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Abstract

Recently, a microscopically motivated nuclear energy density functional was derived by applying

the density matrix expansion to the Hartree-Fock (HF) energy obtained from long-range chiral ef-

fective field theory two- and three-nucleon interactions. However, the HF approach cannot account

for all many-body correlations. One class of correlations is included by Brueckner-Hartree-Fock

(BHF) theory, which gives an improved definition of the one-body HF potential by replacing the

interaction by a reaction matrix G. In this paper, we find that the difference between the G-matrix

and the SRG evolved nucleon-nucleon potential VSRG can be well accounted for by a truncated se-

ries of contact terms. This is consistent with renormalization group decoupling generating a series

of counterterms as short-distance physics is integrated out. The coefficients Cn of the power series

expansion
∑
Cnq

n for the counterterms are examined for two potentials at different renormaliza-

tion group resolutions and at a range of densities. The success of this expansion for G−VSRG means

we can apply the density matrix expansion at the HF level with low-momentum interactions and

density-dependent zero-range interactions to model BHF correlations.
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I. INTRODUCTION

Over many decades substantial effort has been devoted to developing and improving

nuclear energy density functionals (EDFs) [1]. While great progress has been made in recent

years in ab initio methods, phenomenological EDFs remain the only computationally feasible

many-body method capable of describing nuclei across the full mass table. Skyrme [2, 3]

and Gogny [4] functionals are examples of phenomenological EDFs. These functionals have

of order ten coupling constants, which are adjusted to selected experimental data. Despite

their simplicity, such functionals provide a remarkably good description of a broad range

of nuclear properties, such as binding energies, radii, giant resonances, β-decay rates, and

fission cross sections. However, sophisticated analyses imply that EDFs of the standard

Skyrme or Gogny forms have reached their limit of accuracy [5–7]. Furthermore, their

phenomenological nature often leads to parametrization-dependent predictions and does

not offer a clear path towards systematic improvement.

One possible strategy for improved functionals is to constrain the analytical form of the

functional and possibly the values of its couplings from many-body perturbation theory

(MBPT) starting from the free-space NN and 3N interactions [8–13]. Progress in treat-

ing low-energy physics using the renormalization group (RG) and effective field theory

(EFT) [14–18] plays a significant role in carrying out this strategy. RG methods can be used

to evolve realistic nucleon-nucleon potentials (including both phenomenological and chiral

EFT potentials), which typically have strong coupling between high- and low-momentum,

to derive low-momentum potentials in which high- and low-momentum parts are largely

decoupled. The Similarity Renormalization Group (SRG) provides a compelling method for

this evolution to softer forms [15, 19, 20]. After SRG evolution, we have a potential for

which only low momenta contribute to low-energy nuclear observables, such as the binding

energies of nuclei. We stress that the SRG does not lose relevant information for low-energy

physics, which includes nuclear ground states and low-lying excitations, as long as the lead-

ing many-body interactions are kept [21].

With an RG-evolved low-momentum interaction, the Hartree-Fock (HF) approximation

becomes a reasonable starting point. However, the MBPT energy expressions are written

in terms of density matrices when working with finite-range interactions, and Fock energy

terms are inherently nonlocal objects. This nonlocality in the density matrices significantly
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increases the computational cost. The density matrix expansion (DME), first formulated by

Negele and Vautherin [22, 23], provides a general framework to map the spatially nonlocal

Fock energy into Skyrme-like local functionals with density-dependent couplings. The idea

is that existing EDFs may have too-simple density dependencies to account for long-range

physics, but this physics can be incorporated using the DME while still taking advantage of

the Skyrme calculational infrastructure. The novel density dependence of the couplings is a

consequence of the finite-range interaction and is controlled by the longest-ranged compo-

nents. The effects of the density dependence couplings have been discussed in Ref. [24–26].

Consequently, the DME can be used to map physics associated with long-range one- and

two-pion exchange interactions into a local EDF form that can be implemented at minimal

cost in existing Skyrme codes.

A program to construct a fully ab initio functional based on model-independent chiral

interactions is underway. While Hartree-Fock becomes a reasonable zeroth-order approxi-

mation with softened low-momentum interactions, it is necessary to go to at least 2nd-order

in MBPT to obtain a reasonable description of the bulk properties of infinite nuclear matter

(INM), as well as the binding energies and charge radii of closed-shell nuclei.

A semi-phenomenological method somewhere between purely ab initio and phenomeno-

logical functionals, which has a richer set of density dependencies than traditional Skyrme

functionals, was proposed in Refs. [27, 28] and implemented in Refs. [29–31]. The idea is

that the structure of the EFT interactions implies that each coupling in the DME can be

written as the sum of a density-dependent coupling function arising from the long-range pion-

exchange chiral potential and a Skyrme-like coupling constant from the zero-range contact

interactions. The chiral couplings are parameter-free in the sense that they are frozen, fixed

entirely by long-distance physics, while the Skyrme contacts are released for optimization to

infinite nuclear matter and properties of finite nuclei. The refit of the Skyrme parameters

to data has been loosely interpreted as incorporating the short-range part of a G-matrix

with a zero-range expansion through second-order in gradients. This empirical procedure

is supported by the observation that the dominant bulk correlations in nuclei and nuclear

matter are primarily short-range in nature, as evidenced by the Brueckner G-matrix “heal-

ing” to the free-space interaction at sufficiently large distances. In this paper, we investigate

this interpretation directly. We also note other work on refitting Skyrme interactions from

Brueckner-Hartree-Fock (BHF) calculations performed with NN and 3N interactions [32, 33].
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Many-body correlations beyond the HF level are clearly important for quantitative re-

sults. The BHF approximation gives an improved definition of the one-body HF potential U

by replacing the two-body interaction V with the so-called reaction G-matrix. The G-matrix

sums up ladder diagrams to infinite order and gives an effective two-body interaction, in-

corporating a class of many-body correlations. The diagrams in the perturbation expansion

are summed by introducing the G-matrix operator, and the G-matrix can be obtained by

solving the Bethe-Goldstone equation. BHF is the only beyond-HF method that can be

immediately mapped into a quasi-local EDF via the DME with only mild approximations,

and the class of correlations contained in BHF are known to be extremely important for

bulk properties. It can be applied to study evolved potentials all the way from hard to very

soft.

To make progress, we consider the lessons learned from low-energy nuclear physics using

the RG and EFT approaches [17]. For example, it is well established that the RG evolu-

tion to low momentum primarily modifies the short-distance structure of the inter-nucleon

interactions [16, 17, 34], demonstrating insensitivity to the details of the short-range dy-

namics. This insensitivity means that there are infinitely many theories that have the same

low-energy behavior; all are identical at large distance but may be completely different from

each other at short distances. As the RG evolution integrates out the high-momentum

modes, general renormalization theory implies that the change in the potential should be

expandable in a hierarchy of local counterterms. The question of whether this is realized in

the derivation of the so-called Vlow−k potentials has been investigated in Ref. [35]. In that

work, it is tested whether Vlow−k can be expressed as VNN plus a power series in the external

momenta. The counterterm coefficients are determined using standard fitting techniques.

In Ref. [35] this fitting was performed over all partial wave channels and a consistently good

agreement was obtained.

In the literature, it has been noted that the G-matrix has many similarities to Vlow−k NN

interactions. In the equation for the G-matrix, the restriction of the sum over intermediate

states to those above the Fermi surface because of Pauli blocking means that the Fermi

momentum plays the analogous role of the UV momentum-space cutoff in the equation for

Vlow−k. Thus we anticipate that the success of expanding the difference Vlow−k − VNN in a

truncated series of contact interactions should carry over to the difference of the G-matrix

and the potential it is generated from. In this paper, we test this argument. That is, we ask:
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Is the calculation of the G-matrix as a sum of in-medium ladder terms well represented by a

truncated series of counterterms? If so, then what are the properties of the counterterms so

generated and can we use these counterterms as short-range contact interactions to model

BHF correlations at the HF level?

The paper is organized as follows: In Sec. II we briefly review the DME and BHF.

In Sec. III we carry out an accurate determination of the counterterms and discuss that

the counterterms represent generally a short-range effective interaction. In Sec. IV we use

SRG-evolved potentials to understand VCT as density-dependent couplings. A summary and

outlook are given in Sec. V.

II. BACKGROUND

A. DME

The DME introduced by Negele and Vautherin [22, 23] provides a route to an EDF based

on microscopic nuclear interactions through a quasilocal expansion of the energy in terms

of various densities. The central idea of the DME is to factorize the nonlocality of the one-

body density matrix (OBDM) by expanding it in a finite sum of terms that are separable in

relative and center-of-mass coordinates, yielding a general way to map nonlocal functionals

into local ones. Adopting notation similar to that introduced in Refs. [27, 28], one expands

the spin-scalar parts (in both isospin channels) of the one body matrix as

ρt(r1, r2) ≈
nmax∑
n=0

Πn(kr)Pn(R) , (1)

where the Π functions are specified by the DME variant and Pn(R) denote various local

densities and their gradients. k is an arbitrary momentum that sets the scale for the decay in

the off-diagonal direction. We define the momentum scale k to be the local Fermi momentum

related to the isoscalar density through

k ≡ kF (R) = (
3π2

2
ρ0(R))1/3 , (2)

although other choices are possible that include additional kinetic density and gradient

density dependencies [36]. The DME has also been reformulated for spin-saturated nuclei

using nonlocal low-momentum interactions in momentum representation [11].
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Extensions of the first calculations from [11] have modified the original DME formalism

from Negele and Vautherin [22, 23], whose deficiencies include an extremely poor description

of the vector part of the density matrix. Gebremariam and collaborators [27, 28] introduced

a new phase-space-averaging (PSA) approach. The PSA approach leads to substantial im-

provements, particularly for the vector density, where relative errors in integrated quantities

are reduced by as much as an order of magnitude across isotope chains. In Ref. [37], the

DME density-dependent couplings from coordinate-space chiral potentials up to next-to-

next-to (N2LO) were derived. Chiral potentials both with and without explicit ∆ were

considered and local regulators on the interactions were also included. These local regula-

tors can mitigate the effects of singular potentials on the DME couplings and simplify the

optimization of generalized Skyrme-like functionals. The use of regulators has been shown

to have a significant influence on many-body calculations even at the HF level [38, 39].

The DME can be applied to both Hartree and Fock energies so that the complete HF

energy is mapped into a local functional. However, it was found that treating the Hartree

contributions exactly provides a better reproduction of the density fluctuations and the en-

ergy produced from an exact HF calculation [23, 40]. In addition, treating the Hartree con-

tribution exactly does not complicate the numerical solutions of the resulting self-consistent

equations compared to applying the DME to both Hartree and Fock terms. The Fock

energy computed from chiral interactions exhibits spatial nonlocalities due to the convolu-

tion of finite-range interaction vertices with nonlocal density matrices. These nonlocalities

significantly increase the computational cost of solving the HF equations.

A consistent and systematic extension of the DME procedure beyond the HF level of

MBPT is underway. In previous work, attempts to microscopically construct a quantitative

Skyrme-like EDF used some phenomennological approximations when applying the DME

to iterate contributions beyond the HF level and/or to reintroduce some phenomenological

parameters to be adjusted to data [8–10, 22, 23, 41]. Ultimately, we might build an ab initio

nuclear energy density functional from the chiral potentials without the need to refit to INM

and finite nuclear properties, although this is unlikely to be quantitatively competitive with

fit EDFs.

Schematically, the EFT NN and 3N potentials have the following structure:

VEFT = Vπ + VCT , (3)
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where Vπ denotes finite-range pion-exchange interactions and VCT denotes scale-dependent

zero-range contact terms, which encode the effects of integrated-out degrees of freedom

on low-energy physics. The structure of the chiral interactions is such that each DME cou-

pling is decomposed into a density-dependent coupling function arising from long-range pion

exchanges and a density-dependent coupling constant arising from the zero-range contact

interaction, for example,

Uρρ
t ≡ gρρt (R, Vπ) + Cρρ

t (R, VCT) , (4)

and so on. As a result, the DME functional splits into two terms,

E[ρ] = Eπ[ρ] + Ect[ρ] , (5)

where the first term Eπ[ρ] collects the long-range NN and 3N pion exchange contribution at

the HF level, while the second term Ect[ρ] collects the contribution from the contact part of

the interaction plus high-order short-range contributions.

B. Brueckner-Hartree-Fock for the NN Force

In Ref. [37], density-dependent couplings from chiral potentials up to N2LO in the chiral

expansion are derived by applying the DME to OBDMs at the HF level. However, the HF

method describes the motions of nucleons in the mean field of other nucleons and neglects

higher-order many-body correlations. This work only considers the long-range part of the

chiral potentials, with short-range contributions expected to be absorbed into a refit of

Skyrme parameters. In doing so, the refit parameters could capture short-range correlation

energy contributions beyond Hartree-Fock. In the present work, we investigate if a Skyrme-

like short-range effective interaction can well represent the short-range part of the G-matrix

and consider a direct density-dependent modification to model BHF correlation.

Historically, the G-matrix was developed by way of the Goldstone expansion for the

ground-state energy in nuclear matter and closed-shell nuclei using NN interactions. The

G-matrix method was originally developed by Brueckner [42], and further developed by

Goldstone [43] and Bethe, Brandow, and Petschek [44]. The G-matrix is obtained by solving

the Bethe-Goldstone equation,

G(ω) = v + v
Q

e
G(ω) . (6)
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Here v is a nucleon-nucleon interaction in free space, Q is the Pauli-blocking operator, which

forbids the two interacting nucleons from scattering into states already occupied by other

nucleons. The denominator is e = ω − h0, h0 is the single-particle Hamiltonians with the

one-body mean field U , and ω is the starting energy. To define the denominator we will

also make use of the angle-averaging and effective mass approximations as in Ref. [45]. The

single-particle energies in nuclear matter are assumed to have the quadratic form

ε(kµ) =
~2k2µ
2M∗ + ∆ for kµ ≤ kF

=
~2k2µ
2M

for kµ ≥ kF ,

(7)

where M∗ is the effective mass of nucleon and M is the bare nucleon mass. For particle

states above the Fermi surface ε is a pure kinetic energy term, whereas for the states below

the Fermi surface ε is parameterized by M∗ and ∆, the latter being an effective single-

particle potential related to the G-matrix; these are obtained through the self-consistent

BHF procedure. In this approach, the single-particle potential U(kµ) is determined by the

self-consistent equation

U(kµ) =
∑
ν<kF

〈µν|G(εµ + εν)|µν〉 . (8)

This self-consistent scheme consists in choosing initial values of M∗ and ∆ and then using

the obtained G-matrix in turn to obtain new values for M∗ and ∆. This procedure continues

until these parameters do not change.

The SRG evolution can significantly change the summations of the ladder diagrams in the

G-matrix. When different VNN are evolved, the differences between these potentials and their

summations of the ladder diagrams are strongly quenched. In Fig. 1, we present correlation

plots of (G− VSRG) between the AV18 [46] and N3LO [47] potentials in the 1S0 channel at

flow parameters λ=∞, 2.0 fm−1 and 1.5 fm−1 with kF at saturation density. The correlation

plots compare the two different potentials’ strengths at the same momenta (k, k′).

We use the Fermi momentum kF as the boundary to separate low/ high momentum

regions, as kF plays an analogous role to the UV momentum-space cutoff Λ for Vlow−k and

flow parameter λ for the SRG. The correlation plots for the unevolved potentials show that

the matrix elements of (G−VSRG) are significantly different. This is because the N3LO and

AV18 potentials lead to similar G-matrices at low momentum while the initial potentials

are quite different. In evolving down to λ=2.0 fm−1, the low-momentum region matrix
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FIG. 1. Correlation plots for the matrix G−VSRG between the AV18 [46] and N3LO [47] potentials

in the 1S0 channel at flow parameter (a) λ=∞, (b) 2.0 fm−1 and (c) 1.5 fm−1( the x,y-axis scales

in (a), (b) and (c) are different). The G-matrix is evaluated of saturation density (kF=1.3 fm−1).

The potentials are separated into 3 different regions, the low-momentum region (k, k′ < kF), high-

momentum region (k, k′ > kF) and coupling region (k > kF, k′ < kF or k < kF, k′ > kF).

elements approach the diagonal line. With the SRG flow evolution to λ =1.5 fm−1, the

low-momentum region points and the coupling momentum region points are close to the

diagonal, showing a collapse to a universal residual (G − VSRG). In the application of RG

to nuclear interactions, universality is observed in that distinct initial NN potentials that

reproduce the experimental low-energy scattering phase shifts are found to collapse to a

single universal potential [15, 17, 48]. This universality can be attributed to common long-

range pion physics and phase-shift equivalence of all potentials. Here we see that the same is

quantitatively true for the residual interaction despite universality being only approximate

for NN interactions. At the same time, the summation into the G-matrix has relatively

small effects on SRG-evolved low-momentum interactions, in stark contrast to the original

interactions.

III. COUNTERTERMS

In this section, we study quantitatively whether the low-momentum interaction G-matrix

can be well represented by the low-momentum part of the SRG-evolved potential supple-

mented by counterterms. Specifically, we assume the G-matrix can be represented by

G(q, q′) ' VSRG(q, q′) + VCT(q, q′), (q, q′) < Λ , (9)
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where VSRG is a bare NN potential evolved by the SRG, Λ denotes a momentum space cutoff,

and (q, q′) ≤ Λ. We choose Λ as kF, which is for two reasons: (i) only momenta up to kF are

probed for the BHF energy and (ii) the length at which the G-matrix “heals” to the potential

is set by 1/kF. See the Supplementary Material for different Λ results [49] . Our aim is to

investigate if VCT can be well-represented by a short-range effective interaction and to study

the properties of the counterterm coefficients, with the aim of using this expanded G-matrix

in HF-level calculations to simulate BHF correlations. We shall proceed by expanding VCT

in a suitable form and testing how well it satisfies Eq. (9).

Past investigations found that Vlow−k can be satisfactorily accounted for by the countert-

erms corresponding to a short-range effective potential [35]. A main point of the RG-EFT

approach is that the effect of physics beyond a cutoff scale Λ can be absorbed into simple

short-range interactions. Thus for treating low-energy physics, one integrates out the modes

beyond Λ, thereby obtaining a low-energy effective theory. In RG-EFT, this integrating out

generates an infinite series of counterterms, which is a simple power series in momentum.

Reference [35] has shown that the integration out of high-momentum modes in the deriva-

tion of Vlow−k generates a series of counterterms and that Vlow−k can be accurately cast into

the form Vbare+VCT.

Because VSRG is generally given according to partial waves, as is the G-matrix, we shall

determine VCT separately for each partial wave with allowed quantum numbers. We consider

the following momentum expansion for the partial-wave counterterm potential to test the

assumption that VCT is a very short-range interaction,

〈qJLS|VCT|q′J ′L′S ′〉 = δJJ ′δSS′qLqL
′
[C0+C2(q

2+q′2)+C4(q
4+q′4)+C ′4(q

2q′2)+ · · · ] . (10)

The standard Skyrme forces include the zero-order (contact) and second-order (q2) terms

in the expansion, but conventional Skyrme forces do not have q4 and higher-order terms.

Higher-order derivative terms have been investigated in Refs. [50–53]. In these works it is

concluded that extending the Skyrme functionals beyond the standard quadratic form, and

including q4 terms in particular, will provide an improved description of nuclei.

The counterterm coefficients will be determined such that the difference between G and

(PVSRGP + VCT) is minimized. P is the projection operator to project onto states with

momentum less than Λ. The G-matrices are obtained through the self-consistent BHF

procedure at different kF as mentioned in Section II B. In the present calculation, we use
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FIG. 2. Comparison of G−PVSRGP (solid line) with VCT (dot) for the 1S0 and 3S1 channels. The

(a) left panel shows off-diagonal elements and the (b) right panel shows diagonal elements. VSRG

is the N3LO potential evolved by the SRG to λ=1.5 fm−1 at kF=1.3 fm−1. .

the average COM momentum approximation [45]. We perform a standard chi-squared fitting

procedure for all partial-wave channels at given kF and find consistently very good fits at

all kF, partial-wave channels and SRG flow parameter λ. See the Supplementary Material

for different SRG flow parameter λ results [49]. In Fig. 2 we compare 1S0 and 3S1 matrix

elements of VCT with those of the (G−PVSRGP ) matrix below kF by taking a slice along the

edge (i.e., VCT(k, 0)) and along the diagonal (i.e., VCT(k, k)). A similar comparison for the

3S1-
3D1 and 3D1 channels is displayed in Fig. 3. We have also obtained good agreement for

P-waves. Thus we find nearly identical interactions, giving strong support that the G-matrix

can be very accurately represented by (PVSRGP+VCT).

IV. DENSITY DEPENDENT COUPLINGS

Next, we examine the counterterms themselves. The evolution of the counterterm coeffi-

cients as the SRG λ decreases is illustrated in Fig. 4 for the SRG-evolved AV18 and N3LO

potentials in the 1S0 channel. With SRG evolution, the difference between the potential

and the G-matrix decreases dramatically in this channel; that is, VCT becomes smaller and

smaller, particularly for C0. This is consistent with the SRG modifying the short-range

features of the potentials and confirms that the contact term C0 is the dominant term in
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FIG. 3. Comparison of G−PVSRGP (solid line) with VCT (dot) for the 3S1-
3D1 and 3D1 channels.

The (a) left panel shows off-diagonal elements and the (b) right panel shows diagonal elements.

VSRG is the N3LO potential evolved by the SRG to λ=1.5 fm−1 at kF=1.3 fm−1. .

the expansion. At λ= 10 fm−1, C0 is non-zero throughout the range of kF, while with SRG

evolution to λ= 2 fm−1 and 1.5 fm−1, the counterterms decay to zero rapidly with kF, consis-

tent with Ref. [14] that perturbation theory can be used in place of Brueckner resummations

with the softened potentials.

The coefficients for AV18 and N3LO potentials are still noticeably different at λ= 10

fm−1, at which point the AV18 potential has been considerably softened, but by λ = 2

fm−1, the differences have largely disappeared. At the end of the evolution, the counterterm

coefficients are essentially the same at all densities, consistent with Fig. 1 and a flow to an

approximately universal value at low resolution. Future plans include investigating whether

analogous counterterms for 3N potentials in density-dependent two-body form also show

universality.

We find that the counterterms are significant only for S, P and D partial waves. In Figs. 5

and 6, we plot counterterm coefficients in various partial waves, using the SRG-evolved N3LO

and AV18 potentials at flow parameter λ=3.0 fm−1 as our input potentials. From the figure,

we can see that C0 is always the most important term in the expansion. As with 1S0, this

behavior is a reflection that VCT is a very short-range effective interaction and also that the

G-matrix does not modify long-range physics. The counterterms provide additional gradient

terms into the Skyrme interaction and more complicated density-dependence in the EDF.
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FIG. 4. The coefficients of the counterterms for the AV18 and N3LO potentials as a function of

Fermi momentum in the 1S0 channel with SRG flow parameters λ = 10, 2, and 1.5 fm−1.

Coefficients beyond C4 generally have small effects in the fitting procedure (C6 is one order

smaller than C4, typically) and can be ignored.

The counterterm coefficients for the various partial waves in Figs. 5 and 6 need to be

converted to Skyrme-like interaction parameters to be used in EDFs. Using the partial wave

projections from Refs. [54, 55], we can find relations between the counterterm coefficients

and Skyrme couplings. A similar mapping of renormalization scale dependent counterterm

coefficients to Skyrme-like couplings has been done in Ref. [56]. For example, the density-

dependent contributions to the conventional Skyrme parameters t0 and x0 are given by the

leading C0 terms in the 1S0 and 3S1 channels, t1 and x1 are given by the leading C2 terms
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FIG. 5. Counterterms for different partial waves as a function of Fermi momentum obtained from

SRG-evolved N3LO and AV18 potentials at flow parameter λ=3.0 fm−1. Each column of plots is a

single partial-wave channel, given at the top, while each row of plots is one of the counterterms(C0-

C ′4), given at the left.

in the 1S0,
3S1 channels and C0 terms in the 3S1−3D1 channel:

t0(ρ) =
1

8π
(C1S0

0 (ρ) + C3S1
0 (ρ)) ,

x0(ρ) = −C
1S0
0 (ρ)− C3S1

0 (ρ)

C1S0
0 (ρ) + C3S1

0 (ρ)

.t1(ρ) =
1

8π
(C1S0

2 (ρ) + C3S1
2 (ρ)−

√
2C

3S1−3D1
0 (ρ)) ,

x1(ρ) = −C
1S0
2 (ρ)− C3S1

2 (ρ)−
√

2C
3S1−3D1
0 (ρ)

C1S0
2 (ρ) + C3S1

2 (ρ)−
√

2C
3S1−3D1
0 (ρ)

.

(11)
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FIG. 6. Counterterms as a function of Fermi momentum for different partial waves obtained from

SRG-evolved N3LO and AV18 potentials at flow parameter λ=3.0 fm−1. Each column of plots is a

single partial-wave channel, given at the top, while each row of plots is one of the counterterms(C0-

C ′4), given at the left.

The density-dependent Skyrme interaction parameters are plotted in Fig. 7 with SRG-

evolved N3LO and AV18 potential at flow parameter λ=3.0 fm−1 as a function of the isoscalar

density using the usual relation Eq. (2) between ρ0(R) and kF(R). As a check, we compared

the binding energy per nucleon in nuclear matter in the 1S0 and 3S1 channels calculated by

BHF and by HF+t0+t1, using the AV18 and N3LO potentials with the density-dependent

Skyrme interaction parameters from Fig. 7. The two methods give nearly the same result

at all densities, verifying that the density-dependent Skyrme interaction models the BHF

correlations very well.
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parameter λ=3.0 fm−1.

V. SUMMARY

The present paper is part of a long-term project to build an ab initio nuclear energy

density functional from realistic NN and 3N-nucleon interactions using MBPT. The DME

can be used as a bridge from MBPT to EDFs, as it can be used to construct numerically

tractable approximations to the nonlocal HF energy. The DME-based functionals take

the same general form as standard Skyrme functionals, with the key difference that each

coupling is composed of a density-dependent coupling function determined from the HF

contributions of the underlying finite-range NN and 3N interactions, plus a Skryme-like

short-range contact interaction. The microscopically motivated DME-based functionals,

which possess a richer set of density dependencies than traditional Skyrme functionals, can

be implemented in existing EDF codes. In previous work, the Skyrme-like short-range

contact couplings were optimized to data. Performing a refit of the Skyrme-like constants

to data can be interpreted as approximating the short-distance part of the G-matrix with a

zero-range expansion through second order in gradients.

In the present work, we derived density-dependent couplings for the short-distance part of

the G-matrix by fitting a counterterm expansion. We used high-precision two-body nuclear

interactions evolved to softer forms using the SRG, which makes the interactions suitable

for a MBPT treatment. The issue addressed in this work was whether the G-matrix could
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accurately be cast in a form VSRG+VCT, where VCT is a low-order counterterm series. We

have shown that the G-matrix is nearly the same as VSRG+VCT, over all partial waves.

Only the leading terms (up to quartic order) in the counterterm momentum expansion are

significant, verifying that VCT is primarily a short-range effective interaction.

We also transformed the partial waves counterterm to density-dependent Skyrme inter-

actions. The quadratic and quartic counterterms except for the S channels will lead to

higher-order density-dependent terms in an extension of the standard Skyrme force [51].

Higher-order terms could be neglected as a first step because their contribution becomes

systematically less important, see [51, 53]. The magnitudes of the contributions to t0 and

t1 have been checked by calculating the binding energy per nucleon in nuclear matter. The

structure of the chiral interactions is such that each coupling in the DME functional is

decomposed into a density-dependent coupling constant from short-range interactions and

a density-dependent coupling function arising from long-range pion exchange. The clean

separation between VSRG and VCT allows us to model BHF correlations with a HF-level cal-

culation within the DME by combining the new coupling terms with previous work [37] that

derived couplings for the long-range parts of the chiral potentials.
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