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In relativistic heavy-ion collisions, the production of heavy quarks at large transverse momenta
is strongly suppressed compared to proton-proton collisions. In addition an unexpectedly large
azimuthal anisotropy was observed for the emission of charmed hadrons in non-central collisions.
Both observations pose challenges to the theoretical understanding of the coupling between heavy
quarks and the quark-gluon plasma produced in these collisions. Transport models for the evolution
of heavy quarks in a QCD medium offer the opportunity to study these effects - two of the most
successful approaches are based on the linearized Boltzmann transport equation and the Langevin
equation. In this work, we develop a hybrid transport model that combines the strengths of both
of these approaches: heavy quarks scatter with medium partons using matrix-elements calculated
in perturbative QCD, while between these discrete hard scatterings they evolve using a Langevin
equation with empirical transport coefficients to capture the non-perturbative soft part of the inter-
action. With the hybrid transport model coupled to a state-of-the-art event-by-event bulk evolution
model based on 2+1D relativistic viscous fluid dynamics, we study the azimuthal anisotropy and
nuclear modification factor of heavy quarks in Pb+Pb collisions at

√
s = 5.02 TeV. The parameters

related to heavy-flavor transport are calibrated using a Bayesian analysis comparing to available
D-meson and B-meson data at the LHC. Using the calibrated model, we study the implications on
heavy-flavor transport properties and predict novel observables.

I. INTRODUCTION

In recent years, the Relativistic Heavy-Ion Collider
(RHIC) at Brookhaven National Laboratory and sub-
sequently the Large Hadron Collider (LHC) at CERN
have discovered a new state of matter in ultra-relativistic
heavy-ion collisions, referred to as the quark-gluon
plasma (QGP). The three key observations that lead to
the discovery of the QGP are the measured strong collec-
tive flow of bulk matter, parton recombination as man-
ifest in constituent quark number scaling laws and jet
energy-loss (i.e. jet quenching).

The observed collective flow reveals that the bulk
medium of the QGP undergoes a strong collective ex-
pansion after its initial creation. This behavior can be
explained in surprisingly great detail by models using rel-
ativistic viscous hydrodynamics. Jet quenching refers to
the strong suppression of the yield of high transverse mo-
mentum hadrons in nuclear collisions, compared to the
scaled yield in proton-proton collisions where medium ef-
fects are assumed to be small. Calculations have shown
that this suppression is a consequence of jets losing en-
ergy to the hot, dense and color-deconfined medium.

Heavy quarks (charm and bottom) are often seen as
complementary probes of the QGP, but partly also be-
long to the category of jet observables, depending on
their transverse momenta. Their large masses (com-
pared to the prevailing temperatures generated in colli-
sions at current heavy-ion colliders) constrain their pro-
duction to early reaction times via hard perturbative
Quantum-Chromodynamics (pQCD) processes. Flavor
conservation ensures that the overwhelming majority of
heavy quarks survive the entire reaction, allowing them
to probe the full space-time evolution of the reaction.

These two features are particular attractive to theorists
as these flavor-tagged particles are much easier to track
in the calculations than the evolution of a full jet. The
mass also sets an additional energy scale to the prob-
lem and brings rich physics to the heavy-flavor sector.
In the high transverse momentum region, heavy quarks
lose energy mainly through radiative processes connect-
ing them to jet energy loss studies [1–4], whereas in the
low transverse momentum region their large mass delays
their thermalization, providing a window to study the
equilibration process [5–7]. Heavy flavors are therefore
ideal and unique probes to determine QGP properties.

The in-medium propagation of heavy quarks is often
studied in a kinetic approach that is linearized with re-
spect to the heavy quark distribution function and the
medium particle distribution function is assumed to be
thermal, obtained from hydrodynamic models. The lin-
earization implies that any effects of the heavy quark in-
teractions on the medium are neglected. The linearized
Boltzmann transport equation and the Langevin equa-
tion are both widely used linearized models but make
different assumptions regarding the nature of the interac-
tion and thus often focus on different regimes in the heavy
quark phase space [5, 8–11]. The linearized Boltzmann
transport equation is based on elementary scattering pro-
cesses that can be directly calculated, e.g. via pQCD.
However, calculations in the presence of a medium are
extremely complicated even at leading order [12]. Also,
the pQCD processes are often plagued by soft divergences
that need to be regulated by a medium scale proportional
to temperature. Moreover, at current collision energies
the relevant temperature is not high enough which cre-
ates ambiguities for the pQCD calculation through the
scale dependence of the strong coupling constant αs.
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The Langevin equation takes a different approach: it
assumes that heavy quark receives frequent but soft mo-
mentum kicks from the medium, making a statistical de-
scription of the interaction possible – in terms of “drag”
and “diffusion” coefficients. These transport coefficients
encode the first and second moments of the momentum-
exchange rate but are agnostic to further details of the
elementary processes and medium properties. There are
efforts to calculate these transport coefficients in vari-
ous approaches including lattice QCD [5, 6, 13–20]. Our
group has taken a complementary approach, using ex-
periment data to calibrate our Langevin based trans-
port model to measured observables and thus extract the
transport coefficients directly from data via a Bayesian
analysis [21]. The drawback of this approach is that it
does not in itself provide a fundamental understanding
of the interaction mechanism but can only provide guid-
ance to direct calculations of the transport coefficients in
terms of compatibility to experimental observation.

In this work, we propose to combine the strengths of
the linearized Boltzmann equation approach with that
of the Langevin equation to develop a hybrid trans-
port model for the evolution of heavy quarks in a QGP
medium. In this hybrid model, called Lido (Linearized
Boltzmann with diffusion model), the heavy quarks scat-
ter off medium particles described by a linearized Boltz-
mann equation with pQCD matrix elements (the scat-
tering component), and between scatterings propagate
according to a Langevin equation (the diffusion com-
ponent) with empirical temperature- and momentum-
dependent transport coefficients to describe the soft non-
perturbative components of the interaction missing from
the above scattering picture. Both elastic and inelas-
tic scatterings are included in the scattering compo-
nent with the soft divergence screened by a Debye mass
mD and the Landau-Pomeranchuk-Migdal (LPM) effect
taken into account effectively. The scattering process in-
side a medium is a multi-scale problem that includes a
momentum transfer scale Q and a medium scale that is
proportional to the temperature µπT . The QCD cou-
pling constant has a scale dependence that we choose to
be the maximum of Q and µπT , which means the typical
scale of an in-medium process is cut off by the medium
scale. The details of the running coupling constant we
have utilized can be found in Appendix A. The medium
scale parameter µ is the only parameter in the scattering
component and we assume it encodes the uncertainty in
the pQCD matrix-element approach in our models. The
diffusion component has several parameters depending on
the way in which transport coefficients are parametrized.
The idea is to include non-perturbative contributions in
terms of these transport coefficients. For future studies,
we will also consider absorbing small-momentum-transfer
elastic pQCD scatterings and the associated radiation
into a radiation-improved Langevin equation component
of the model. We would like to point out that a rigorous
separation of matrix-element based scattering and diffu-
sion has been proposed for the study of light parton jet

energy loss up to next-to-leading order in pQCD [22]. In
our study, we don’t require the diffusion component to
be perturbative in nature.

Parameters related to the heavy-flavor transport will
be calibrated to data using Bayesian inference [23, 24].
This approach takes experimental uncertainties into ac-
count and provides the probability distributions for all
model parameters given the experimental data. The
Bayesian technique is particularly useful for focusing on a
subset of parameters such as the transport coefficients. It
allows the marginalization over all other parameters and
computes the probability distribution for the parameters
of interest. The marginalization provides a parameter
range that is not only preferred by the experiments, but
also already includes uncertainties in the other model
parameters. Therefore the Bayesian technique reveals
what actually can be learned from the data, consider-
ing both experimental accuracy and model uncertainties.
The Bayesian methodology has been successfully applied
to the extraction of initial condition and bulk transport
coefficients of the soft QGP medium [23–27] and to the
heavy quark sector for the extraction of the heavy quark
momentum diffusion parameter q̂ using a radiation im-
proved Langevin equation [7, 21]. In this work, we per-
formed a likewise extraction of the heavy quark transport
properties using the proposed Lido model and compared
with previous calculations to see how the results depen-
dent on the use of different transport approaches. The
calibrated model has already been applied to a consistent
description of open heavy-flavor and quarkonia transport
in a recent study [28].

The paper is organized as follows. We describe the
model in detail in section II. In section III, the model is
tested in a static medium with a set of default param-
eters. We calibrate the model parameters in section IV
to data and predict novel observables using high likeli-
hood parameter values in section V. Finally, section VI
contains summary and discussion of results.

II. HEAVY QUARK PROPAGATION IN A
HYBRID TRANSPORT MODEL

As introduced in the previous section, the Lido model
consists of a linearized-Boltzmann equation of scatter-
ings C[fQ] and a diffusion component that appears as a
Fokker-Planck operator D[fQ] in the transport equation:

p · ∂fQ
E

= C[fQ]− ∂

∂pi

(
Ai −

1

2

∂

∂pj
Bij

)
fQ

=
(
Ĉ + D̂

)
fQ, (1)

with a formal solution,

fQ(x, p) = exp

{∫ x

x′
γu · dx

(
Ĉ + D̂

)}
fQ(x′, p)

≈ e∆tĈe∆tD̂fQ(x′, p) +O(∆t2) (2)
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Technically, this can be solved by the split step method
within a tiny time step ∆t = γu ·dx, during which we ap-
ply the operation of scattering and diffusion subsequently
up to corrections of O(∆t2). Next, we discuss the physics
included in each components in detail.

A. Scattering component

The scattering of heavy quarks with medium particles
is treated with a linearized Boltzmann equation,

p · ∂fQ
E

= C[fQ]. (3)

The left hand side represents the free evolution of the
heavy quark distribution function. Scatterings with
medium partons modify the distribution function via the
collision integral on the right. The medium partons are
assumed to obey classical statistics for simplicity, whose
thermal occupancy number follows the Maxwell–Jüttner
distribution,

fq,q̄,g(t, x, p) = exp

(
−p · u(t, x)

T (t, x)

)
, (4)

and any non-equilibrium corrections are neglected. The
space-time evolution of the temperature field T and ve-
locity field uµ are obtained in an event-by-event 2+1D
viscous relativistic hydrodynamic calculation [29–31].
We solve fQ(t, x, p) using Monte Carlo techniques by rep-
resenting the distribution function with an ensemble of
heavy quarks. Within a given time step ∆t, each heavy
quark scatters according to its reaction probability ∆P .
We always calculate ∆P in the rest frame of the fluid cell
with given temperature T and velocity field uµ. In this
reference frame, the heavy quark with energy E1 can col-
lide with medium particles that together form an n-body
initial state denoted as {in}, and the outgoing particles
after the collision form the m-body final state {out}. The
probability for a heavy quark to undergo an interaction
of a certain type inside the fluid cell per unit time is the
so called scattering rate Γ,

dP

dt
= Γ(E1, T, t)

=
d

ν

(2π)3δ

δfQ(p1)

∫
dΦ(n,m)

∏
{in}

fi(pi)|M |2, (5)

where the dΦ(n,m) is the (n+m)-body phase-space in-
tegration,

dΦ(n,m) = (2π)4δ4 (Pin − Pout)
∏

{in, out}

dp3
i

2Ei(2π)3

|M |2 is the initial state spin-color averaged scattering
matrix-element squared. The factor d denotes the de-
generacy of the incoming medium particles and ν is the
symmetry factor of identical particles in the initial / final
state of the collision. If a scattering process occurs within

∆t according to the probability ∆P = Γ∆t, the details of
the initial and final states can be obtained by sampling
the differential scattering rate over the (m+n− 1)-body
phase space. The many-body phase-space sampling may
look formidable at first sight, but can be factorized into
sequential initial-state and final-state sampling as long
as one uses classical statistics and a simple version of the
medium screening effect. The relevant sampling details
can be found in Appendix C. The time step ∆t is chosen
small enough so that the probability of multiple scatter-
ings is negligible.

Focusing on the processes to be included in the colli-
sion term, it has been shown that at leading order, an
energetic parton can scatter elastically with a medium
parton (light quark and anti-quark or gluon) or emit a
gluon triggered by multiple soft collisions which we call
an inelastic process based on its particle number chang-
ing nature [12]. We will keep using the terms “elastic”
and “inelastic” to distinguish between these two types
of processes and their associated energy loss. For elastic
processes, quark-gluon scattering contributes three dia-
grams corresponding to s, t, and u channel momentum
exchange; quark-quark scattering only has a t channel
contribution. These diagrams are shown in Fig. 1 and
the matrix-elements for these processes in vacuum are
available at leading order in pQCD (see B). In these ex-
pressions, the characteristic t−channel gluon propagator
causes a divergence in the cross-section as the momentum
transfer vanishes,

dσ ∝ 1

t2
dt. (6)

In a quark-gluon plasma medium, those soft gluon excita-
tions constantly interact with thermal particles causing
this divergence to be screened by a Debye mass in the
static limit [5]. Generally, the gluon propagator should
be replaced by a hard-thermal loop (HTL) propagator
[32]. Using a HTL propagator involves a complicated
self energy that depends on the medium reference frame,
making it hard to implement in a cross-section based
Monte-Carlo approach, where the calculation and sam-
pling is easiest performed in the CoM frame of the colli-
sion. Hence we choose to adopt the simple replacement
t2 → (t − Λ2

QCD)(t −m2
D) (up to an additional factor of

Λ2
QCD) that takes dynamic scattering center effects into

account [33].
At large heavy quark energies, inelastic processes

shown in Fig. 2 become important. We start from the
case of gluon emission associated with the scattering with
one medium particle, the effective treatment of multi-
ple scatterings will be discussed later. The correspond-
ing matrix-elements are derived in an improved Gunion
and Bertsch approximation in the high energy and soft
gluon limit [34, 35], with the heavy quark mass effect
(the dead-cone effect) included [36]. Although the in-
elastic diagrams seem to involve one more power of αs,
it actually contributes at leading order to the energy loss
due to the small transverse momentum emission that we
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screened by the asymptotic gluon thermal mass mD/
√

2
[22]. The available phase space for radiating a gluon also
grows with the heavy quark incident energy and it even-
tually becomes the dominant energy loss mechanism at
high energies. The Boltzmann equation including only
the gluon radiation (2 → 3) process would violate de-
tailed balance. We therefore include the reverse process
namely gluon absorption (3→ 2) so that detailed balance
is preserved and the model approaches the correct ther-
mal equilibrium at large times. The absorption process
has been studied within the full Boltzmann equation [37]
for light partons but so far has not been implement for
heavy quarks and for any linearized transport models. In
the rate equation, the matrix-element for the absorption
relates to the radiation matrix-element by sending the
final state gluon to the initial state (kµ → −kµ). This
initial state medium gluon brings an additional Boltz-
mann factor e−k/T to the differential rate. For the fast
moving heavy quark, most of the thermal gluons move in
the opposite direction of the heavy quark in the center
of mass frame, so the probability for an energetic heavy
quark to absorb a thermal gluon is extremely small. On
the other hand, low energy heavy quarks can efficiently
absorb gluons with k ∼ T , and the reverse process plays
an indispensable role for thermalization. In the next sec-
tion we shall analyze numerically under what conditions
the gluon absorption is important.

A complication of inelastic processes is that the radi-
ated (absorbed) gluon takes a finite amount of time to
be fully resolved from (merged into) the parent parton.
This typical time scale is called the gluon formation time
τf , during which the effects of multiple collisions add up
coherently in a destructive manner to suppress the gluon
emission spectrum [38–40], known as the LPM effect in
analogy to QED [41]. The formation time for gluons with
a thermal mass splitting from the heavy quark is [7],

τf =
2x(1− x)E

k2
⊥ + x2M2 + (1− x)m2

D/2
, x =

k + kz
E + pz

. (7)

For certain phase space regions of the radiated gluon,
this time scale can be comparable to or even much larger
than the mean free path λ, making this a non-local task
in a Monte Carlo approach. This creates a paradox in
the Boltzmann equation formulation where all scatter-
ings are point-like (compared to λ) in space-time. A pos-
sible solution to this paradox has been proposed by [42]:
it suggests treating this long-lived system of heavy quark
plus primitive gluon as a continuum specie of ”particles”
that can propagate within its life time and scatter with
medium partons. However in this work, we still treat the
radiation in a point-like interaction manner for simplic-
ity and mimic this LPM effect by restricting the phase
space integral of the emission / absorption gluon with a
coherence factor,

dk3/2k → 2 (1− cos ((t− t0)/τf )) dk3/2k, (8)

where t− t0 is the time elapsed from the last emission /
absorption. This factor is determined by requiring that

p2 p4

q

p1 p3

q q

Q Q

g g

Q Q

1

FIG. 1. Elastic processes: The first diagram corresponds to
heavy quark (Q) - light quark (q, q̄) scattering. The last three
diagrams contribute to heavy quark (Q) - gluon (g) scattering.

q

g/q g/q

Q Q

k

2

FIG. 2. Inelastic processes: a heavy quark collides with a
medium light (anti-)quark or gluon and radiates an additional
gluon.

the differential radiation rate reduces to the higher twist
formula used by [7] in the limit that gluon is soft (x� 1)
and its transverse momentum is much larger than the
medium momentum transfer (k2

⊥ � q2
⊥). With this pre-

scription, the rate of emitting a gluon with τf � t − t0
is suppressed as required at the expense of the collision
rate becoming history (t− t0) dependent. It is not triv-
ial to ascertain whether the Boltzmann equation with a
history-dependent rate should thermalize as t → ∞, so
we test and confirm this in the next section.

B. Diffusion component

The Fokker-Planck part of the transport equation can
be solved by propagating heavy quarks using Langevin
equations in between subsequent pQCD scatterings. The
Langevin equations in the pre-point Ito scheme are [43],

∆~xi =
~pi
E

∆t (9)

∆~pi = −ηD~pi∆t+ ∆t~ξ(t) (10)

The first equation is the spatial transport. In the second
equation, the momenta of heavy quarks are changed by a
drag term with coefficient ηD and a thermal random force
~ξ. The random force has zero mean and the covariance
structure:

〈ξiξj〉 = Bij =
κ‖

∆t

pipj
p2

+
κ⊥
∆t

(
δij −

pipj
p2

)
(11)

In this study, we assume an isotropic non-perturbative
diffusion κ‖ = κ⊥ = κ. The drag coefficient ηD and
the momentum diffusion coefficient κ need to satisfy the
Einstein relation in the pre-point Ito scheme to guarantee
the approach of the correct thermal equilibrium [43],

ηD =
κ

2TE
− dκ

dp2
(12)
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FIG. 3. The approach to thermalization of the linear Boltz-
mann equation with elastic processes only (red dot), elastic
and radiation processes (green dashed), and elastic with both
radiation and absorption processes (blue solid). The static
medium has a temperature T = 0.4 GeV. 104 heavy quarks
are initialized with E = 10 GeV at t = 0.

We choose to parametrize the momentum diffusion con-
stant κ and the drag is determined as above. If temper-
ature is the only scale in the problem, we expect κ to
scale as T 3. It is also natural to expect non-perturbative
contribution may be large at low energy and low temper-
ature, so we arrive at the following simple ansatz,

κ

T 3
= κD

(
xD + (1− xD)

GeV2

ET

)
. (13)

Here, κD is the strength of diffusion at ET = 1 GeV2,
and xD interpolates between the two types of energy-
temperature dependence.

III. TESTS IN A STATIC MEDIUM

Before coupling the heavy quark transport model to a
realistic medium, we study the model in a static medium,
i.e., the medium is at rest with a fixed temperature. All
the calculations in this section use µ = 1 and κ = 0.

A first test is to check the implementation of detailed
balance to see whether the system reaches the proper
thermal equilibrium. To quantify the approach of an en-
semble of N heavy quarks to a thermal distribution in
a medium with temperature T0, we define the following

indicator ∆S,

∆S =
1

N

N∑
i=1

ln f0(Ei)−
∫
f0(p) ln f0(E)dp3∫

f0(p)dp3
(14)

f0 ∝ exp(−E/T0) is the Boltzmann-Jüttner distribution
function. The first term takes the heavy quarks ensem-
ble average of ln f0(E) and the second term is propor-
tional to the entropy at T0, This difference ∆S defines a
“distance” of the heavy quark ensemble to the thermal
distribution, and it vanishes when the ensemble thermal-
izes. If the ensemble distribution function f is not far
from equilibrium and can be characterized by an effec-
tive temperature Teff so that f(E) ∼ exp(−E/Teff), then
this “distance” measures,

∆S ∼ 1

T0

∫
e−E/TeffEdp3 − 1

T0

∫
e−E/T0Edp3

=
Teff − T0

T0
, (15)

which is the fractional deviation of the effective temper-
ature from the temperature of the thermal bath. Figure
3 shows the time-evolution of ∆S of 104 charm quarks
inside a thermal bath of T0 = 0.4 GeV with initial energy
E0 = 10 GeV. With elastic process only, the system ther-
malizes after about 50 fm/c. If we now include radiative
processes, the system reaches equilibrium faster, but it
is the wrong equilibrium. The effective temperature is
lower than the temperature of the thermal bath T0. This
is the consequence of breaking detailed balance without
the reverse process of gluon absorption. Finally, we show
the case with both radiation and absorption turned on –
here the correct equilibrium is reached after t ∼ 20 fm/c.
The absorption processes only make a notable difference
when the system is not far from equilibrium (∆S < 1),
which is expected from our previous discussion.

Next we study heavy quark energy loss in a static
medium. Näıvely, energy loss per unit time can be cal-
culated by inserting ∆E into the integration of the rate
equation 5. This is straightforward for elastic processes,
but since the rates of inelastic processes depend on the
interaction history, a meaningful energy loss can only be
calculated by performing an actual Monte Carlo simula-
tion. And as we will see, this interaction history depen-
dence causes a non-trivial path length (medium size L)
dependent energy loss. In the first row of Figure 4, we
show the energy loss fraction ∆E/E for elastic processes
(left) and inelastic processes (right) as function of E for
a path length of 5 fm at temperatures of T = 0.2 and 0.4
GeV. The elastic energy loss fraction is large at interme-
diate energy and decreases towards small and large en-
ergies. At sufficiently low energy, the heavy quark starts
to gain energy from the medium on average which man-
ifests as ∆E/E < 0. For the case of inelastic energy
loss, we study the effect of the gluon absorption pro-
cess by comparing ∆E/E with only radiation processes
(lines) to ∆E/E with both gluon radiation and absorp-
tion (lines with symbols). As expected, we find that the
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FIG. 4. Top row: energy loss fraction as function of energy for
elastic processes (left) and inelastic processes (right). Bottom
row: energy loss fraction as function of path length for elastic
processes (left) and inelastic processes (right).
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FIG. 5. RAA in a static medium for charm and bottom quarks.
The medium size is 3 fm and has a temperature T0 = 0.3 GeV.
The initial state spectrum of charm and bottom quarks for
this calculation is a simple power law form with fit parameters
from [44].

gluon absorption process only affects energy loss signifi-
cantly for small values of E/T . At sufficiently low energy,
the gluon absorption process allow the heavy quark to
gain energy from the medium through the inelastic chan-
nel which is key to thermalization. In the second row
of Figure 4, we show the path length dependence of the

two energy loss mechanisms. Here, we plot the energy
loss fraction per unit length. The key observation is that
the elastic energy loss increases linearly with path length
but the inelastic energy loss increases non-linearly for
small path length and then transits to a linear increase
at large path length. The non-linear L−dependence is a
characteristic behavior of the coherence effect in a finite
length medium. In our effective LPM implementation,
this arises because gluon radiation with τf ∼ k/T 2 � L
is suppressed. Therefore for a thin medium, the phase
space for gluon radiation is restricted k < LT 2, which is
also the typical amount of energy loss per radiation. Mul-
tiplying k ∼ LT 2 by the number of collisions N ∝ LT ,
the inelastic energy loss scales as ∆E ∼ L2T 3. For a
thick medium, a heavy quark could have multiple radi-
ations with N ∝ L/τf and each radiation carries off a
typical amount of energy. In this region, the inelastic
energy loss rises linearly with L. What we see in the
simulation is a behavior that interpolates between these
two qualitative behaviors.

Finally, we calculate the nuclear modification factor
RAA of charm and bottom quarks in a static medium
T = 0.4 GeV after evolving for 3 fm/c. The initial spec-
tra of the charm and bottom quarks are parametrized in
a simple power law form [44]. This simplified setup is in-
tended for comparison with other models with controlled
settings. In Figure 5 we show both RAA of charm and
bottom with or without the gluon absorption process.
Again, we see that the absorption process only affects
observables for relatively low momenta pT < 10 GeV.
The mass plays an important role in the intermediate pT
region, where a clear separation between charm and bot-
tom RAA is visible. The mass effect looses importance
at high energy where pT is the only relevant scale or at
low pT when M � pT and T .

IV. MODEL CALIBRATION USING BAYESIAN
ANALYSIS

Finally, we couple the transport model to a state-
of-the-art 2+1D event-by-event viscous hydrodynamical
medium evolution and extract the model parameters
from a Bayesian model-to-data comparison. The cou-
pled evolution model consists of the multiple stages that
we will explain in the next paragraph,

1. The TRENTo model generates event-by-event ini-
tial conditions at time τ = 0+ [45]. Heavy quarks
are initialized at the production vertices.

2 A collision-less Boltzmann (free-streaming) equa-
tion models the pre-equilibrium stage of the
medium prior to the start of the hydrodynamic evo-
lution at τfs [46]; while heavy quarks start medium
interaction at a proper time τ0 < τfs.

3. 2+1D event-by-event relativistic viscous hydrody-
namics evolves the QGP with an up-to-date lat-
tice equation of state (EoS) [31, 47]. Heavy quarks
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interacts with the medium until the temperature
drops below Tc.

4. Finally, light hadrons are sampled from hydrody-
namic energy momentum tensors and heavy quarks
hadronize through both fragmentation and recom-
bination processes. The hadronic rescatterings of
the system of light and heavy hadrons are mod-
eled using the Ultra-Relativistic Quantum Molecu-
lar Dynamics (UrQMD) model [48, 49] until kinetic
freezeout.

We initialize heavy quark ensembles with momenta sam-
pled from a FONLL calculation using two different sets
of nuclear parton distribution functions (PDFs) [50–52].
The nuclear PDFs comes with a large uncertainty in the
shadowing region which is relevant at the LHC energies.
It is hard to systematically include this uncertainty in
our study; instead, we choose to use the center values
of two different sets of nuclear PDFs, namely the EPPS
set and the nCTEQ16np set and perform calibrations us-
ing both to demonstrate the sensitivity of the parameter
extraction on the nuclear PDF uncertainty. The posi-
tion of the hard production vertices at τ = 0+ are sam-
pled from the TRENTo binary collision density to corre-
late with hot-spots of underlying event. During the pre-
equilibrium stage, the heavy quarks may already start
to interact with the medium that has not approach ki-
netic and chemical equilibrium. To get a handle on the
effect of pre-equilibrium energy loss, we choose to de-
fine the medium flow velocities and energy density from
the pre-equilibrium energy-momentum tensor by Landau
matching and convert the energy density to an effective
temperature using a three-flavor conformal QCD EoS.
Heavy quarks are allowed to loose energy from a tun-
able energy-loss starting time 0.1 < τ0 < 1.0 fm/c. With
a small τ0, this correspond to a fast generation of color
degrees of freedom in the medium that can collide with
heavy quarks at very early times, and with a large τ0
the pre-equilibrium effects are gradually turned off. This
is of course a rather crude setup and in the future we
plan on utilizing more sophisticated models based on ki-
netic theory to treat pre-equilibrium stage energy loss
[53]. The 2+1D viscous hydrodynamic simulation pro-
vides medium flow velocities and temperature inputs to
the Lido model that does heavy quark energy loss. The
heavy quarks subsequently hadronize using a sudden-
approximation at T = 0.154 GeV via fragmentation and
recombination mechanisms [7]. In the model, B mesons
cease to interact at T = 0.154 GeV; while D mesons,
togehter with the light hadrons sampled from the hy-
drodyanmic energy momenta tensor, undergo hadronic
rescatterings in a particular version of the UrQMD after-
burner that includes π-D and ρ-D cross-sections [54].

The parameters related to the bulk medium evolution
have already been calibrated to reproduce a vast array
of soft observables at LHC energies [55] and we fixed
the medium parameters with a high likelihood parameter
set. Particularly, we eliminate any back-reaction from the

heavy-flavor to the medium evolution in both QGP and
hadronic phase so that soft observables are unchanged
compared to the previous calibration. With such a set-
up, only heavy-flavor related parameters are left to be
calibrated which are,

1. τ0, the time at which heavy quark energy loss
starts, varying between 0.1 fm/c to 1.0 fm/c,

2. µ, the medium energy scale (µπT ) that appears
in the running coupling constant of the scattering
component, varying from 1/3 to 4,

3. κD, the strength of momentum diffusion at ET =
1GeV2, ranging from 0 to 8, and

4. xD, the fraction of the momentum diffusion that is
energy independent, ranging from 0 to 1.

5. In addition to these continuous parameters, the
choice of different nuclear parton distribution func-
tions acts like a discrete variable switching between
EPPS16/nCTEQ15.

We now briefly introduce the Bayesian techniques and
key terminologies to be used later. These techniques have
been described in great detail in a series of publications
regarding their application to the extraction of bulk QGP
properties and initial conditions of heavy-ion collisions
[24, 26] as well as in the heavy quark sector to the ex-
traction of the heavy quark diffusion coefficient within
the framework of an improved Langevin transport model
[21]. The application of these techniques to relativistic
heavy-ion collisions in general has been part of the thesis
work by J. Bernhard [55].

Given a model whose prediction y depends on a vector
of input parameters p and experimental data yexp, the
probability distribution of the true model parameters p∗

is given by Bayes’ theorem,

Posterior(p∗|yexp,M) ∝ Likelihood(yexp|p∗,M)

× Prior(p∗). (16)

The posterior probability distribution of the p∗ given a
certain model M and data, equals the probability L of
observing the data given the model and parameters p∗,
called likelihood function, times a prior belief on the dis-
tribution of p∗. The likelihood function is often defined
in a Gaussian form in terms of the difference between
model calculation and experimental data and a covari-
ance matrix Σ that encodes experimental and theoretical
uncertainties,

ln(L) = −1

2
(y − yexp)TΣ−1(y − yexp)

− d

2
ln(2π)− 1

2
ln |Σ|. (17)

The construction of Σ is described in Appendix D. Once
we have the ability to evaluate model output given arbi-
trary parameters within a reasonable range, the informa-
tion on the parameters constrained by data follows from
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Equations (16) and (17). This high-dimensional poste-
rior probability distribution function can be sampled us-
ing a Markov-chain Monte Carlo (MCMC) procedure.
The main challenge for applying this method directly
to event-by-event heavy-ion collision models resides in
the computational effort required for the model calcula-
tions. O(104) minimum-biased events are needed to get
statistical uncertainties of the calculation under control.
Since it is impractical to evaluate the model at arbitrary
points in parameter space during the MCMC sampling,
alternative methods for rapid model evaluations have to
be found. The solution is to use an advanced sampling
technique by only evaluating the full model at O(100)
design parameter sets (design points) and subsequently
interpolating the model to generate output at arbitrary
points in parameter space using Gaussian process emula-
tors that have been trained on the full model calculation
at the design points [56].

TABLE I. ALICE dataset
Observables Centrality Reference
D-meson v2 30-50% [57]
Event-engineered
D-meson v2

30-50% [58]

D-meson RAA 0-10, 30-50, 50-80% [59]

TABLE II. CMS dataset
Observables Centrality Reference
D0-meson v2 0-10, 10-30, 30-50% [60]
D0-meson RAA 0-10%, 0-100% [61]
B±-meson RAA 0-100% [62]

In this work, we sampled 80 design points in a four
dimensional parameter space (τ0, µ, κD, xD). For each
parameter set, we run 4000 minimum bias events. Each
event propagates an ensemble of 4 × 104 charm quarks
and 104 bottom quarks. The centrality is defined by the
mid-rapidity charged particle multiplicity and the same
kinematic cuts as are used by the experiments are ap-
plied to the calculation of heavy-flavor observables. All
observables are measured at 5.02 TeV in Pb+Pb, as listed
in Table I and II. Most of the data we utilize are for D-
mesons: the pT dependent D-meson nuclear modification
factor RAA and pT dependent second-order azimuthal
anisotropy v2 at various centralities [57, 58, 60, 61]. We
also compare to the event-shape-engineered D-meson v2

measured by the ALICE collaboration [58]. The idea
of the event-shape engineering is to subdivide events at
a certain centrality according to the magnitude of the
charged particle q-vector, in this case,

|q2|2 =

(∑M
i=1 cos(2φ)

)2

+
(∑M

i=1 sin(2φ)
)2

M
. (18)

The D-meson v2 is measured for those events with 20%
highest q2 and events with 60% lowest q2. It is found that
D-meson flow is strongly correlated with this measure-
ment of bulk collectivity. This event-shape-engineering
procedure necessitates a full event-by-event study and
may be sensitive to the interplay between heavy quark
energy loss and initial condition fluctuations, so we in-
clude this observable into the set of observables on which
we calibrate the model. Finally in order to require the
calibrated model to predict the desired mass-dependence,
we include recent CMS measurements of B±-meson RAA,
although the data have a large uncertainty which sup-
presses its importance in the likelihood function.

On the left of Figure 6, we show the prior, i.e. the full
range of our calculations in parameter space for each of
the listed observables. We use different colors to distin-
guish calculations using EPPS (blue) and nCTEQnp (green)
nuclear PDF. The calculated values of RAA at high trans-
verse momenta and v2 at low transverse momenta have
a large spread, sufficiently wide to cover the experimen-
tal data. We notice that the model always underesti-
mates very low-pT RAA points and 30-50% high-pT v2

from CMS. This could be a limitation of our model, such
as the need of a more sophisticated implementation of the
LPM effect or the need for a more accurate calculation
of initial low-pT charm quark production in both p-p and
A-A collisions. Plots on the right of Figure 6 show the
posterior distribution of the observables from model em-
ulators, i.e. interpolated model predictions after calibra-
tion. The calibrated model displays a very good overall
agreement with all the observables except for the cases
pointed out above. The use of different nuclear PDFs
has a negligible effect on azimuthal anisotropy observ-
ables, but does affect the RAA at small and large pT .
Calculations with the EPPS nuclear PDF work very well
in describing RAA below pT = 50 GeV, while calculations
with the nCTEQnp do slightly better for CMS RAA data
with pT > 50 GeV. The calculated event-engineered flow
strongly correlates with the charged particle |q2| and de-
scribes the lowest 60% q2 bin very well. For the highest
20% q2 bin, the model posterior is consistent with mea-
surements below 5 GeV and underestimates the data at
higher pT bins.

The posterior probability distribution of all parameters
is marginalized to single parameter distributions (diago-
nal) and two-parameter joint distributions (off-diagonal)
in Figure 7. The lower off-diagonal plots and blue lines
in the diagonal plots correspond to the calibration using
the EPPS nuclear PDF, and the upper off-diagonal plots
and green lines in the diagonal plots use the nCTEQ15np
nuclear PDF. Despite the difference in RAA when dif-
ferent nuclear PDFs are used, the extracted probability
densities of parameters are similar. To describe LHC
data, the model prefers a late onset of medium induced
energy loss and a medium energy scale roughly around
0.6πT , which implies the largest coupling constant at a
given temperature is αs ∼ αs(1.8T ). A small but finite
amount of momentum diffusion at ET = 1 GeV2 is pre-
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FIG. 6. Left: the prior, i.e. the full range of calculations in parameter space. Right: the posterior, i.e. observables sampled
from model emulators after calibration. In both figures, blue (green) lines are calculations with EPPS (nCTEQ15np) nuclear PDF.

ferred for the diffusion component. The smallness of this
number is expected since most of the interaction is al-
ready taken account by the pQCD scattering component
with a relatively large coupling constant (i.e. a small
medium scale). We find this study to be not sensitive
to the energy / temperature dependence of the diffusion
component beyond the regular T 3 scaling of the momen-
tum diffusion constant.

The preferred medium scale parameter µ ∼ 0.6 is not
large which could result in a large αs. Therefore, we
check the range of typical αs values in the model in or-
der to evaluate the use of perturbative matrix-elements.
Figure 8 shows the coupling constant evaluated at two
process scales Q = 0 and Q = mD. In the case of Q = 0
(left), the energy scale is cut off by µπT and this plot
show the maximum of model coupling constant at a given
temperature. Setting Q = mD (right) as a proxy for
the typical momentum transfer in the t−channel scat-
tering, the coupling constant rises slower as tempera-
ture drops. It is found that in order to describe ex-
perimental data, the preferred coupling constant is fairly
large, suggesting next-to-leading (NLO) order corrections
to the present scattering picture should be prominent.
Because these large αs values are encountered in small-
momentum-transfer scatterings (0 < Q < mD), we will

absorb these small-momentum-transfer elastic and inelas-
tic pQCD processes into a radiation-improved Langevin
equation in future studies. This way, one not only avoids
the explicit use of large αs in pQCD matrix-elements,
but also interpolates between the pQCD based scatter-
ing model, the radiation-improved Langevin model and
pure non-perturbation drag and diffusion model with one
or two control parameters, allowing for more systematic
model-uncertainty study.

Next, we investigate the transport coefficients ex-
tracted from the calibrated model. To define the trans-
port coefficient of a heavy quark, we combine the con-
tribution from both elastic scatterings and the diffusion
component,

q̂

T 3
=

1

T 3

d

dt

〈
p2
⊥
〉

(19)

= κD

(
xD + (1− xD)

GeV2

ET

)
+
q̂el

T 3
.

Where q̂el is obtained by integrating the rate equation
with inserting the transverse momentum transfer square.
We shall discuss the inclusion of inelastic process into the
calculation of q̂ in section VI. Performing this calculation
for many random parameter set samples drawn from the
posterior distribution using either nuclear PDF, we deter-
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mine the posterior distribution of the functional q̂(E, T )
constrained by data. On the left of Figure 9, we showed
the 95% credible region of q̂ as function of temperature,
fixing the heavy quark momentum at 10 GeV. The right
panel of the figure shows q̂ as function of momentum at
T = 0.35 GeV. Our formula includes a mass dependence
– therefore the charm quark q̂ (region enclosed by thick
red lines and slashes) is slightly different from the bot-
tom quark q̂ (region enclosed by thick blue lines). The

FIG. 9. Posterior range of the heavy quark transverse momen-
tum broadening parameter q̂ from Equation 19. The results
include the uncertainty from using different nuclear PDFs.
Blue boxed region is for bottom quarks and red slashed re-
gion for charm quarks. The shaded region indicates an extrac-
tion descirbed in [21] but with an updated medium evolution
model.

present result is compared to the work by Xu et al. [21]
using an improved Langevin model to extract the charm
quark transport coefficient. The gray-shaded region is an
updated calibration by Xu et al. using the same medium
evolution as in this work. We see the two calibrations
agree on q̂ at p→ 0 and suggest similar temperature de-
pendence; however, the momentum dependence is very
different that the two 95% credible regions barely over-
lapp at higher values of p. This difference reflects the
impact of different model assumptions on the extracted
transport properties. Future improvements will focus on
the analysis of model assumptions and a reduction of
model uncertainty in the high-momentum region.

Alternatively, one can present the results in terms of
the heavy quark spatial diffusion constant Ds defined in
the limit of p � M . It is related to the momentum
diffusion parameter by

2πTDs =
8πT 3

q̂(p→ 0, T )
. (20)

In figure 10, we plot the 95% credible region of both the
charm (region enclosed by red thick lines and slashes)
and bottom (region enclosed by blue tick lines) quark
spatial diffusion constant as function of T/Tc. The result
is consistent with the former work (shaded region). There
have also been attempts made to calculate the spatial dif-
fusion constant of heavy quarks using lattice QCD: three
calculations are available, two are calculated in the static
heavy quark limit (blue and black symbols with higher
values) [19], one of which performs continuum extrapola-
tion (black square) [20]; the other result uses a realistic
charm quark mass (red triangle symbols with lower val-
ues) [18]. Our posterior of Ds including the diffusion
contribution but with only elastic scattering agrees with
the lattice evaluation in the static heavy quark limit. The
effect of including the inelastic scattering in Ds will be



11

FIG. 10. Posterior range of the heavy quark spatial diffusion
coefficient. The blue boxed region is for bottom quarks and
the red slashed region for charm quarks. The shaded region
indicates an extraction descirbed in [21] but with an updated
medium evolution model. Square and dimond symbols are
lattice calculations in the static heavy quark limit [19, 20]; tri-
angular symbols are lattice calculations with physical charm
quark mass [18].

TABLE III. A high-likelihood parameter set

Parameters τ0 [fm/c] µ κD xD
Values 0.9 0.6 0.4 0.5

discussed in the last section.
To summarize this section, we have performed a

Bayesian calibration on the model parameters, yielding
generally good agreement to the data. Although the use
of different nuclear shadowing parametrizations does af-
fect the shape of RAA, the extracted parameters are not
strongly affected. The extracted parameters indicate a
late onset of medium induced heavy quark energy loss
and prefer a small but finite diffusion component. The
transport coefficient q̂ and spatial diffusion constant Ds

are extracted with Ds being compatible with lattice cal-
culations in the static heavy quark limit.

V. VALIDATION AND PREDICTIONS

We now apply the calibrated model to predict ob-
servables that have already been measured but were ex-
cluded in the calibration (validation) and also predict
new observables. In principal, any parameter set sam-
pled according to the posterior probability distribution
in the high-likelihood region (95% credible for example)
is equally good to make predictions and the resultant dif-
ferences represent the systematic uncertainties of the cal-
culation. For simplicity, we only run a single set of high
likelihood parameters listed in Table III for a large num-
ber of events. We first study the nuclear modification
factor in a larger range of pT : In Figure 11 the D-meson

and B-meson RAA for 0-10%, 30-50%, and 60-80% cen-
trality are shown and compared to ALICE D-meson mea-
surements. The mass effect clearly separates B-meson
from D-meson RAA in the intermediate pT range. The
calculation for p+Pb collisions is shown in the fourth plot
compared to ALICE measurements [63]. The red-dotted
line shows the calculation without nuclear shadowing for
p+Pb collision. We find that the calibrated model results
are in a very good agreement with the description of the
p+ Pb minimum bias measurement and that shadowing
is important to understand the low-pT data. In the right
most plot, we apply the model to Au+Au collisions at
RHIC (

√
s = 200 GeV). The calculated D-meson RAA

is slightly higher than the STAR measurement [64], yet
given that we did not include any RHIC data in our cal-
ibration, this level of agreement is satisfactory.

Next, we validate the calibrated model by comparing
to CMS measured D-meson v3 and make a prediction for
B-meson vn in the first three columns of Figure 12. In
the transport model, non-zero heavy-flavor v3 is caused
by heavy quarks losing energy to a medium that contains
a third order eccentricity from initial condition fluctua-
tions. The B-meson v2 and v3 is predicted to be similar
to D-meson flow for pT > 10 GeV, below which B-meson
flow is significantly smaller than D-meson flow. Com-
pared to CMS data, the calibrated model reproduces the
transverse momentum and centrality dependence of D-
meson v3 very well. In the last two columns of Figure 12,
we again apply the model to the RHIC data and observe
a good agreement with STAR measured v2 of D0-mesons
[65].

Finally, we investigate D-meson direct flow v1. D-
meson v1 is tiny if one measures it with respect to the
reaction plane due to the reflection symmetry on aver-
aging over multiple events. However, correlating heavy
quark v1 with charged particle v3 results in a non-zero
signal even at mid-rapidity. This directed flow with re-
spect to the n = 3 event plane is calculated in the scalar
product approach

v1 =

〈
<{q3Q

∗
1}

mM

〉 / √〈 |q3|2 −m
m(m− 1)

〉
,

Q1 =

M∑
j=1

eiφj , for heavy mesons,

q3 =

m∑
j=1

ei3φj , for charged particles. (21)

The resulting v1 as function of centrality is shown in Fig-
ure 13. The upper left plot shows the prior range of this
quantity as function of centrality using events from the
80 design points parameter set calculations. The upper
right dots are our prediction using the selected high like-
lihood parameter set. The calculated v1 is clearly finite
and negative in our calculation and we expect it to reach
as far as −3% in the peripheral centrality bin. The trans-
verse momentum dependence of v1 is shown in the lower
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left plot, the magnitude of the signal grows with pT until
it reaches the minimum at pT ∼ 8 GeV; then the magni-
tude slowly drop to zero at large pT . We understand this
finite v1 in the following way (see also the sketch in the
lower right of Figure 13): when q3 is finite, the direction
of q3 defines a plane to which the medium evolution is
reflection asymmetric and this asymmetry causes heavy
quarks to loose energy differently depending on the di-
rection of motion being along or against the direction
of q3. Since q3 originates from triangular initial state
fluctuations, a finite signal would be another indication
of heavy quark energy loss coupling to initial condition
fluctuations and bulk collectivity.

VI. DISCUSSION AND CONCLUSION

Before summarizing this work, we want to return to the
definition of q̂ in our model. In Equation (19), we only in-
cluded the elastic scattering processes in the second term
and did not include inelastic scattering contributions to

momentum broadening. This is due to having an order-
by-order definition of q̂ in pQCD. In fact, the inelastic
scattering processes also contain a diffusion-like part, but
this contribution is shown to be one order higher in αs
[22], though it may not be numerically small in a realis-
tic scenario compared to leading order. Since it was our
goal to determine a leading order transport coefficient we
justify the use of Equation (19) and neglect any contribu-
tions that can be attributed to higher order corrections.
This choice is also conceptually cleaner for a comparison
with other pQCD based calculations. For lattice calcu-
lations the results do not rely on an expansion in αs.
In that case, in order to make a reasonable comparison
with lattice transport coefficients, we should calculate q̂
from the calibrated model including the inelastic scatter-
ing processes. Unfortunately, currently there is no lattice
calculation of q̂ available at finite heavy quark momen-
tum. Ds on Lattice does exist, but the appropriate mo-
menta (p � M) are too small for our calculation with
Gunion-Bertsch matrix-elements to be valid. Even so,
we would like to show the q̂ and Ds with a set of high
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denote the bottom quark and thick red lines denote the charm
quark region. Blue symbols are lattice calculations in static
heavy quark limit [19] and red symbols are lattice calculations
with physical charm quark mass [18].

likelihood parameters that include the inelastic contri-
bution. Just as the energy loss shown in Figure 4, the
transverse momentum broadening per unit time in the
presence of inelastic collision processes is not constant
for a thin medium. Therefore, we set up a Monte Carlo
simulation for heavy quarks at fixed energy and extract q̂
only after the finite path length effect fades away. Figure
14 compares the q̂ at p = 10 GeV and Ds with and with-
out inelastic collision channels. The calculation uses the
high likelihood parameter set in Table III. We observe a
30-40% increase in q̂ and similar amount of decrease in
Ds if the inelastic contributions are included.

To summarize, we have developed a novel linearized
hybrid transport model, called Lido, for heavy quark
propagation inside a quark-gluon plasma. Heavy quarks
undergo perturbative scatterings with medium parti-
cles. Between subsequent scatterings, the propagation
is driven by Langevin dynamics with empirical drag and
diffusion coefficients. Parameters related to heavy-flavor
transport are calibrated using a Bayesian model-to-data
analysis by comparing to D-meson and B-meson observ-
ables in Pb+Pb collisions at

√
s = 5.02 TeV. Our results

suggest a late onset of medium energy loss. The diffusion
component to the overall transport coefficients is small,
with the dominant contribution coming from the explic-
itly treated scattering processes.

The calibrated model predicts the centrality and pT de-
pendence of the B-meson nuclear modification factor and
flows and a non-zero D-meson direct flow with respect to
n = 3 event plane. The extracted heavy quark transport
coefficient q̂ at small momentum is consistent with pre-
vious calibrations using an improved Langevin approach
as well as with lattice QCD calculations; but there are
discrepancies in the momentum dependence from calibra-
tions using different models that deserve future investi-
gation.
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A. RUNNING COUPLING CONSTANT

We use a leading order running coupling constant with
three quark flavors,

αs(Q
2) =

4π

9 ln (Q2/Λ2)
(22)
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The QCD scale is set at Λ = 0.2 GeV. Inside a medium,
the temperature T defines the medium scale, it is used
as a lower cutoff for Q2 of all process, and the running
coupling is actually,

αs = αs(max{Q2, (µπT )2}) (23)

µ the only parameter we tune in the scattering com-
ponent of the Lido model. For elastic scattering, Q2

is chosen as the momentum exchange squared for s, t, u
channel. For the gluon emission / absorption vertex, we
choose Q2 = k2

⊥.

B. MATRIX ELEMENTS

The vacuum matrix-elements are,

|M22,Qq|2 =
64π2α2

s

9

(M2 − u)2 + (s−M2)2 + 2M2t

t2

|M22,Qg|2 = π2

{
32α2

s

(s−M2)(M2 − u)

t2

+
64

9
α2
s

(s−M2)(M2 − u) + 2M2(s+M2)

(s−M2)2

+
64

9
α2
s

(s−M2)(M2 − u) + 2M2(u+M2)

(M2 − u)2

+
16

9
α2
s

M2(4M2 − t)
(M2 − u)(s−M2)

+ 16α2
s

(s−M2)(M2 − u) +M2(s− u)

t(s−M2)

− 16α2
s

(s−M2)(M2 − u)−M2(s− u)

t(M2 − u)

}
|M2→3|2 = |M2→2|248παs(1− x̄)2

×

(
~k⊥

k2
⊥ + x2M2

+
~q⊥ − ~k⊥

(~q⊥ − ~k⊥)2 + x2M2

)2

(24)

In medium, the denominator of the squared gluon prop-
agator is replaced by t2 → t(t −m2

D). For the radiation
processes, we also include a gluon mass to regulate soft di-
vergence x2M2 → x2M2 +(1−x)m2

g, where m2
g = m2

D/2
is the squared asymptotic gluon mass.

C. MANY-BODY PHASE SPACE SAMPLING

The phase-space sampling of Equation 5 is performed
sequentially for the initial state and final state phase-
space. For 2 → 2 and 2 → 3 body processes, we rewrite
the integrated rate in the fluid cell rest frame as,

Γ(E1, T, t) =
d

ν

1

2E1

∫
e−βE2dp3

2

(2π)32E2

∫
dΦm|M |2. (25)

The nested integration is a Lorentz invariant quantity,
and we choose to calculate it in the CoM frame of the

collision,∫
dΦm|M22|2 = 2E12E2vrelσ

= 2(s−M2)σ22
CoM(

√
s, T )

= F22, (26)∫
dΦm|M23|2 →

∫
dΦm|M23|2C

(
∆t

τf

)
= 2(s−M2)σ23

CoM(
√
s, T,∆t)

= F23 (27)

where σ is the cross-section of the process. The phase
space integration of the 2 → 3 process is modified by
the coherence factor C from Equation (8), so the cross-
section is ∆t dependent. In practice, the values of the
integrated rates and cross-sections are tabulated. The
sampling of initial state p2 determines the

√
s of the pro-

cess, and subsequently we sample the differential cross-
section with

√
s, T (and ∆t) as inputs.

The sampling of 3 → 2 body process is more difficult
to set up: the integrated rate is

d

ν

∫
e−βE2dp3

2

(2π)32E2

e−βkdk3

(2π)32k
C

(
∆t

τf

)∫
dΦ2|M |2. (28)

The Lorentz invariant nested integral is an intricate func-
tion of the initial 3-body state kinematics and tempera-
ture, ∫

dΦ2|M |2 = F32(
√
s,
√
s12,
√
s1k, T ). (29)

Where s = (p1 + p2 + k)2 is the center of mass energy,
s12 = (p1 + p2)2 and s1k = (p1 + k)2. This requires
four-dimensional table for the value of F32 and a five-
dimensional initial state sampling.

The situation would be far more complicated if we uti-
lize quantum statistics or the full HTL propagator, since
the former introduces factors like 1±f(p ·u) and the lat-
ter introduces to Fnm a self energy that depends on the
medium rest frame. In both cases, the Lorentz invariance
of Fnm is broken and it further depends on vCoM, increas-
ing the dimensionality of the problem. We are looking for
the strategies to include these features in future studies.

D. CONSTRUCTION OF THE COVARIANCE
MATRIX IN THE LIKELIHOOD FUNCTION

Construction of the covariance matrix in the likelihood
function is not an uniquely defined task. In principle, the
covariance matrix should include theoretical and experi-
mental uncertainties and the Gaussian process emulator’s
interpolation uncertainty.

Σij = Σtheory
ij + Σexp

ij + Σemulator
ij (30)

For the experimental uncertainty, the statistical errors
are uncorrelated and are therefore a diagonal matrix.
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Treatment of the systematic errors is complicated as
there could be correlations among them, which are rarely
published in the literature. In this work, we treat most
systematic errors as uncorrelated, except for the corre-
lations between the experimental data points (from the
same collaboration) of different centrality bins but with
the same pT bins. The reason is that for RAA measure-
ments, different centrality bins use the same p−p collision
reference and any reference uncertainty should affect all
centralities in the same way. The ansatz for the experi-
mental covariance matrix is,

Σexp
ij = δij

(
σ2
i

)stat, uncorr sys

+ C (σiσj)
corr sys

(31)

The last term is constructed for the correlations over cen-
trality where the prefect correlation matrix is reduced by
a factor C = 0.6. For the theoretical uncertainty esti-
mation, an additional diagonal uncertainty is introduced
with variable magnitude σmodel,

Σtheory
ij = δij(σ

model)2. (32)

The σmodel parameter was given a gamma-distribution
prior and is marginalized in the MCMC process. For the
Gaussian process emulator uncertainty, we simply use the
predicted variance at each point.
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