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An interpretation of the charge dependent correlations sensitive to the Chiral Magnetic

Effect (CME) – the separation of the electric charges along the system magnetic field (across

the reaction plane) – is ambiguous due to a possible large background (non-CME) effects.

The background contribution is proportional to the elliptic flow v2; it is the largest in mea-

surements relative to the participant plane, and is smaller in measurements relative to the

flow plane determined by spectators, where the CME signal, on opposite, is likely larger.

In this note I discuss a possible strategy for corresponding experimental measurements, and

list and evaluate different assumptions related to this approach.

I. INTRODUCTION

The search for the chiral magnetic effect (CME) [1, 2] – the separation of the electrical charges

along the magnetic field in a chirally asymmetric medium – is a very active topic in the field

of heavy ion collisions for more than 10 years (for recent reviews, see [3, 4]). The CME states

that particles originating from the same “P-odd domain” are preferentially emitted either along or

opposite to the magnetic field direction depending on the particle charge. As only a few particles

(originating from the same domain) are correlated, the signal is expected to be small and one has to

suppress other charge-dependent correlations, such as due to the resonance decays, charge ordering

in jets, etc.. The so-called “gamma” correlator suggested in Ref. [5] was designed to do just that

– to suppress non-CME correlation at least by a factor ∼ v2 – the typical value of elliptic flow.

γαβ = 〈cos(φα + φβ − 2Ψ)〉 = 〈cos(φα −Ψ) cos(φβ −Ψ)〉 − 〈sin(φα −Ψ) sin(φβ −Ψ)〉 , (1)

where φα and φβ are the azimuthal angles of two charged particles, α and β taking values “+” or

“−” denote the charge. Ψ denotes the azimuth of the plane across which the charge separation

is measured. For measurements relative to the reaction plane (perpendicular to the direction of

the magnetic field) only “sin-sin” term has contribution from the CME, while all other non-CME

sources contribute to both, “sin-sin” and “cos-cos” terms and thus largely cancel. The remaining

difference between “in-plane” (“cos-cos”) and “out-of-plane” (sin-sin”) correlations constitutes the

background to the CME measurements via gamma correlator. The background is zero in case of
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no elliptic flow present in the system.

The experimental measurements [6–8] are in qualitative agreement with the theoretical expec-

tations, but a reliable separation of the CME signal from background effects is still missing. As

already mentioned, the background correlations depend on the magnitude of elliptic flow and as

such are largest in the measurements performed relative to the so-called participant plane, and

should be smaller in measurements relative to the spectator flow plane. On opposite, the CME

signal, driven by the magnetic field, is likely larger in measurements relative to the spectator plane,

as the magnetic field is mostly determined by spectator protons. This idea was recently and in-

dependently used in Ref. [9], where the authors attempted to estimate the CME signal from the

existing measurements as well as make prediction for the future isobar collision measurements at

RHIC. In this short note I discuss an evaluation of the CME signal based on the same general

idea from a different perspective. In particular, I discuss in detail the role of flow fluctuations in

measurements relative to different flow planes and by different methods, as well as explicitly list

different assumptions required in this approach, some of which are more important than others.

II. DEFINITIONS AND THE MAIN IDEA

I start with more definitions and recalling the derivation of the background contribution to the

gamma correlator. The correlator defined in Eq.1 includes contributions from charge independent

effect (e.g. dipole flow). These are poorly known and not very important for the CME search. Due

to this only the charge dependent part is discussed here

∆γ = γopposite − γsame. (2)

As both, the CME signal and the background correlations are small, one can safely assume that

∆γ = ∆γBG +∆γCME, (3)

neglecting, in principle possible, interplay between the two effects. The background contribution

to ∆γ very generally can be described as that due to “flowing clusters” [5], when both particles, α

and β belong to the same “cluster”:

∆γBG = ∆ 〈cos(α+ β − 2Ψ)〉 = ∆ 〈cos(α+ β − 2φclust) cos(2φclust − 2Ψ)〉α,β ∈ clust , (4)

where to simplify notations the symbols α and β are used instead of φα and φβ. Note that the

mean of the product of two cosines in general does not factorize. The mean can be non-zero either
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in the case of non-zero elliptic flow of clusters 〈cos(2φclust − 2Ψ)〉 (see, for example, [10]), or due to

the fact that the “kinematic” factor 〈cos(α+ β − 2φclust)〉 varies with the cluster emission angle,

or both (as in the case of the so-called “local charge conservation” background [11]). The first

assumption about background is

(A1a) ∆γBG ∝ ṽ2;clust, where I used “tilde” to denote the fact that there might be no factorization

in Eq. 4 in which case this flow coefficient also accounts for the emission angle dependence of the

“kinematic factor”.

The assumption (A1a) by itself is not very useful without further assumption on ṽ2;clust:

(A1b) ṽ2;clust ∝ v2, where v2 is the average (over some rapidity and pT ranges) elliptic flow of

charged particles. One can combine (A1a) and (A1b) into one assumption

(A1) ∆γBG = b v2, where b is the proportionality constant.

This is the assumption employed almost in any attempt to disentangle background effects from

the CME signal, e.g. used by ALICE and CMS Collaborations [12, 13] in the estimates of the

CME signal with the Event Shape Engineering technique [14]. Reiterate, that (A1a) assumes linear

dependence of the background contribution to ∆γ on ṽ2;clust, and (A1b) assumes the proportionality

of the latter to the elliptic flow of charged particles.

Due to the initial state fluctuations, the elliptic flow, as well as the elliptic flow fluctuations,

measured relative to different flow symmetry planes, are different. Then it becomes convenient to

modify the correlator, namely consider, (∆γ/v2) with v2 calculated in the same way as the γ itself:

(∆γ/v2) =
〈cos(α+ β − 2ψ)〉
〈cos(2a− 2ψ)〉 , (5)

where, for simplicity, the sign ∆ in the numerator is omitted (here and everywhere below in the

expressions involving particles α and β the difference between opposite and same charge combina-

tions is assumed); a stands for the same set of particles as α and β, and the average is performed

inclusively of all charges. In the denominator measurement it is assumed that the non-flow con-

tribution is eliminated/suppressed. Note that the calculations of this ratio does not involve any

explicit correction for the so-called reaction plane resolution. To emphasize this, here and below all

the flow planes that include statistical fluctuations (due to finite number of particles used for their

determination [15]) are denoted with lower case ψ, and the angles that do not include statistical

fluctuations (depend only on specific initial configuration) with upper case Ψ.

An important feature of the ratio Eq. 5 is that in the case of zero CME-signal (pure background)

this ratio is the same irrespective of what is used for the ψ and how strongly (or weakly) elliptic

flow fluctuates relative to this plane. Namely, in the no-CME case this ratio equals b – the
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proportionality coefficient in the assumption A1. For example, if instead of ψ the azimuthal angle

of a particle c is used, this ratio equals

(∆γ/v2)c =
〈cos(α+ β − 2c)〉
〈cos(2a− 2c)〉 =

b
〈

v22,PP

〉

〈

v22,PP

〉 = b, (6)

where again for shorter notations the particle symbol is used to denote the particle azimuthal angle.

Note, that this case corresponds to elliptic flow measured with respect to the participant plane,

and
〈

v22,PP

〉

= v22{2}. For simplicity it is also assumed that the flow of both particles, a and c are

the same.

Instead of ψ in Eq. 5 one can use the “event plane” angle ψ2,EP (the azimuth of the flow vector

in another subevent), or, what is more relevant for this discussion, the spectator flow angle ψ1,SP

(∆γ/v2)SP =
〈cos(α+ β − 2ψ1,SP)〉
〈cos(2a− 2ψ1,SP)〉

. (7)

Under the “background scenario” all these ratios equal one to another. If two different measure-

ments yield different ratios this would immediately indicate a contribution different from that of

“background”, namely, the CME. Note that in calculations of the denominators (flow with respect

to different angles) “non-flow” contribution should be eliminated/suppressed (e.g. by imposing a

rapidity gap in measurements or by any other technique). If two ratios differ one can try to estimate

the CME signal. This will rely on further assumptions, but as discussed below, the requirement to

“accuracy” of those is lower.

In the case of a non-zero CME signal the ratios Eq. 5 calculated relative to different angles can

be different. For concreteness let us consider the double ratio

(∆γ/v2)SP
(∆γ/v2)c

=
〈cos(α+ β − 2ψ1,SP)〉 / 〈cos(2a− 2ψ1,SP)〉

〈cos(α+ β − 2c)〉 /
〈

v22,PP

〉 , (8)

where as above it is assumed the same elliptic flow of particles a and c. Recall also, that the

particles a and c flowing in the participant plane. For the discussion of the CME contribution, I

introduce the angle Ψ2,B for the orientation of the plane perpendicular to the magnetic field (across

which the maximum charge separation occurs). This angle is not measurable, and one needs to

make further assumptions to relate the obtained expressions to the experimental measurements.

Then, decomposing the correlators in background and the signal parts similarly to Eq. 3

〈cos(α+ β − 2c)〉 = 〈cos(α+ β − 2c)〉BG + 〈cos(α+ β − 2c)〉CME = b
〈

v22,PP

〉

+∆γCMEv2{Ψ2,B}, (9)

where ∆γCME = 〈cos(α+ β − 2Ψ2,B)〉CME and v2{Ψ2,B} = 〈cos(2c− 2Ψ2,B)〉. In a similar way

〈cos(α+ β − 2ψ1,SP)〉 = b 〈cos(2a− 2ψ1,SP)〉+∆γCME 〈cos(2Ψ2,B − 2ψ1,SP)〉 (10)
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Combining everything together

(∆γ/v2)SP
(∆γ/v2)c

= 1 + fCME

PP

(

〈cos(2Ψ2,B − 2ψ1,SP)〉
〈

v22,PP

〉

〈cos(2a− 2ψ1,SP)〉 v2{Ψ2,B}
− 1

)

(11)

where

fCME

PP
=

〈cos(α+ β − 2c)〉CME

〈cos(α+ β − 2c)〉 (12)

is the fraction of the CME signal in 3-particle correlator measured relative to the second harmonic

participant plane. The angle ψ1,SP fluctuates around the spectator plane Ψ1,SP, but one can see

that in the expression Eq, 11 the corresponding event plane resolution factors cancel out and

(∆γ/v2)SP
(∆γ/v2)c

= 1 + fCME

PP

(

〈cos(2Ψ2,B − 2Ψ1,SP)〉
〈

v22,PP

〉

v2{Ψ1,SP}v2{Ψ2,B}
− 1

)

, (13)

where v2{Ψ1,SP} = 〈cos(2a− 2Ψ1,SP)〉.

III. DISCUSSION

To proceed further one has to make assumptions about the relative orientations of three angles,

Ψ2,PP, Ψ1,SP and Ψ2,B. A few “reasonable” scenarios are discussed below. First, it is instructive

to compare the centrality dependence of v2{2}, v2{4}, and v2{Ψ1,SP} [16]. Recall also that to a

good approximation (exact in the so-called Gaussian model of eccentricity fluctuations [15]), v2{4}
measures the flow relative to the true reaction plane. Experimentally [16] in midcentral collisions,

centrality ≈ 40 − 50%, v2{Ψ1,SP} is very close to v2{4}; it is much closer to v2{2} in central,

< 10%, collisions. A possible interpretation of that would be that the spectator plane is close to

the reaction plane in midcentral collisions and close to the participant plane in central collisions.

Having this in mind, one of the assumption would be

(A2) in midcentral collisions, both, the spectator plane and the magnetic field plane, coincide with

the reaction plane. In this case

(∆γ/v2)SP
(∆γ/v2)c

= 1 + fCME

PP

(

〈

v22,PP

〉

(v2{Ψ1,SP})2
− 1

)

(14)

Note that this relation really requires only coincidence of Ψ1,SP and Ψ2,B, not necessarily coincidence

with ΨRP. Then Eq. 14 is also true even if

(A3) in central collision Ψ2,B deviates from ΨRP but coincides with Ψ1,SP.

It is interesting that one has the same relation event under quite different assumption that

(A4) in central collision the spectator plane coincides with participant plane but, Ψ2,B coincides
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with ΨRP. In this case

v2{Ψ2,B}
〈cos(2Ψ2,B − 2Ψ1,SP)〉

= v2{Ψ1,SP} (15)

and one again arrives to Eq. 14.

Although in general it is difficult to get the exact value of the expression in parenthesis in

Eq. 11, based on the above assumptions (A2)-(A4), and having in mind that experimentally v2{2}
is larger than v2{ψ1,SP} by about 15%, one can conclude that for an estimate of the CME fractional

contribution to the gamma correlator fCME

PP
at the level of 5%, the ratio Eq. 5 should be measured

with an accuracy better than 1%.

Finally I make two short remarks on the experimental selection of the angles ψ1,SP and its

relation to Ψ2,B. Experimentally ψ1,SP is usually measured with zero degree calorimeters (ZDC),

most often capturing only neutrons. Then (a) an additional decorrelations between ψ1,SP and Ψ2,B

can arise due to difference in plane determined by spectator neutrons and spectator protons. If two

ZDC are used, then (b) the result might depend on how the angles from two detectors are used in

the analysis. For example using only one of ZDCs might yield ψ1,SP which is stronger correlated

with the participant plane, while combining two angle might eliminate this bias.

IV. SUMMARY

In conclusion, it is shown that measuring the ratios Eq.5 relative to the participant and spec-

tator planes can be used to determine the fraction of the CME signal in the gamma correlator

measurements. If the double ratio, Eq. 8, deviated from unity it will indicate a non-zero CME

contribution that can be further quantified under reasonable assumptions. On order to measure

the fractional CME signal at the level of about 5% one would need to measure the ratio Eq.8 free

from non-flow effect at the level better than 1%.
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