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We demonstrate that the intricate energy spectrum of neutron-rich helium isotopes can be
straightforwardly described by taking advantage of the low-energy properties of neutron-neutron
interaction and the scale separation that is present in diluted dripline systems. By using arguments
based on the halo effective field theory, we carry out a parameter reduction of the complex-energy
configuration interaction framework in the spd space, including resonant and scattering states. By
constraining the core potential to α-n scattering phase-shifts and adjusting the strength of the spin-
singlet central neutron-neutron interaction, we reproduce experimental energies and widths of 5−8He
within tens of keV precision. We predict a parity inversion of narrow resonances in 9He and show
that the ground state of 10He is an s-wave-dominated configuration that could decay through two-
neutron emission. This threshold state can be viewed as a “double-halo” structure in an analogy to
the atomic 3He4He2 trimer.

Introduction–The neutron-rich helium isotopes 5−10He
epitomize novel aspects of nuclear structure at and be-
yond the limit of nuclear binding. Experimentally, the
even-even isotopes 6He [1] and 8He [2, 3] are Borromean
halos, they have no bound excited states, and they ex-
hibit an abnormal pattern of the one- and two-neutron
emission thresholds. The odd-N isotopes 5He [1, 4, 5]
and 7He [6, 7] are neutron-unbound. Presently, too little
is known about the elusive 9He [8, 9] and 10He [3, 4, 10–
19] isotopes to firmly conclude whether they represent
genuine nuclear systems or not. The current experimen-
tal information on the energy spectrum of 5−10He is dis-
played in Fig. 1.

Theoretically, the understanding of the neutron-rich
helium chain is challenging: it requires a microscopic
framework based on a realistic interaction that is capable
of describing many-body correlations and salient contin-
uum effects [21, 22]. A number of sophisticated many-
body methods, based on realistic Hamiltonians, were em-
ployed to describe neutron-rich helium isotopes using nu-
cleons as elementary degrees of freedom, both without
continuum couplings [23–26] and also considering them
to some extent [27–33]. While such A-body approaches
are powerful, they also have shortcomings when it comes
to quantitative and quantified predictions. The associ-
ated two- and three-body forces, often derived from chiral
effective field theory [34–36], are in most cases not statis-
tically optimized and quantified; hence they do not have
the required precision and accuracy to guide experiments
on exotic nuclei near the drip lines [37]. It also remains
to be seen how the truncation errors at the two- and
three-body level [38–40] would propagate in many-body
calculations. Moreover, the complete inclusion of many-
body forces is still computationally challenging, which
only adds to the already difficult task of including con-
tinuum couplings. Consequently, no satisfactory A-body
description of 9,10He has thus been achieved.

In this paper, we demonstrate that it is possible to
achieve a precise description of the neutron-rich helium
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FIG. 1. Energy spectra of 5−10He with respect to the 4He
core. Experimental data [20] are compared to our Gamow-
DMRG (G-DMRG) calculations. Decay widths are shown as
shaded bars. The predicted 1/2− resonant states in 5,7He are
so broad that their widths are not marked. For these states,
as well as for states in 9,10He, experimental information is not
firm.

chain within an effective framework that recognizes the
emergence of effective scales and associated degrees of
freedom in these nuclei. We first note that, at low-
energy, the tightly bound nature of 4He makes it a nat-
ural core whose internal dynamics is largely decoupled
from valence neutrons. This decoupling is reflected in
the smallness of the ratio ∣S1n∣(

5He)/E∗(4He, 0+2)≈0.04.
This makes it possible to reduce the full A-body neutron-
rich helium problem to a reduced-size task involving the
4He core and (A−4) neutrons. As 6,8He are halo systems,
further simplifications are possible by taking advantage
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of the scale separation. For instance, halo effective field
theory (halo-EFT) [41, 42] allows to systematically con-
struct, order by order, effective interactions tailored to
weakly bound systems [43–46].

According to the power counting in pionless EFT
[41, 47, 48], the dominant contribution to the neutron-
neutron interaction at low energy should come from the
(S = 0, L = 0) channel, while the contributions from chan-
nels with L ≥ 1 should only appear at higher orders. Un-
fortunately, many-body terms appearing in the halo-EFT
Hamiltonian, which are already present at the lowest or-
der in 6He in the form of a 4He-neutron-neutron inter-
action [45, 46], make this approach unpractical when it
comes to the heaviest neutron-rich helium isotopes. Still,
the recognition that the main contribution to the valence
neutron-neutron interaction in the neutron-rich helium
isotopes primarily comes from the 1S0 channel, suggests
that rather simple interactions should perform well in
those diluted many-neutron systems. This has been rec-
ognized in the studies of neutron drops [49]. Indeed, be-
cause of the dilute character of those systems, the role
of many-body interactions is expected to be small. As
shown in Ref. [49], the ground-state (g.s.) energy pat-
tern of trapped neutron drops is strikingly reminiscent of
that for the helium chain.

The strategy based on the 4He core was adopted by
continuum shell model approaches to describe the he-
lium chain [50–54]. All these approaches relied on phe-
nomenological one- and two-body interactions in the va-
lence neutron space, which were not constructed using
effective scale arguments, and, except for the recent work
in Ref. [54], no systematic study of the model parame-
ter space has been carried out. Moreover, in all previous
shell-model studies, the continuum space pertaining to
the unbound 9,10He isotopes has been truncated. The
fact that none of the traditional approaches, whether A-
body methods or shell model approaches, are either prac-
tical or can provide reliable predictions for neutron-rich
helium isotopes motivates the development of an alterna-
tive path rooted in halo-EFT and based on the complex-
energy formalism.

Method–In the present work, the description of
neutron-rich helium isotopes is achieved by employing
the single-particle (s.p.) Berggren basis [55, 56]. The
use of the Berggren ensemble allows to naturally extend
the configuration-interaction picture into the complex-
energy plane [57], by explicitly including Gamow (reso-
nant) states and nonresonant scattering states for each
partial-wave channel c = (`, j). As discussed in detail in
Ref. [57] in the context of complex-energy shell model ap-
plications, scattering states entering the Berggren basis
are defined along a contour L+c in the fourth quadrant of
the complex-momentum plane that surrounds the reso-
nant poles {ki} and then extends to k → +∞. In practice,
the integral along the contour L+c is discretized using a
Gauss-Legendre quadrature, and then a many-body basis
made of Slater determinants can be constructed as usual.

The numerical resolution of the many-body prob-

lem is performed using the density matrix renormaliza-
tion group (DMRG) method for open quantum systems
[52, 58] or Gamow-DMRG (G-DMRG), which has been
shown to be a powerful technique to handle large many-
body spaces. Also, working within a basis generated with
natural orbitals [59] allows to significantly speed-up the
numerical convergence of the G-DMRG method [60–62].

Our strategy is to make a parameter reduction of the
G-DMRG Hamiltonian using effective scale arguments.
The goal is to rearrange Hamiltonian terms similarly to
what is usually done in core-based shell model approaches
or, more microscopically, using the in-medium similar-
ity renormalization group approach [63, 64]. First, the
one-body 4He-neutron interaction is taken in a Woods-
Saxon (WS) form. It contains the central and spin-
orbit terms, whose parameters were optimized to the
s and p phase shifts in the α − n scattering [65–67] as
was done in Refs. [54, 68, 69]. The resulting WS pa-
rameters are: the depth V0 = 41.77 MeV, the diffuseness
a = 0.618 fm, the radius R0 = 2.162 fm, and the spin-
orbit strength Vso = 6.991 MeV. By construction, the en-
ergies and widths of the Jπ = 3/2

−
ground state and the

Jπ = 1/2
−

broad excited state of 5He are reproduced, with
the latter being solely a pole of the S-matrix rather than
a genuine resonance. These parameters coincide within
the error bars with those obtained in the recent opti-
mization study [54]. This choice of the one-body poten-
tial departs from halo-EFT but provides a simple way to
include α − n correlations.

In a second step, we reduce the interaction between va-
lence neutrons to a residual two-body force using insights
from halo-EFT. For the two-neutron interaction, we take
a reduced variant of the Furutani-Horiuchi-Tamagaki
(FHT) interaction [70, 71]. In this interaction, four terms
are present in the isovector channel: two central terms in
the spin-singlet and spin-triplet channels, and one spin-
orbit term and one tensor term in the spin-triplet chan-
nel. However, based on the halo-EFT argument, we re-
duce the FHT interaction to the single central term in
the spin-singlet channel. We note in passing that this
argument explains the sloppiness of the parameters as-
sociated with the spin-triplet channels seen in Ref. [54].
The leading-order of halo-EFT [43, 44] involves the 1S0

channel only. Here we also consider the L > 0 spin-singlet
channels to be able to check a posteriori that the main
contribution comes from the 1S0 channel.

The form factor for the central FHT term is a sum
of three Gaussians with different ranges: (r0 = 0.160 fm),
(r1 = 1.127 fm) and (r2 = 3.400 fm). This is another dif-
ference with halo-EFT at leading-order as in the latter
case the interaction is given by a regularized delta force
in the 1S0 channel [43, 44], which can be taken in a sin-
gle Gaussian form. We stick to the original FHT form
factor as it has proven to perform well in earlier studies
[37, 54, 61, 72]; our objective is to show how a simple,
well established Hamiltonian based on effective scale ar-
guments can capture the complex energy relations within
the neutron-rich helium chain.
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The one-body model space is the spd space, built on
the s.p. poles 0p3/2 and 0p1/2 and associated continua,
each made of three segments in the complex momen-
tum plane defined by the points (0.2,−0.1), (0.4,0.0) and

(6.0,0.0) (all in fm−1) for the p3/2 partial wave, and the

points (0.25,−0.2), (0.5,0.0) and (6.0,0.0) (in fm−1) for
the p1/2 partial wave. The continuum associated with
the s1/2 partial wave is real and defined by the points

0.1, 0.2, and 6.0 fm−1. Each segment defining the s and p
continua are discretized with 12 points. Additionally, the
1s1/2 state was added to the s.p. basis for the 8−10He cal-
culations by increasing the depth of the basis-generating
WS potential, as its absence would make the identifica-
tion of many-body states difficult. In fact, not including
the 1s1/2 shell explicitly is possible and leads to identi-
cal results, but requires an unnecessary dense discretiza-
tion of the s1/2 continuum to meet the unitarity condi-
tion. Finally, the d3/2 and d5/2 continua are represented
by six harmonic oscillator shells each. We checked that
adding higher partial waves only leads to an overall en-
ergy renormalization; hence, it does not change our re-
sults. It is worth noting that contrary to previous similar
approaches [50, 51, 54], no truncations on the number of
particles in the continuum are imposed in our work.

Results–Once the parameters of the WS potential have
been optimized, there remains only one free parame-
ter left, namely the strength of the spin-singlet central
interaction Vc. We adjust Vc for each energy of the

known states in 6−8He and define the optimal value V
(opt)
c

as the average over these values. In this way, we ob-

tain V
(opt)
c =−5.709 MeV with a standard deviation of

σ=0.008 MeV. The small value of σ illustrates the ability
of our model to describe the spectra of 6−8He. In fact,
if we reduce the two-body interaction to the 1S0 channel
only and readjust the ground state of 6He to the exper-
imental value, our predictions degrade only slightly. For
instance, by considering the 0+ and 2+ states of 6He as
well as the 3/2

−
and 5/2

−
states of 7He, the rms error on

the energy is about 9 keV with the original interaction
(L ≥ 0), while it is about 26 keV with the simplified inter-
action (L = 0). This demonstrates the dominant role of
the 1S0 interaction channel as expected from halo-EFT.

By defining V
(opt)
c within a range constrained by known

data, we ensure that if our model reproduces experimen-
tal data well, the parameter range is small and predic-
tions are precise. This is analogous to the halo-EFT ap-
proach where effects of neglected higher-order terms are
absorbed in the coupling constants of the model and the
associated error. If the explicit three-body and higher-
body forces were crucial, this would affect our ability to
precisely reproduce experimental data.

We wish to point out that the Jπ = 2+1 state of 6He
requires an abnormally large interaction strength (Vc ≈
−6.8 MeV) to reproduce the experimental value; hence,

is not included in the calculation of V
(opt)
c . The reason

for this discrepancy (around 180 keV) is the dominant
0p3/2 → 0p1/2 structure of this state [53]. In fact, the

deviation between the calculated and experimental values
for the 2+1 state can be significantly reduced by slightly
changing the strength of the spin-orbit term of the core-
neutron potential. In this work, however, we decided to
keep the one-body Hamiltonian fixed throughout.

In general, decay widths are not computed as ac-
curately as energies. Moreover, energies and widths
are highly correlated. For these reasons, we de-
cided not to include decay widths when computing
the energy uncertainty associated with Vc: ∆E =

0.5 ∣E(V
(opt)
c + σ) −E(V

(opt)
c − σ)∣. We only consider a

1σ deviation because this is the minimal requirement to
reproduce all known energies. The G-DMRG results for
the energy spectra of the neutron-rich helium chain using

V
(opt)
c are shown in Fig. 1 and listed in Table I. In princi-

ple, there are also uncertainties coming from the core po-
tential, but they were shown to be negligible as compared
to the uncertainties coming from the valence-space inter-
action in Ref. [54]. Only a complete uncertainty quan-
tification study (e.g., through a Bayesian analysis) could
provide full theoretical uncertainties.

TABLE I. Experimental [20] and calculated energies with re-
spect to the 4He g.s. (in MeV) and widths (in keV) for 5−10He.
The uncertainty ∆E on energies (in MeV) is given in the last
column.

Nucleus Jπ Eexp Γexp Eth Γth ∆E

5He 3/2− 0.798 648 0.766 671
1/2− 2.197 5903

6He 0+ −0.972 −0.974 0.006
2+ 0.824 113 1.007 207

7He 3/2− −0.527 150 −0.507 142 0.007
1/2− 0.844 2150 0.006
5/2− 2.393 1990 2.344 1726 0.002

8He 0+ −3.10 −3.176 0.014
2+ 0.0 600 0.116 776 0.009

9He 1/2+ −3.05 76 0.015
1/2− −2.71 210 0.017
5/2+ 0.55 250

10He 0+ −3.21 < 1 keV 0.014

Consistently with Refs. [31, 32, 50, 51], we predict very
broad 1/2

−
1 states in 5,7He; these resonant states cannot

be considered as genuine nuclear states because of their
short lifetimes, see Refs. [62, 73] for more detailled dis-
cussions. For 8He, we found that its g.s. has a com-
plex structure [74, 75], with p3/2 and p1/2 occupations
being about 2.58 and 0.18, respectively, and the remain-
ing occupations (0.24) shared between the s and d partial
waves. For comparison, the first excited 2+ state of 8He
has p3/2 and p1/2 occupations of almost 3.0 and 1.0, re-

spectively. This is reminiscent of the situation in 6He,
whose g.s. has a strong dineutron component and the
excited state has predominantly a particle-hole structure
[53].
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We note that the present model cannot provide precise
charge and neutron radii without corrections accounting
for effects beyond a static-core plus valence-neutron pic-
ture, as for instance the “core-swelling” effect (core po-
larization due to the valence neutrons) [53].

For 9He, we predict a narrow Jπ = 1/2
+

g.s. and a
close-lying Jπ = 1/2

−
resonance with a larger width (these

states could not be distinguished in the recent Gamow
shell model study [54] within statistical uncertainties),
as well as a Jπ = 5/2

+
resonance at higher energy. The

uncertainty on the Jπ = 5/2
+

state could not be estimated
due to the instability of calculations for extreme values
of Vc. These results are in relative agreement with ex-
perimental data from (d, p) reactions [9], and at variance
with the study of isobaric analog states in 9Li [76], as
well as the no-core shell model with continuum calcu-
lations of Ref. [33] where the g.s. is predicted to have
Jπ = 1/2

−
and the first excited state to be a broader

Jπ = 3/2
−

resonance. We note that in Ref. [33], in which
only the two-body part of the normal-ordered three-body
forces was considered, the 2+1 state of 8He used to build
the 8He + n channels was calculated as a bound state,
and the only decay channel considered (for a fairly small
number of channels) was one-neutron emission. Earlier
quantum Monte Carlo results [29] stated the possible ex-
istence of a virtual Jπ = 1/2

+
state in 9He, seen as a ` = 0

single-particle state above 8He, and a possible Jπ = 1/2
−

state at higher energy (3-4 MeV). In our calculations, the
Jπ = 1/2

+
state in 9He is predicted to be a many-body

resonance built almost entirely of excitations to the s1/2
continuum, but not a virtual state, see below.

We also make a prediction for the g.s. of 10He, which
is calculated at an energy that is slightly lower than the
g.s. of 8He. Taking into account the uncertainty on the
g.s. energies of 8−10He, and the decay width of the g.s.
of 9He, both one- and two-neutron decay channels are
theoretically possible. Interestingly, it appears that the
ground states of 8He, 9He, and 10He have almost iden-
tical partial-wave decompositions except for the s1/2 oc-
cupations, which are almost exactly zero, one, and two,
respectively. In comparison, the 1/2

−
state of 9He is al-

most entirely built of the p1/2 component. The interplay
between s1/2 and p1/2 continuum states is believed to be
a determining factor for the phenomenon of parity inver-
sion in 9He [77].

The present results shed new light on the nature of
9,10He. Early on, it was proposed using a three-body
model [15] that the ground state of 10He might be a low-
energy resonance (E = 0.05 MeV, Γ = 0.21 MeV) domi-
nated by s waves, suggesting that the reported observa-
tions of higher-energy resonances at ∼1.8 MeV [78]) might
in fact correspond to the first excited state of 10He. Con-
currently, other studies [16, 79] looked at the consistency
between possible narrow ground state in 9He and a broad
ground state at 1-3 MeV in 10He, and concluded that ei-
ther the ground state of 10He has not been observed yet,
or the s-wave scattering length in 9He must be less at-
tractive. It was also suggested that the observed state in

10He might, in fact, corresponds to several states [14, 19].
While the present study does not address the excited
states of 10He, it goes beyond the limited three-body pic-
ture and supports the idea of a narrow ground state of
10He dominated by s waves, built on the 1/2

+
ground-

state resonance of 9He. Due to the variability of ap-
proaches, different effective Hamiltonians, as well as the
lack of uncertainty quantification, it is difficult to make
a quantitative comparison with the previous theoretical
studies.

The almost identical energies and partial-wave occu-
pations of the ground states of 8He and 10He support the
8He + 2n cluster picture of 10He, in which an extended
dineutron structure is present atop the four-neutron halo
in 8He. In other words, 10He is predicted to be on the
brink of forming a nuclear double-halo structure (4He +
4n + 2n) if not for a few tens of keV, similarly to the
known 3He4He2 trimer [80].

Conclusions–In this study, we demonstrated that the
intricate energetic relations within the neutron-rich he-
lium chain (5−10He) can be precisely described in a very
large continuum space, by using a simple Hamiltonian
justified by effective scale arguments. In the present 4He-
plus-(A − 4) neutron G-DMRG framework, the Hamilto-
nian reduces to a core-neutron potential optimized to
the low-energy n −4 He scattering, and a single central
valence-neutron interaction term in the spin-singlet chan-
nel. The success of our approach can be understood in
terms of the halo effective field theory approach to dilute
systems.

Our calculations have, for the first time, no truncation
on the number of particles in the continuum within the
spd model space. This milestone was enabled by using
the G-DMRG method for open quantum systems in a
basis of natural orbitals. In this way, we were able to
consider the largest ever continuum space when making
predictions for extremely neutron-rich threshold systems
9,10He.

By optimizing the single active parameter of our
model, the strength of the two-body isoscalar central po-
tential, we were able to reproduce known energy levels in
6−8He within tens of keV. We predict a parity inversion in
9He, which is a robust feature of our model, and showed
that the ground states of 8−10He have almost identical
`-content except for the s-wave. We predict 10He to be
a threshold system, most likely a two-neutron emitter,
but considering current theoretical uncertainties we can-
not exclude the sequential two-neutron and direct one-
neutron decay branches. The next generation of exper-
imental studies will hopefully determine whether or not
the ground state of 10He shows elements of a double-halo
structure.

In conclusion, this work offers a way to revisit phe-
nomenological approaches through a parameter reduc-
tion guided by effective scale arguments, providing a
practical and reliable alternative to more complex ap-
proaches such as halo effective field theory or full-fledged
A-body calculations for drip-line nuclei. The strategy
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outlined in this work could be easily exported to other
approaches and physical systems. Additionally, it was
brought to our attention that the Hamiltonian developed
in this work can be seen approximately as the leading-
order Hamiltonian of halo effective field theory (EFT)
plus a perturbation. This idea was already formulated in
the context of the nuclear interaction in Ref. [81], which
shows that nuclei can be described using the leading or-
der of an EFT approach in the unitary limit plus a small
perturbation. In both cases, this strategy leads to great
simplifications while still providing surprisingly precise
results. The present study suggests that while the cur-
rent halo-EFT strategy quickly increases the complex-
ity of the Hamiltonian when using power counting rules,
there might be alternative ways to develop simple and
consistent effective descriptions of neutron-rich systems.
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[24] E. Caurier and P. Navrátil, Phys. Rev. C 73, 021302(R)

(2006).
[25] A. F. Lisetskiy et al., Phys. Rev. C 78, 044302 (2008).
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