infinitesimal hypersurface patch while the four vec-
tor tells the direction of the normal vector associated
with each of these hypersurface patches. For the parti-
cle species labeled by i, the gi is the degeneracy factor
and f i(x, p) is the phase space distribution which can
be decomposed into the equilibrium part and the non-
equilibrium correction

f i(x, p) = f i0(x, p) + δf i(x, p) . (11)

The local equilibrium distribution f i0(x, p) is

f i0(x, p) =
1

e(uµpµ−biµB)/T ± 1
(12)

Here bi represents the number of baryon charges that the
particle species i carries. The uµ(x), µB(x) and T (x)
are macroscopic functions of spacetime representing flow
velocity, baryon chemical potential and temperature per-
taining to the local fluid cell at x. The non-equilibrium
correction to the distribution function δf i(x, p) depends
on specific models used to describe the non-equilibrium
processes. We only consider the baryon diffusion pro-
cess. Within a kinetic theory approach in the relaxation
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approximation, it has the form [28]

δf i(x, p) = f i0(x, p)(1±f i0(x, p))

(
nB
ε+ P

− bi
uµpµ

)
pµVµ
κB/τV

(13)

2. Resonance Decay Production

The Cooper-Frye mechanism not only gives the direct
thermal distribution of stable hadrons such as proton and
pions, it also predicts the distribution of unstable reso-
nance particles such as the nucleon resonances N∗ and
the ∆ baryons. Ultimately, we will be interested in the
final proton spectrum which partly comes from direct
thermal production and partly comes from the decays
of resonance baryons. For example, the decay channel
∆+(1232)→ p+ π0 contributes to the proton spectrum.
Consider the decay process that a resonance particle la-
beled by R decays to the particle of interest labeled by i
and other unidentified N particles R −→ i+1+2+ · · ·N .
The Lorentz-invariant momentum spectrum of particle i
due to resonance decay is [61–65]

Ei
dNres

i

d3pi
=

∫ ∞
0

dmW (m)

∫
d3pR
ER

(
ER

dN th
R

d3pR

)
×
[
Br ×

(
1

Γi

)
×
(
Ei

dΓi
d3pi

)]
.

(14)

Here the quantity in the square bracket is the probability
density for a resonance particle with energy and momen-
tum ER and pR decays to the particle i which happens
to have energy and momentum Ei and pi. The Br is
the branching ratio of the decay channel Br = Γi/ΓR
with ΓR the total decay width of the resonance par-
ticle. The thermal spectrum of the resonance parti-
cle ERdN

th
R /d

3pR is computed by the Cooper-Frye for-
mula Eq. (10). The W (m) integration describes the
finite width effect of the resonance particle. The stan-
dard functional form of W (m) is chosen to be the Breit-
Wigner distribution. In the zero width limit, it reduces
to the Dirac delta function. For simplicity, we will chose
W (m) = δ(m − mR). Recent discussions on the finite
width effects can be found in [66, 67]. In the following, we
will mainly focus on two-body decays. One crucial step is
to compute the probability density associated with each
decay channel. This may seem intimidating as each de-
cay channel has its own decay matrix element M which
in general depends on all the momenta of the particles in-
volved in the decay process. Therefore, a rigorous treat-
ment is to analyze the dynamics of each decay channel
in detail to obtain the exact decay matrix elementM. A
less rigorous but more practical approach, which has been
adopted in several previous works, is to assume certain
properties of the decay matrix elementM to simplify the
computation of the probability density. For example, the
decay matrix M is assumed to be independent of mo-
menta of the particles involved at the tree level. Under

this assumption, the probability density can be solely
represented by the phase space. Microscopic dynamics
of the decay process completely drops out of the formula
leaving only the phase space factor. With this assump-
tion, analytic expressions of the probability density for
two-body decays and three-body decays can be achieved.
In this paper, we consider all the resonances included in
the crossover EOS listed in [46]. Only two-body decays
that directly produce protons will be considered in the
estimation of the final proton spectrum.

IV. LONGITUDINAL DYNAMICS OF HIGH
BARYON DENSITY MATTER

First of all, a few numerical setups and checks can be
mentioned. The range of the spatial rapidity is chosen
to be −6 ≤ η ≤ 6. The space-time grids have spac-
ings ∆η = 0.04 and ∆τ = 0.02 fm/c. The free pa-
rameter CB in the baryon transport coefficient and the
relaxation time is chosen to be CB = 0.4 for illustra-
tive purposes. In the numerical calculations, the energy
conservation and the baryon conservation should be re-
spected. The total energy defined by Etot =

∫
Tµ0d3σµ

with the hypersurface at constant proper time τ being
d3σµ = (cosh η, 0, 0,− sinh η)τdηd2x⊥ has the explicit
expression

Etot = SA

∫
τdη (T ττ cosh η + τT τη sinh η) . (15)

Here SA is the transverse area. The total number of
baryons defined by N tot

B =
∫
Jµd3σµ has a contribution

from the diffusive current

N tot
B = SA

∫
τdη (nBu

τ + V τ ). (16)

In addition, the total entropy, which is defined by Stot =∫
sµd3σµ with sµ = suµ − µB

T V µ, should also be con-
served for an ideal fluid and should not decrease for dif-
fusive hydrodynamics. Its explicit expression is

Stot = SA

∫
τdη

[
suτ −

(µB
T

)
V τ
]
. (17)

In the ideal fluid situation when the diffusive current
is turned off V µ = 0, the Etot/SA, N

tot
B /SA and Stot/SA

are constants. Their initial values are 284.49 GeV/fm
2
,

4.2857 fm−2 and 339.16 fm−2, respectively. We check
their values at each time step. Baryons are conserved
to a very high precision. The total energy is conserved
with less than 0.1% numerical violations while the en-
tropy is conserved with less than 0.2% numerical viola-
tions. These tiny increases of the total energy and the
total entropy are mainly due to the numerical viscosities
of the Central-Upwind scheme in solving hydrodynamic
equations. Further improvements of the algorithm can
be found in [37].
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FIG. 3: (color online) Profile of the proper baryon den-
sity nB(η) as it evolves with time hydrodynamically.

In the diffusive hydrodynamics with V µ included,
Etot/SA and N tot

B /SA are still expected to be constants
while the entropy per transverse area Stot/SA is expected
to increase. The total energy in this situation is al-
most the same as in the perfect fluid situation. The
total number of baryons, however, increases up to 2%
at the ending time of the hydrodynamic evolution. This
2% percentage violation of baryon conservation is the ac-
curacy of the numerical results on quantities related to
baryons. There are several sources this small violation of
baryon conservation can come from. After introducing
the baryon diffusion current, the source terms Eqs. (5)
contain time derivatives. This structure in principle vio-
lates the Central-Upwind scheme. The treatment of these
time derivatives by the finite difference method in the
codes could introduce uncertainties in the numerical re-
sults. In addition, the baryon diffusion current V µ is
theoretically expected to be smaller than the ideal part
of the total baryon current Jµid. However, in numerically
solving the baryon diffusion equation governing the time
evolution of V µ, there is no small controlling parameter
that guarantees |V µ| . |Jµid|. As a result, the V µ can be
comparable or larger than Jµid, especially in the spatial re-
gions close to the edges of the system where the baryon
densities are small. The baryon diffusion currents V µ are
regulated so as to make them smaller in these regions.

A. Baryon Diffusion

The proper baryon densities at τ = 0.6, 1.0, 2.0, 3.0
fm/c are shown in Fig. 3. Note that the area under the
curve nB(η) is not the total number of baryons per unit
area. The total number of baryons per unit area have
to be computed using Eq. (16). As can be seen from
Fig. 3, the magnitude of the proper baryon density de-
creases very fast at the early stage of the hydrodynamic
expansion. It drops from the initial 3.0 baryons/fm

3
at

τ = 0.6 fm/c, which is around 20 times larger than the

FIG. 4: (color online) Profile of the proper baryon den-
sity nB(η) as it evolves with time according to the ideal
fluid hydrodynamic equations.

FIG. 5: (color online) Profile of the pressure P as it
evolves with time according to the diffusive hydrody-
namic equations.

normal nuclear density, to around 0.4 baryons/fm
3

at
τ = 3 fm/c which is less than three times larger than
the normal nuclear density. As will be shown later,
the total time of the hydrodynamic evolution is around
τtot ∼ 18 fm/c. In Fig. 3, the baryon distribution spreads
to both the smaller rapidity regions |η| . 2 and the larger
rapidity regions |η| & 3 as the system evolves. There are
two factors that determine the change of the baryon dis-
tribution during the hydrodynamic evolution. One is the
longitudinal hydrodynamic expansion driven by the gra-
dient of the pressure. The other is the baryon diffusion
driven by the gradient of the fugacity. The effects of the
longitudinal hydrodynamic expansion push the baryons
to larger spatial rapidity regions as shown in Fig. 4 where
the baryon diffusion current is turned off: V µ = 0. No
baryons spread to the central region in the ideal fluid
dynamical evolution. The pressure profiles are shown in
Fig. 5. In the ideal fluid, the change of baryon density
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FIG. 6: (color online) The proper baryon density distri-
bution nB(η) at τ = 10 fm/c from the ideal hydrody-
namics and from the diffusive hydrodynamics.

FIG. 7: (color online) The baryon diffusion current τV η

as it evolves with time hydrodynamically. Only the
positive rapidity region is shown.

is governed by DnB = −nθ and Duµ = ∇µP/(ε+P ). A
longitudinal pressure gradient from the central region to
the forward/backward rapidity regions causes even more
expansions than those in a boost-invariant setting . Fig-
ure 6 shows the proper baryon density distributions at
τ = 10 fm/c from the ideal hydrodynamics and the diffu-
sive hydrodynamics. Diffusion causes the baryons to be
transported from the backward/forward rapidity regions
to the central region. However, baryon diffusion to larger
rapidity regions |η| & 3 are suppressed. The spreading
of baryons to the |η| & 3 regions are mainly caused by
the hydrodynamical expansion. Close to the edge of the
system |η| & 3.8, the two distributions overlap because
of the regulation of the baryon diffusion current V µ in
these regions.

The dynamics of the baryon diffusion can also be fur-
ther understood by looking at the baryon diffusive cur-
rent in detail. The baryon diffusion currents at four dif-
ferent proper times τ = 0.7, 1.0, 1.4, 2.0 fm/c are plotted

FIG. 8: (color online) The µB/T profile evolves with
time hydrodynamically. Only the positive rapidity re-
gion is shown.

in Fig. 7. The baryon diffusion current is assumed to be
zero at the initial time τ = 0.6 fm/c. The direction and
magnitude of the baryon diffusion are determined by the
fugacity gradient. In the relativistic Navier-Stokes limit,
we have V µ = κB∇µ(µBT ). Therefore, in the 1+1D situ-
ation

τV η = V z cosh η − V t sinh η

∼ −κB cosh (y − η)
[
τuη∂τ + uττ−1∂η

] (µB
T

)
∼ −κB [cosh (y − η)]

2 1

τ
∂η

(µB
T

) (18)

where in the last line we only focus on the spatial gra-
dient term. The baryon diffusion current τV η is nega-
tively proportional to the rapidity gradient of µB/T and
is scaled by 1/τ . The factor 1/τ , which is the same as
the expansion rate ∂µu

µ in the boost-invariant case, indi-
cates that the magnitude of τV η is larger at early times
and becomes smaller and smaller at late times due to the
hydrodynamical expansion. The explicit profiles of µB/T
as a function of η are shown in Fig. 8. Around η ∼ 2,
the value of µB/T increases from zero to about two at
τ = 0.7 fm/c. This is a general feature of the space-time
picture of high energy heavy-ion collisions where very
few baryons are left in the central region and most of the
baryons are carried away by the nuclear remnants. Tak-
ing a derivative of µB/T , one gets the “plateau-valley-
plateau” structure in the τV η profile in the connecting
area between the central region and the fragmentation
regions as shown in Fig. 7. We want to emphasize again
that this is a general feature of high energy heavy-ion col-
lisions. In the extreme case of low collision energy where
the two colliding nuclei are completely stopped, baryons
are concentrated in the central region. The µB/T in-
stead should be decreasing from the central region to
the fragmentation regions. As a consequence, one gets
the “plateau-hill-plateau” structure in the baryon diffu-
sion current τV η which indicates that the baryons diffuse
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FIG. 9: (color online) The gradient of baryon diffusion
current −∂η(τV η) as it evolves with time hydrodynami-
cally. Only the positive rapidity region is shown.

from the central region to the fragmentation regions. For
the µB/T profiles shown in Fig. 8, as baryons diffuse
from the fragmentation regions to the central regions, the
µB/T distribution is lowered and spread around η ∼ 2.
The deep valley in the τV η profile correspondingly be-
comes shallower and more flat. The region around η ∼ 3
in Fig. 8 needs more explanation. This is the connecting
area between the high baryon density matter and the vac-
uum, which is different from the connecting area around
η ∼ 2 where high baryon density matter and the QGP
with zero baryon densities are connected. The value of
µB/T first decreases and then quickly increases to infinity
around η ∼ 3 at τ = 0.7 fm/c. The values of µB and T are
determined by the equation of state, given the values of
the energy density ε and the baryon density nB . Around
η ∼ 3, both ε and nB are small while around η ∼ 2,
the nB is small but ε is very large. The feature of µB/T
around η ∼ 3 thus reflects the property of the equation of
state at small nB and ε. See also similar structure using
a different equation of state in Ref. [28]. This particular
feature of µB/T results in a small hill structure around
η ∼ 3 in the τV η profile as shown in Fig. 7. Baryons thus
diffuse from the fragmentation regions to even larger ra-
pidity regions where the vacuum locates. Gradually, this
small hill structure in τV η around η ∼ 3 is flattened as
the system expands and the baryons diffuse; we are left
with a monotonic increasing rapidity profile of µB/T .

The reason why baryons diffuse from the fragmentation
regions to the central region given the “plateau-valley-
plateau” structure of the baryon diffusion current τV η

are explicitly shown in Fig. 9. The source term SB in
the baryon conservation equation Eq. (4) has a rapidity
gradient term SB ∼ −∂η(τV η) as shown in Eq. (5). The
change of the proper baryon density nB after one time
step due to the rapidity gradient of the baryon diffusion
current can be approximated as

∆nB ∼ −
1

uτ
∆τ

τ
∂η(τV η). (19)

FIG. 10: (color online) Comparison of the net-proton
momentum rapidity distributions from direct thermal
production and resonance decays.

Therefore, the “plateau-valley-plateau” structure of the
τV η causes the baryons to increase on one side of the
valley and the baryons to decrease on the other side of the
valley. Overall, one sees the baryons are transported from
the fragmentation regions to the central region. Likewise,
as the system expands and the baryons diffuse, the deep
valley becomes more flat. Baryon diffusion still happens
on the edge of the valley but the magnitudes are reduced
due to the expansion of the system and the shallowness
of the valley, as shown in Fig. 9.

B. Rapidity Dependent Observables

In the numerical calculations, we chose the freezeout
energy density to be εFO = 0.5 GeV/fm

3
and found the

lifetime of the system to be τ = 17.4 fm/c . Particle
momentum space distributions can then be computed by
the Cooper-Frye formula and by including contributions
from the resonance decays. We focus on particles that
carry baryon charge. Neutral particles like neutrons are
difficult to measure experimentally. The BRAHMS col-
laboration has measured the proton, antiproton and net-
proton momentum rapidity distribution dN/dy for y up
to 3.1 for Au+Au collision at

√
sNN = 200 GeV in the

0− 5% centrality bin [8]. Our calculation is not the full
3+1D, thus detailed quantitative comparisons with the
experimental data are not practical. However, the ex-
perimentally measured momentum rapidity distributions
of proton, antiproton and net-proton can put a qualita-
tive constraint on the longitudinal dynamics of the high
baryon density matter predicted by the 1+1D diffusive
hydrodynamics.

Figure 10 shows the net-proton momentum rapidity
distribution and the contributions from direct thermal
production and from resonance decays. Resonance de-
cays contribute more on the production of proton than
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FIG. 11: (color online) Comparison of the net-proton
momentum rapidity distributions from direct thermal
production and three resonance decays ∆(1232) → pπ,
Λ→ pπ− and Σ+ → pπ0.

the direct thermal emission. Including the resonance
decays increases the magnitude of the net-proton mo-
mentum rapidity distribution while the shape of distri-
bution remains unchanged. It would be crucial to in-
clude the resonance decays when one compares theo-
retical predictions with experimental data. Note that
the dN/dy has unit of 1/fm2, as we consider a unit
transverse area around the central core of the nuclei.
Bulk variables are counted as per unit area. Figure 11
shows the net-proton momentum rapidity distributions
from three different resonance decays. The resonances
∆(1232), Λ and Σ+, whose masses are m∆ = 1232 MeV,
mΛ = 1115.7 MeV and mΣ = 1189.4 MeV, are the
baryons that have the lowest masses besides the proton
and neutron. The ∆(1232) → pπ actually consists of
three channels ∆++(1232)→ pπ+, ∆+(1232)→ pπ0 and
∆0(1232)→ pπ−.

As shown in Fig. 12, the net-proton momentum ra-
pidity distribution has a double peak structure which
is in qualitative agreement with experimental findings.
The difference lies in the valley between the two peaks
around y ∼ 0. Experimental data reveals that there is
a small amount of baryon charge residing in the central
region with the baryon chemical potential about 25 MeV
at chemical freezeout [68]. In the experimental data, the
net-proton momentum rapidity distribution has nonzero
values around y ∼ 0 and the valley between the two
peaks is found to be shallower and more flat. As a con-
sequence, this small baryon chemical potential around
y ∼ 0 predicts slightly more protons than the antipro-
tons. In Fig. 12, the (dN/dy)p and (dN/dy)p̄ are the
same around y ∼ 0 because µB ' 0 there. Antiprotons
do not exist before the collision of the two nuclei, they
come from pair production associated with the protons or
from hadronization. Finally, the baryons are distributed
as Dirac delta functions around the momentum rapidity
y = ±2.47 in the initial state model [1, 2]. Assuming

FIG. 12: (color online) The proton, antiproton and
net-proton momentum rapidity distribution after the
freezeout. Both the direct thermal production and con-
tributions from the resonance decays are included.

FIG. 13: (color online) The net-proton momentum ra-
pidity distributions after freezeout for three different
values of CB .

a thermal state at the beginning of the hydrodynam-
ics at τ = 0.6 fm/c introduces a thermal smearing on
the baryon momentum rapidity distribution. This ini-
tial thermal smearing, together with the hydrodynamic
expansions and baryon diffusions spread the net baryon
momentum rapidity distribution over a wide range of y
as illustrated in Fig. 12.

Where does the small amount of net baryons at y ∼ 0
come from? Are they already there at the initial time
τ = 0.6 fm/c because the collision is not fully transparent
even at

√
sNN = 200 GeV? Or do the baryons come from

diffusion from the fragmentation regions to the central re-
gion during the hydrodynamic evolution? Our modeling
and calculations cannot evaluate the first possibility as
full transparency was assumed. The second possibility
would require an extraordinary strength of baryon dif-
fusion. Given the initial conditions, the strength of the
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baryon diffusion is controlled by the baryon transport co-
efficient κB . However, κB cannot be arbitrarily large as
the requirement |V µ| . |Jµid| has to be satisfied, other-
wise the diffusive hydrodynamics breaks down. Figure
13 shows the net-proton distributions after the freezeout
for three different values of κB (the CB is a prefactor
in the expression of κB in Eq.(8)). As one increases the
value of κB , more baryons diffuse to the central region.
However, we have checked that a very large value CB = 2
still cannot reproduce the expected net baryons at y ∼ 0.
Also the hydrodynamic code becomes unstable. Our cal-
culations therefore do not favor the second possibility.

Figure 14 shows the temperature and the baryon chem-
ical potential as functions of the fluid rapidity yf at
the Cooper-Frye freezeout. The values of temperature
and baryon chemical potential at the chemical freeze-
out can be reconstructed from the thermal statistical
model in fitting hadron yields and hadron yield ratios.
An attempted extraction of the particle momentum ra-
pidity dependence of T and µB for Au+Au collision at√
sNN = 200 GeV using the data from the BRAHMS col-

laboration is presented in Ref. [69], where the parabolic
form of the baryon chemical potential µB = 26+12y2 was
assumed. Note that the parabolic form of the baryon
chemical potential is expressed as a function of parti-
cle momentum rapidity y rather than fluid rapidity yf .
Again, our results show the baryon chemical potentials
are zero around yf ∼ 0 while the parabolic parameteriza-
tion indicates that µB = 26 MeV there. At the moment
of freezeout, from the central region to the fragmentation
regions, the baryon chemical potential increases while the
temperature decreases. The distribution of T and µB as
functions of fluid rapidity yf indicate that a momentum
rapidity scan would cover a wide range of (T, µB) points
on the QCD phase diagram and can be used to search
for the critical point in high energy heavy-ion collisions,
which is different from the low energy Beam Energy Scan.

C. Comparing Different κB

The baryon transport coefficient κB is not well known.
In the above numerical results, we used the expression of
κB from Eq. (8) which was derived using the kinetic the-
ory approach. In this section, we will compare numerical
results from using a different baryon transport coefficient
Eq. (9), which was suggested by the AdS/CFT approach.
The κB from the kinetic theory approach is not com-
pletely determined by the thermodynamic quantities as
its magnitude is controlled by a free parameter CB . The
κB from the AdS/CFT approach, however, is completely
fixed by the thermodynamic state. In the comparison,
we assume the relaxation time is the same τV = CB/T
and we pick CB = 0.4. Figure 15 shows the two baryon
transport coefficients as functions of η at the initial time
τ = 0.7 fm/c. Both κB have similar finite values in the
limit of vanishing baryon density at the central rapid-
ity region. The κB from the kinetic theory approach is

FIG. 14: (color online) The temperature T and the
baryon chemical potential µB as functions of fluid ra-
pidity yf at the Cooper-Fye freezeout. The parabolic
form of the baryon chemical potential µB = 26 + 12y2

as a function of particle momentum rapidity from Ref.
[69] is plotted for reference.

FIG. 15: (color online) The initial profiles of the baryon
transport coefficient κB obtained from the kinetic the-
ory approach and the AdS/CFT approach.

larger than that from the AdS/CFT approach at non-zero
baryon densities. As a consequence, the baryon diffusion
is stronger when using the κB from the kinetic theory
approach. However, Fig 16 shows the baryon density
distributions at late times of the hydrodynamic evolu-
tion are almost the same for the two κB . This is easy
to understand as the baryon diffusion is more efficient
at early times of the hydrodynamic evolution. At late
times, hydrodynamic expansion plays a dominant role,
leaving the differences resulting from the two different
κB very small. Figure 17 presents the net-proton mo-
mentum rapidity distribution after freezeout using the
two different κB . The (dN/dy)p−p̄ has a slightly larger
peak value when using κB from the AdS/CFT approach.
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FIG. 16: (color online) The baryon density spatial dis-
tribution at late time of the hydrodynamic evolution
from two different baryon transport coefficients κB .

FIG. 17: (color online) The net-proton momentum ra-
pidity distributions after freezeout from two different
baryon transport coefficients κB .

Other than that, the two distributions overlap with each
other. Although these two baryon transport coefficients
come from completely different approaches, the physics
at late times of the hydrodynamic evolution is not very
sensitive to their differences.

V. CONCLUSION AND OUTLOOK

In this paper, we have performed numerical calcu-
lations of the 1+1D diffusive hydrodynamic equations
given the high baryon density initial conditions for
Au+Au central collision at

√
sNN = 200 GeV. We gave

detailed discussions on the dynamics of baryon diffusion.
Baryons are found to diffuse from the fragmentation re-
gions to the central region due to the fugacity gradient
which overcomes the counter-force of hydrodynamic ex-
pansion. The number of baryons transported to the cen-

tral region is controlled by the baryon transport coeffi-
cient. It is difficult to achieve the observed number of
baryons in the central region by purely baryon diffusion
alone because the baryon transport coefficient cannot
be arbitrarily large before hydrodynamics break down.
The proton, antiproton and net-proton momentum ra-
pidity distributions after the freezeout are in qualitative
agreement with experimental findings. At freezeout, the
baryon chemical potential increases from 0 up to 400 MeV
while the temperature decreases from about 165 MeV to
150 MeV as the fluid rapidity increases from yf = 0 to
yf = 4. These values reinforce the idea of a momen-
tum rapidity scan in high energy heavy-ion collisions to
explore the QCD phase diagram.

Unfortunately, experimental measurements of parti-
cle production at large momentum rapidity are very
challenging in the collider mode. The BRAHMS col-
laboration at RHIC had the capability of measuring
(anti)protons, kaons and pions up to momentum rapid-
ity y ∼ 3.1. A detailed momentum rapidity scan has
not been performed yet. It is desired that experimental-
ists can identify particles’ identities (thus knowing their
masses) and measure their transverse momenta while
scanning through momentum space rapidity. A more
promising approach in measuring the fragmentation re-
gions could be fixed target experiments. For example,
the AFTER@LHC project [70, 71], a fixed target exper-
iment using the 2.76 TeV Pb beam which is equivalent
to the

√
sNN = 72 GeV Pb+Pb collision in the center-

of-momentum frame, is under study. Two recent studies
on the idea of a momentum rapidity scan in the AF-
TER@LHC project can be found in Refs. [72, 73]. In a
fixed target experiment, detectors are located in the for-
ward rapidity region behind the target in the Lab frame.
This forward rapidity region in a fixed target experiment
corresponds to one of the fragmentation regions in the
collider mode. It is worth emphasizing that the major dif-
ficulty in measuring the large momentum rapidity regions
is particle identification (PID). In design the BRAHMS
detector, the largest momentum rapidity y = 4 is equiva-
lent to 2◦ away from the beam direction. With particles
produced in directions so close to the beam direction,
signals are easily buried in the original beam particles.
It is also worth noting that there are dedicated experi-
ments, the LHCf [74] and the RHICf [75] experiments,
that measure the neutrons in the forward direction. Last
but not least, it is interesting that a momentum rapidity
scan around the central rapidity might be indispensible
in pinning down the critical point even in the low energy
BES program [76].

In the future, numerical calculations of the full 3+1D
hydrodynamics including both viscous and diffusive ef-
fects, together with the high baryon density initial con-
ditions, are needed to understand the three dimensional
dynamics of baryon diffusions and to quantitatively com-
pare with experimental data.
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