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The astrophysical S-factor and reaction rate of the direct capture process α+d→
6Li + γ, as well as

the abundance of the 6Li element are estimated in a three-body model. The initial state is factorized
into the deuteron bound state and the α+d scattering state. The final nucleus 6Li(1+) is described
as a three-body bound state α + n + p in the hyperspherical Lagrange-mesh method. Corrections
to the asymptotics of the overlap integral in the S- and D-waves have been done for the E2 S-
factor. The isospin forbidden E1 S-factor is calculated from the initial isosinglet states to the small
isotriplet components of the final 6Li(1+) bound state. It is shown that the three-body model is able
to reproduce the newest experimental data of the LUNA collaboration for the astrophysical S-factor
and the reaction rates within the experimental error bars. The estimated 6Li/H abundance ratio of
(0.67±0.01)×10−14 is in a very good agreement with the recent measurement (0.80±0.18)×10−14

of the LUNA collaboration.

PACS numbers: 11.10.Ef,12.39.Fe,12.39.Ki

I. INTRODUCTION

There are two open astrophysical problems related to
the abundance of lithium elements in the Universe. First,
the Big Bang nucleosynthesis (BBN) model predicts for
the 7Li/H ratio an estimate about three times larger than
the recent astronomical observational data from metal-
poor halo stars [1, 2]. The second lithium puzzle is re-
lated to the estimation of the primordial abundance ratio
6Li/ 7Li of the lithium isotopes. For this ratio the BBN
model [3] yields a value about three orders of magni-
tude less than the astrophysical data [4]. In the BBN
model the abundance of the 7Li element is estimated on
the basis of two key capture reactions α(3He,γ)7Be and
α(3H,γ)7Li (see [5–7] and references therein). For the es-
timation of the 6Li/7Li ratio the BBN model includes as
input parameters the reaction rates of the direct radiative
capture process

α+ d → 6Li + γ (1)

at low energies within the range 30 ≤ Ecm ≤ 400 keV
[3]. The data set of the LUNA collaboration at two as-
trophysical energies E=94 keV and E=134 keV [8] was
recently renewed with additional data at E=80 keV and
E=120 keV [9]. These data sets were obtained as results
of the direct measurements of the astrophysical S-factor
at the underground facility. The new data are lower than
the old data of nondirect measurements from Ref. [10].
Based on the new data set, the thermonuclear reaction
rate of the process has been estimated by the LUNA col-
laboration. The results for the reaction rates turn out
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to be even lower than previously reported. This further
increases the discrepancy between prediction of the BBN
model and the astronomical observations for the primor-
dial abundance of the 6Li element in the Universe [9].

Until recently all the theoretical estimations of the as-
trophysical S-factor of the above direct capture reaction
at low astrophysical energies were based on the so-called
exact mass prescription, in the both potential models
[2, 11–15] and microscopic approaches [16, 17]. The mi-
croscopic models [18, 19] deal with only E2 transition
operator, neglecting a contribution of the E1-transition
operator to the astrophysical S-factor. Within this pre-
scription the matrix elements of the isospin forbidden
E1-transition were estimated by using the exact experi-
mental mass values of the colliding nuclei 2H and 4He. As
was shown recently in Ref. [20] in details, this way has no
microscopic background at all and cannot be used, for ex-
ample in the description of the capture process d(d, γ)4He
of two identical nuclei. Of course, the estimated in this
way cross sections and S-factors of the α(d, γ)6Li cap-
ture reaction can be fortuitously close to the experimen-
tal data, however this method does not yield a relevant
energy dependence of the S-factor and cross section and
correct predictive power for future ab−initio studies [20].
An alternative approach to the description of the cap-
ture processes is based on solving the three-body Fad-
deev equations [21] using quasi-separable potentials. An
advantage of this method is that it allows an easier treat-
ment of non-local effects that can be extended to three-
body problems.

Realistic three-body models are based on the isovector
E1 transition from the initial Ti = 0 (isosinglet) states to
the Tf = 1 (isotriplet) components of the final 6Li(1+)
bound state, or from the initial isotriplet components to
the main isoscalar part of the final 6Li(1+) nucleus bound
state [20]. First attempt to estimate in a correct way the
matrix elements of the isospin-forbidden E1- transition
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together with the E2-transition for the 4He(d, γ)6Li di-
rect capture process has been done in the three-body
model [22]. The formalism of the model has been de-
veloped in a consistent way and correct analytical ex-
pressions have been obtained for the matrix elements of
the E1- and E2-transitions, including the isovector tran-
sition matrix elements. The numerical results were ob-
tained on the basis of the final three-body wave function
6Li= α + p + n in hyperspherical coordinates [23, 24],
which had a small isotriplet component with the norm
square of 1.13 ×10−5. Due to smallness of the isotriplet
component of the final three-body bound state the corre-
sponding numerical calculations in Ref. [22] have repro-
duced the existing experimental data for the S-factor only
in the frame of the exact mass prescription and with the
help of additional spectroscopic factor. Further studies in
Ref. [20] have demonstrated that the quality of the final
three-body wave function 6Li= α+p+n can be improved
and convergent isotriplet component can be reached with
the norm square of 5.3×10−3, which is larger than the old
number by two orders of magnitude. This led to the fact
that the E1 S-factor also increased by two orders of mag-
nitude. Additionally, as was shown in that paper, the E2
S-factor can be improved owing to the correction of the
S-wave asymptotics of the overlap integral of the 6Li and
deuteron wave functions at a distance 5-10 fm. Below
we describe an influence of the correction to the D-wave
asymptotics of the overlap integral on the E2 S-factor
and the reaction rates at low energies.

The aim of present study is to estimate the reaction
rates of the α(d, γ)6Li direct capture process and the
primordial abundance of the 6Li element in the Universe
within the improved realistic three-body model [20, 22].
The initial wave function is factorized into the deuteron
bound-state and the α−d scattering-state wave functions.
The final 6Li(1+) state is described as a α+ p+n three-
body bound system. The wave function on the hyper-
spherical Lagrange mesh basis available for the 6Li(1+)
bound state [23, 24] will be employed.

The hyperspherical harmonics method is an effective
tool, widely used in the literature for the description
of the three-body bound states of halo nuclei [25], res-
onances and non-resonant continuum [26, 27]. The Fad-
deev hyperspherical harmonics method was applied to
the three-body problem with a core excitation[28], while
its combination with the R-matrix approach has been
applied to estimate the triple α rate in a full three-body
model [29]. The harmonic oscillator basis method have
been applied to the description of the bound and contin-
uum spectrum of the halo nucleus 6He [30], and three-
body capture [31] of this nucleus. The hyperspherical
R-matrix method was also applied to the description of
two-neutron emission of the 16Be halo nucleus [32], and
α + α + n+208Pb four-body scattering, breakup and fu-
sion processes [33] as an alternative to complex range
Gaussian basis [34] method. As an astrophysical applica-
tion, in Ref. [35] the hyperspherical adiabatic expansion
method was used for the estimation of relative produc-

tion rates and abundance of the 6He, 9Be and 12C nuclei
in a three-body model.

In Sec. II we describe the model, in Sec. III we discuss
obtained numerical results and finally, in the last section
we draw conclusions.

II. THEORETICAL MODEL

A. Cross sections of the radiation capture process

The cross sections of the radiative capture process
reads

σE(λ) =
∑

JiTiπi

∑

JfTfπf

∑

Ωλ

(2Jf + 1)

[I1] [I2]

32π2(λ+ 1)

h̄λ ([λ]!!)
2 k2λ+1

γ C2
s

×
∑

lωIω

1

k2ωvω
| 〈ΨJfTfπf ‖MΩ

λ ‖ΨJiTiπi

lωIω
〉 |2, (2)

where Ω =E or M (electric or magnetic transition), ω
denotes the entrance channel, kω, vω, Iω are the wave
number, velocity of the α − d relative motion and the
spin of the entrance channel, respectively, Jf , Tf , πf (Ji,
Ti, πi) are the spin, isospin and parity of the final (ini-
tial) state, I1, I2 are channel spins, kγ = Eγ/h̄c is the
wave number of the photon corresponding to the energy
Eγ = Eth + E with the threshold energy Eth = 1.474

MeV. The wave functions ΨJiTiπi

lωIω
and ΨJfTfπf represent

the initial and final states, respectively. The reduced ma-
trix elements are evaluated between the initial and final
states. We also use short-hand notations [I] = 2I+1 and
[λ]!! = (2λ+ 1)!!.

Constant C2
s is the spectroscopic factor [36]. As ar-

gued in Ref. [14], if the two-body potentials of the model
correctly reproduce experimental phase shifts in the par-
tial waves and physical bound state energies of the two-
body subsystems, then a value of the spectroscopic factor
must be taken equal to 1. This reflects the fact that the
potential parameters already include many-body effects.
Accordingly, the factor is set equal to 1.

The analytical expressions of the E1 and E2 electric-
transition operators, including isospin transition opera-
tors and their matrix elements in the three-body model
have been described in Ref. [22]. For the sake of brevity
we refer to that paper for the details of the model.

The astrophysical S-factor of the process is expressed
in terms of the cross section as [37]

S(E) = E σE(λ) exp(2πη), (3)

where η is the Coulomb parameter.
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B. Reaction rates

The reaction rate Na(σv) is estimated according to
[36, 37]

NA(σv) = NA
(8/π)1/2

µ1/2(kBT )3/2

∫ ∞

0

σ(E)E exp(−E/kBT )dE,

(4)

where kB is the Boltzmann constant, T is the tempera-
ture, NA = 6.0221×1023mol−1 is the Avogadro number.
The reduced mass is written as µ = AmN with the cor-
responding reduced mass number A = A1A2/(A1 + A2)
for the α + d system, where A1 = 2 and A2 = 4. Con-
sequently, a value of A = 4/3 is fixed. When a variable
kBT is expressed in units of MeV it is convenient to use
a variable T9 for the temperature in units of 109 K ac-
cording to the equation kBT = T9/11.605 MeV. In our
calculations T9 varies in the interval 0.001 ≤ T9 ≤ 10.
After substitution of these variables the above integral

for the reaction rates can be expressed as:

NA(σv) = 3.7313× 1010A−1/2 T
−3/2
9

×
∫ ∞

0

σ(E)E exp(−11.605E/T9)dE. (5)

III. NUMERICAL RESULTS

A. Details of the calculations

Calculations of the cross section and astrophysical S-
factor have been performed under the same conditions
as in Ref.[20]. The radial wave function of the deuteron
is the solution of the bound-state Schrödinger equation
with the central Minnesota potential VNN [38, 39] with
h̄2/2mN = 20.7343 MeV fm2. The Schrödinger equation
is solved using a highly accurate Lagrange-Laguerremesh
method [40]. It yields Ed=-2.202 MeV for the deuteron
ground-state energy with the number of mesh points N =
40 and a scaling parameter hd = 0.40.
The scattering wave function of the α− d relative mo-

tion is calculated with a deep potential of Dubovichenko
[41] with a small modification in the S-wave [15]:

V
(S)
d (R) = −92.44 exp

(

−0.25R2
)

MeV. The potential

parameters in the 3P0,
3P1,

3P2 and 3D1,
3D2,

3D3 par-
tial waves are the same as in Ref. [41]. The potential
contains additional states in the S- and P -waves for-
bidden by the Pauli principle. The above modification
of the S-wave potential reproduces the empirical value
Cαd = 2.31 fm−1/2 of the asymptotic normalization coef-
ficient (ANC) of the 6Li(1+) ground state derived from
α− d elastic scattering data [42].
The final 6Li(1+) ground-state wave function was cal-

culated using the hyperspherical Lagrange-mesh method
[23, 24, 43] with the same Minnesota NN-potential. For
the α−N nuclear interaction the potentials of Voronchev
et al. (Model A) [44] and Kanada et al. (Model B)

[45] were employed, which contain a deep Pauli-forbidden
state in the S-wave. The potentials were slightly renor-
malized by a scaling factors 1.014 (Model A) and 1.008
(Model B) to reproduce the experimental binding en-
ergy Eb=3.70 MeV. The Coulomb interaction between α
and proton is taken as 2e2 erf(0.83R)/R [39]. The cou-
pled hyperradial equations are solved with the Lagrange-
mesh method [23, 40]. The hypermomentum expansion
includes terms up to a large value of Kmax, which en-
sures a good convergence of the energy and of the T = 1
component of 6Li. For the treatment of Pauli forbidden
states in the three-body system we employ a method of
orthogonalizing pseudopotentials (OPP) [46] as an alter-
native to the method of supersymmetric transformation
(SUSY) [47].
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FIG. 1. Convergence of the 6Li ground state energy with
respect to Kmax within Models A and B

In Fig. 1 we display the convergence of the 6Li ground
state energy with respect to the maximal hypermomen-
tum Kmax. In particular, for Kmax=20 the level of con-
vergence is better than 1% within Model A which is based
on the α − N potential of Voronchev et al. [44]. In the
case of Kmax=24, the level of convergence is better than
0.2%, while for the Kmax=30, it is 0.1%. The same con-
vergence behavior is observed within Model B with the
α − N potential of Kanada et al.. One can conclude
that the energy of the three-body system is well con-
verged already at Kmax=20. At the same time, the norm
square of the T=1 isotriplet components of the three-
body wave function, which is important for the isospin
forbidden E1-transition, is within (5.3-5.4)E-3 and (4.2-
4.3)E-3 in Models A and B, respectively, for the values
of Kmax=12-30. For the case of Kmax = 24 the ground
state is essentially spin triplet (96 %). The matter r.m.s.
radius of the ground state (with 1.4 fm as α radius) is

found as
√
r2 ≈ 2.25 fm with the potential of Ref. [44] or

2.24 fm with the potential of Ref. [45], i.e. values slightly
lower than the experimental value 2.32 ± 0.03 fm [48].
The isotriplet component in the 6Li ground state has a
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squared norm 5.3 × 10−3 with the potential of Ref. [44]
(Model A) and 4.2× 10−3 with the potential of Ref. [45]
(Model B).

B. Estimation of the astrophysical S-factor

In Fig. 2 we display E1 astrophysical S-factors for the
direct α + d →6Li+γ capture process within Model A
from the initial partial 3P0,

3P1,
3P2 scattering waves to

the T=1 (isotriplet) components of the final ground state
of 6Li.
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FIG. 2. Partial E1 astrophysical S-factors of the direct α +
d →6Li+γ capture process within Model A (see text).

At low astrophysical energies, the E2 cross section is
very sensitive to the asymptotic behavior of the overlap
integrals of the deuteron wave function Ψd and the three-
body wave functions Ψ1M+

f for the L = 0 and L = 2 par-
tial waves up to large α−d distances R. The asymptotic
normalization coefficients (ANCs) of the 6Li nucleus in
the α + d channel can be extracted within the effective
range expansion method [49, 50] or from the analytical
continuation of the scattering amplitude [42]. In contrast
to the convergence of the three-body energy, the conver-
gence of the asymptotics of the three-body wave function
is quite slow and requires many additional three-body
channels with large orbital angular momenta. Our results
show that the overlap integrals of the three-body and the
deuteron wave functions for the cases of Kmax = 20 and
Kmax = 24 are identical up to the distance of R = 5.5
fm, however they behave differently beyond the inter-
nal region. The values of the S-wave overlap integral for
Kmax = 20 are 4.2 × 10−3, 1.2 × 10−5, 2.5 × 10−8 and
2.2 × 10−13 fm−1/2 at R=10, 20, 30 and 40 fm, respec-
tively. For the case of Kmax = 24 we have estimations of
4.6 × 10−3, 1.9 × 10−5, 5.0 × 10−8 and 1.2 × 10−11, re-
spectively. These numbers should be compared with the
correct asymptotics of the overlap integral, i.e. 5.7×10−3,
1.1 × 10−4, 3.0 × 10−6 and 9.5 × 10−8 fm−1/2 at R=10,
20, 30 and 40 fm, respectively. Our further study shows

that even Kmax = 30 results are far from the correct
asymptotics: the corresponding numbers are 5.0× 10−3,
3.3×10−5, 1.0×10−7 and 2.3×10−11 fm−1/2, respectively.
As we can see the asymptotics is improved with increas-
ing Kmax, but very slowly. This analysis demonstrates
that in order to have the correct three-body asymptotics,
one may have to go as high as Kmax=40, which would re-
quire huge computer resources, especially when calculat-
ing the Raynal-Revai coefficients in the developed model.
However, there is an alternative way, which we use in our
study of the capture process. Namely, Kmax is fixed at
24 and beyond R=5.5 fm the overlap integral for the each
three-body channel with ly = 0 and 2 (corresponding to
the S- and D-wave α-d relative motion) is replaced by
its known asymptotic expression. Then this number is
multiplied by the corresponding spin-angular matrix ele-
ment of the E2-transition operator. The results obtained
this way for the astrophysical E2 S-factor will be close to
that obtained using the three-body wave function with
the correct asymptotic behavior.
The overlap integrals are written as

IL(R) = 〈[Ψd ⊗ YL(ΩR)]
1M |Ψ1M+

f 〉, (6)

where the integration is done over internal coordinates
of the deuteron and the angular part of the variable R.
In the present three-body model, over the interval 5 −
10 fm IL(R) follows the expected asymptotic behavior

C
(L)
αd W−ηb,L+1/2(2kbR)/R, where ηb and kb are the Som-

merfeld parameter and wave number calculated at the
separation energy 1.474 MeV of the 6Li bound state into
α and d [20]. The values of the S-wave and D-wave
asymptotic normalization coefficients (ANC) have been
estimated for different values of matching point R0. We
found that S-wave ANC is maximal (consequently op-

timal) for the matching point at 5.5 fm: C
(0)
αd = 2.116

fm−1/2 and C
(0)
αd = 2.051 fm−1/2 for Model A and Model

B, respectively. The first number is slightly larger than

C
(0)
αd ≈ 2.05 fm−1/2 [20], obtained with R0 = 7.75 fm

and in reasonable agreement with the value C
(0)
αd ≈ 2.30

fm−1/2 extracted in Ref. [42] from experimental data on
α + d scattering. The estimated values of D-wave ANC
are less than the corresponding values of the S-wave ANC
by two orders of magnitude and vary in the range between
2.160 × 10−2 and 2.175 × 10−2 fm−1/2 for model A for
matching points from R0 =5.5 fm to 7.5 fm. Model B
yields the range between 2.179× 10−2 and 2.188× 10−2

fm−1/2, respectively.
In Fig. 3 the overlap integrals I0(r) and I2(r) with

the initial three-body and the asymptotics corrected at
R0 = 5.5 fm, within Model A are displayed. The S-wave
overlap integral changes the sign at small distances due
to orthogonality to the α − d Pauli-forbidden state, this
is why the absolute values of the overlap integrals are
shown. As can be seen from the figure, beyond about
10 fm the absolute value of IL(R) decreases faster than
the correct asymptotics. Hence, within the three-body
model, the E2 astrophysical S-factor is underestimated at
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FIG. 3. Overlap integral with the initial three-body and the
corrected (at R0=5.5 fm) asymptotics within Model A.

low collision energies. This is the motivation to estimate
the E2 S-factor with corrected asymptotics of the overlap
integral.

0.01 0.1 1
10-12

10-11

10-10

10-9

10-8

10-7

10-6

 3S1

 3D1

 3D2

 3D3

 Sum

 

S(
E)

 (M
eV

 b
)

E (MeV)

 

FIG. 4. Partial E2 astrophysical S-factors of the direct α +
d →6Li+γ capture process within Model A with the corrected
asymptotics of the overlap integral.

In Fig. 4 we show E2 astrophysical S-factors for the
direct α + d →6Li+γ capture process within Model A
from the initial 3S1,

3D1,
3D2,

3D3 partial waves to the
ground state of 6Li with the corrected asymptotics of
I0(R) and I2(R) at a distance R0 = 5.5 fm. As can
be seen from the figure, at low energies the contribution
of the partial 3S1 α + d configuration is less than the
contributions of partial D-waves at least by an order of
magnitude. However, the S-wave contribution has a weak
energy dependence, while the smallest 3D1 wave contri-
bution increases sharply from 5 × 10−11 up to 6 × 10−8

MeV b within the same energy interval.
The influence of the D-wave correction to the asymp-

totics for the E2 S-factor is mostly important at low ener-
gies. The results for the E2 S-factor from the initial 3S1

α-d scattering state increases several times through the
correction to the D-wave asymptotics. However, it is still
small in comparison with the E2 S-factor from the initial
D-wave α-d scattering states. In Model A at energy E=1
keV the E2 S-factor for the initial 3S1 α-d scattering state
increases from 1.55×10−12 to 5.96×10−12 MeV b, while
the total E2 S-factor changes slightly from 2.042× 10−10

to 2.068 × 10−10 MeV b. At the same time, the correc-
tion to the S-wave asymptotics sharply enhances the E2
S-factor from 2.537× 10−11 to 2.042× 10−10 MeV b due
to the initial D-wave α-d scattering states.
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FIG. 5. Relative contributions of the E1 and E2 astrophysical
S-factors of the direct α+ d →

6Li+γ capture process within
Model A in comparison with available experimental data.

In Fig. 5 we compare the E1 and E2 transition com-
ponents of the S-factor with available experimental data,
including recent data from Refs. [8, 9]. As can be seen
from the figure, at low energies the E1 transition domi-
nates even with corrected asymptotics of the overlap inte-
gral for the E2 transition, while at higher energies the E2
component is stronger. Finally, in Fig. 6 we compare the
obtained theoretical results for the astrophysical S-factor
of the direct α+ d →6Li+γ capture process with experi-
mental data from Refs. [8–10, 51, 52]. One can note that
Figs. 5 and 6 are very similar to Figs. 2 and 3 of Ref. [20],
respectively. In fact, presently we include also a correc-
tion to the D-wave asymptotics of the overlap integral.
As discussed above the influence of the D-wave correction
to the asymptotics on the S-factor is about 1%

As was noted in Ref. [20], the E2 S-factor can be en-
hanced owing to the D-wave components of the deuteron,
4He and the final 6Li nucleus with the help of tensor
forces in microscopic ab − initio models. Together with
the aforementioned weak dependence of the E2 S-factor
from the initial S-wave at very low energies this can lead
to a larger S-wave contribution for the process at low
astrophysical energies.
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FIG. 6. Theoretical astrophysical S-factor for the direct
α + d →6Li+γ capture process within Models A and B in
comparison with available experimental data.

C. Reaction rates and abundance

In Table I we give theoretical estimations for the
d(α, γ)6Li reaction rates in the temperature interval 106

K ≤ T ≤ 1010 K (0.001 ≤ T9 ≤ 10) calculated with the
two α+N potentials of Voronchev et al. [44] (Model A)
and Kanada et al [45] (Model B). In the second and third
columns of the table we give ”the most effective energy”
E0 and the width of the Gamov window ∆E0 (5). They
are expressed as [36]:

E0 =
(µ

2

)1/3
(

πe2Z1Z2kBT

h̄

)2/3

= 0.122 (Z2
1Z

2
2A)

1/3T
2/3
9 [MeV], (7)

and

∆E0 = 4 (E0kBT/3)
1/2

= 0.2368 (Z2
1Z

2
2A)

1/6T
5/6
9 [MeV]. (8)

Now we discuss the influence of the D-wave correction
of the overlap integral on the reaction rates. The theoret-
ical estimations for the reaction rates increase after the
correction to the D-wave asymptotics of the overlap inte-
gral by no more than 1% at low temperatures T9 ≤ 0.1.
In other words, its influence is of the same order as for
the E2 S-factor. However, we have shown, that a contri-
bution of the initial 3S1 α-d scattering state to the E2
S-factor can increase several times after the correction
to the D-wave asymptotics of the overlap integral at low
energies. This feature is very important for the develop-
ment of the three-body and microscopic models including
tensor forces which give rise to the D-wave components
of the final state wave function.
In Fig. 7 we display the estimated reaction rates of

the direct α+ d →6Li+γ capture process within Models
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FIG. 7. Reaction rates of the direct α + d →
6Li+γ capture

process within Models A and B normalized to the NACRE
1999 experimental data.

A and B normalized to the standard NACRE 1999 ex-
perimental data [53]. For comparison we also display the
lines corresponding to the adopted values of the NACRE
II 2013 data [54], new LUNA 2017 [55] data and data fit
from Ref. [56]. As can be seen from the figure, our results
obtained within Models A and B show the same tempera-
ture dependence at low values of T9, as the newest direct
data of the LUNA 2017 [55] and differs from the data
NACRE II 2013 [54] and the data fit in Ref. [56]. Con-
sequently, the corresponding energy dependence of the
astrophysical S-factor, obtained in the developed theo-
retical model is mostly consistent with the last direct
data of the LUNA collaboration [55].
For the estimation of the primordial abundance of the

6Li element we use the well known PArthENoPE [57]
public code, which however operates only with an ana-
lytical form of the reaction rate dependence on the tem-
perature T9. This way the theoretical reaction rate is ap-
proximated within 1.84% (Model A) and 2.46 % (Model
B) using the following analytical formula:

NA(σv) = p0T
−2/3
9 exp

(

−7.423T
−1/3
9

)

×
[

1 + p1T
1/3
9 + p2T

2/3
9 + p3T9 + p4T

4/3
9

+ p5T
5/3
9 + p6T

2
9 + p7T

7/3
9

]

+p8T
−3/2
9 exp

(

−7.889T−1
9

)

. (9)

The coefficients of the analytical polynomial approxima-
tion of the d(α, γ)6Li reaction rates estimated with the
α + N potential of Voronchev et al. (Model A) and
Kanada et al. (Model B) are given in Table II in the
temperature interval (0.001 ≤ T9 ≤ 10).
On the basis of the theoretical reaction rates and with

the help of the PArthENoPE [57] public code we have
estimated the primordial abundance of the 6Li element.
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TABLE I. Theoretical estimations of the direct d(α, γ)6Li capture reaction rate in the temperature interval 106 K ≤ T ≤ 1010

K (0.001 ≤ T9 ≤ 10).

T9 E0 (MeV) ∆E0 (MeV) NA(σv) (cm
3mol−1s−1) T9 E0 (MeV) ∆E0 (MeV) NA(σv) (cm

3mol−1s−1)

Model A Model B Model A Model B

0.001 0.002 0.001 3.47 × 10−30 2.37 × 10−30 0.120 0.052 0.054 1.83 × 10−5 1.38 × 10−5

0.002 0.003 0.002 1.04 × 10−23 7.14 × 10−24 0.130 0.055 0.057 2.68 × 10−5 2.03 × 10−5

0.003 0.004 0.003 1.42 × 10−20 9.74 × 10−21 0.140 0.058 0.061 3.79 × 10−5 2.88 × 10−5

0.004 0.005 0.003 1.33 × 10−18 9.18 × 10−19 0.150 0.060 0.064 5.21 × 10−5 3.96 × 10−5

0.005 0.006 0.004 3.36 × 10−17 2.32 × 10−17 0.160 0.063 0.068 6.96 × 10−5 5.31 × 10−5

0.006 0.007 0.004 3.93 × 10−16 2.72 × 10−16 0.180 0.068 0.075 1.17 × 10−4 8.96 × 10−5

0.007 0.008 0.005 2.79 × 10−15 1.93 × 10−15 0.200 0.073 0.082 1.83 × 10−4 1.41 × 10−4

0.008 0.009 0.006 1.41 × 10−14 9.77 × 10−15 0.250 0.085 0.099 4.53 × 10−4 3.54 × 10−4

0.009 0.009 0.006 5.52 × 10−14 3.83 × 10−14 0.300 0.096 0.115 9.17 × 10−4 7.23 × 10−4

0.010 0.010 0.007 1.79 × 10−13 1.25 × 10−13 0.350 0.106 0.131 1.62 × 10−3 1.29 × 10−3

0.011 0.011 0.007 5.00 × 10−13 3.48 × 10−13 0.400 0.116 0.146 2.62 × 10−3 2.10 × 10−3

0.012 0.011 0.008 1.24 × 10−12 8.66 × 10−13 0.500 0.134 0.176 5.68 × 10−3 4.60 × 10−3

0.013 0.012 0.008 2.80 × 10−12 1.96 × 10−12 0.600 0.152 0.205 1.06 × 10−2 8.67 × 10−3

0.014 0.012 0.009 5.82 × 10−12 4.08 × 10−12 0.700 0.168 0.233 1.79 × 10−2 1.49 × 10−2

0.015 0.013 0.010 1.13 × 10−11 7.94 × 10−12 0.800 0.184 0.260 2.88 × 10−2 2.43 × 10−2

0.016 0.014 0.010 2.08 × 10−11 1.46 × 10−11 0.900 0.199 0.287 4.43 × 10−2 3.80 × 10−2

0.018 0.015 0.011 6.11 × 10−11 4.30 × 10−11 1.000 0.213 0.313 6.56 × 10−2 5.70 × 10−2

0.020 0.016 0.012 1.55 × 10−10 1.09 × 10−10 1.500 0.279 0.439 2.72 × 10−1 2.45 × 10−1

0.025 0.018 0.015 9.90 × 10−10 7.03 × 10−10 2.000 0.338 0.558 6.04 × 10−1 5.50 × 10−1

0.030 0.021 0.017 4.08 × 10−9 2.91× 10−9 2.500 0.393 0.672 9.88 × 10−1 8.99 × 10−1

0.040 0.025 0.021 3.23 × 10−8 2.32× 10−8 3.000 0.443 0.782 1.39 1.26

0.050 0.029 0.026 1.41 × 10−7 1.02× 10−7 4.000 0.537 0.994 2.26 2.02

0.060 0.033 0.030 4.35 × 10−7 3.18× 10−7 5.000 0.623 1.197 3.24 2.87

0.070 0.036 0.034 1.07 × 10−6 7.88× 10−7 6.000 0.704 1.393 4.35 3.83

0.080 0.040 0.038 2.26 × 10−6 1.67× 10−6 7.000 0.780 1.584 5.54 4.87

0.090 0.043 0.042 4.27 × 10−6 3.17× 10−6 8.000 0.853 1.771 6.78 5.95

0.100 0.046 0.046 7.38 × 10−6 5.51× 10−6 9.000 0.922 1.953 8.05 7.06

0.110 0.049 0.050 1.19 × 10−5 8.94× 10−6 10.00 0.989 2.133 9.31 8.16

TABLE II. The fitting coefficients of the analytical approximation for the direct d(α, γ)6Li capture reaction rate.

Model p0 p1 p2 p3 p4 p5 p6 p7 p8

A 6.004 -2.558 34.730 -115.482 205.801 -169.456 71.428 -11.614 42.354

B 5.154 -5.830 52.356 -163.500 272.839 -218.444 89.174 -14.107 41.384

If we adopt the Planck 2015 best fit for the baryon density
parameter Ωbh

2 = 0.02229+0.00029
−0.00027 [58] and the neutron

life time τn = 880.3± 1.1 s [59], for the 6Li/H abundance
ratio we have an estimation from 0.66× 10−14 to 0.68×
10−14 within Model A. Model B yields an estimation from
0.49× 10−14 to 0.51× 10−14. The results of Model A are
mostly consistent with the new estimation 6Li/H=(0.80±
0.18) × 10−14 of the LUNA collaboration [55] than the
models based on the exact mass prescription method [56]

6Li/H=(0.90−1.8)×10−14. Finally, using this result and
the estimate of the 7Li/H abundance ratio of (5.2±0.4)×
10−10 from Ref. [60] we get 6Li/7Li=(1.30±0.12)×10−5

which agrees with the standard estimate from the BBN
model [3].

As noted before the OPPmethod [46] has been used for
the treatment of Pauli forbidden states in the three-body
system resulting from the S-wave α−N deep interaction
potential. In addition, an alternative method for elim-
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inating the three-body Pauli forbidden states based on
the SUSY method [47] has been tested. The results indi-
cated that the SUSY method yields too small isotriplet
(T = 1) component of the 6Li ground state which play the
main role in the description of E1 S-factor, although the
energy value of the ground state was reproduced at the
same level as in the case of the OPP method. Indeed, the
norm square of the isotriplet component was estimated to
be 1.102×10−4 and 1.104×10−4 within Models A and B,
respectively. These numbers are about 50 and 40 times
less than the corresponding estimations obtained within
the OPP method. A similar level of decreasing was ob-
served for the corresponding E1 S-factor, although the
E2 S-factor was very close to the one resulting from the
OPP method. Most likely, the SUSY method suppresses
important isotriplet components of the 6Li ground state
wave function. These results indicate that the isospin
forbidden E1-transition depends strongly on the method
used for elimination of Pauli forbidden states in many
body systems.

IV. CONCLUSIONS

The astrophysical direct capture process α+d →6Li+γ
has been studied in the three-body model. The reaction
rates, E1 and E2 astrophysical S-factors as well as the
primordial abundance of the 6Li element have been es-
timated. The asymptotics of the overlap integral in the
S- and D-waves have been corrected. This increased the
E2 S-factor by an order of magnitude at low astrophys-
ical energies mostly due to the S-wave corrections. The
D-wave correction yields only about 1% increase to the

total S-factor and the reaction rates at low energies. To-
gether with the corrected E2 S-factor, the contribution of
the E1-transition operator to the S-factor from the initial
isosinglet states to the small isotriplet components of the
final 6Li(1+) bound state is shown to be able to repro-
duce the new experimental data of the LUNA collabora-
tion within the experimental error bars. The theoretical
reaction rates have the same temperature dependence at
low temperatures as the newest direct 2017 data of the
LUNA collaboration. For the abundance ratio 6Li/H we
have obtained an estimation (0.67± 0.01)× 10−14 , con-
sistent with the new estimation of the LUNA collabora-
tion and much lower than the results of the models based
on the exact mass prescription. Further improvement of
the theoretical estimations of the reaction rates and 6Li
abundance is expected with the help of NN-tensor forces
within ab-initio calculations. It is established that the
isospin forbidden E1-transition is highly sensitive to the
method used for treating the Pauli forbidden states in
three-body systems.
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