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We study the impact of the Landau Pomeranchuk Midgal (LPM) effect on the dynamics of parton
interactions in proton proton collisions at the Large Hadron Collider energies. For our investigation
we utilize a microscopic kinetic theory based on the Boltzmann equation. The calculation traces
the space-time evolution of the cascading partons interacting via semihard pQCD scatterings and
fragmentations. We focus on the impact of the LPM effect on the production of charm quarks, since
their production is exclusively governed by processes well described in our kinetic theory. The LPM
effect is found to become more prominent as the collision energy rises and at central rapidities and
may significantly affect the model’s predicted charm distributions at low momenta.

I. INTRODUCTION

Studies of relativistic collisions of heavy nuclei under-
way at the Relativistic Heavy Ion Collider at Brookhaven
and the Large Hadron Collider at CERN have provided
ample evidence for a deconfining transition of strongly in-
teracting matter into a (strongly coupled) Quark Gluon
Plasma (QGP) expected from lattice QCD calculations
(see e.g., Refs. [1–3] and references therein). These stud-
ies, both on the theoretical and the experimental fronts,
have now reached a high level of sophistication and the
quantitative determination of QGP properties [4–7] is
now in progress. Very often the results for heavy-ion
collisions are compared with those for proton proton col-
lisions at the same center of mass energy (

√
sNN ) in order

to arrive at some of these conclusions, with the rationale
that no QGP is likely to be formed in pp collisions. This
simple expectation is now under strain as more and more
indications of formation of an interacting system, emerge
in pp collisions, especially for events having a large par-
ticle multiplicity (see e.g., Refs. [8, 9]).

Is an interacting system formed in pp collisions? Re-
cently we have explored this question within Parton Cas-
cade Model (PCM) [10]. The PCM is a transport model
based on the relativistic Boltzmann equation for the time
evolution of the parton density in phase-space due to
semi-hard perturbative QCD interactions including scat-
tering and radiations [11, 12] within a leading logarithmic
approximation [13]. Our study indicated the formation
of a medium driven by a substantial amount of multiple
parton interactions, including fragmentation of partons
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after scattering. These aspects were found to be more
strongly prevalent for collisions at small impact param-
eters or with large parton multiplicities and at higher
incident beam energies. Even though the precise num-
ber of collisions and fragmentations are dependent on
the pcut-off

T
and µ0 used to regularize the pQCD cross-

sections and the fragmentations respectively, the results
are sufficiently general.
Based on these previous findings it is opportune to in-

vestigate the importance of quantum coherence effects in
parton-parton interactions, such as the Landau Pomer-
anchuk Midgal (LPM) effect [14]. The LPM effect is
known to be important for large collision systems with
lifetimes of multiple fm/c, but has commonly been ne-
glected in the microscopic study of the proton-proton
system, due to its small size and short lifetime.
Here we focus on the investigation of the LPM effect

on charm quark production in proton proton collisions.
Charm production is particularly well suited in this con-
text, since it only occurs via hard processes calculable in
pQCD and charm is conserved throughout the reaction.
The PCM was recently extended to treat the production
and medium-evolution of heavy quarks [15].
Consider a parton traversing a cloud of quarks and

gluons and undergoing multiple scatterings. If the sep-
aration between consecutive scatterings suffered by the
parton is sufficiently large so that the radiations off these
collision centers can be treated as an incoherent sum of
radiation spectra resulting from individual scatterings,
we reach what is known as the Bethe-Heitler limit [16].
If on the other hand, the scattering centers are too closely
located to each other, the observed radiation has to be
evaluated within what is known as the factorization limit,
and is a product of a single scattering spectrum from the
sum of the individual small momentum transfers from all
the individual scatterings.
The LPM effect [14] describes the results between these

two limiting regimes, by accounting for the suppression
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of the radiation relative to the Bethe-Heitler limit, when
the formation time of the radiated gluon is large com-
pared to the mean free path and thus destructive inter-
ference between the radiated spectra becomes important.
The dynamics of LPM effect on the production of light
partons (u, d, s, and g) and photons in collision of gold
nuclei at RHIC energy, within the PCM, was discussed
earlier [17–19]. That work also demonstrated that the in-
clusion of the LPM effect greatly improved the agreement
of the scaling of multiplicity distributions in pp collisions
up to 200 GeV.
We shall investigate the consequences of the LPM ef-

fect on charm production in pp collisions at
√
sNN of 0.20,

2.76, 5.02, 7.00, and 13.00 TeV. The results at RHIC en-
ergy (0.20 TeV) are included to clearly bring out the
abundance of parton production etc. at LHC energies.
There are several reasons for focusing on charm quarks.

As pointed out above, charm quarks can be produced
only from semi-hard scattering of gluons and annihilation
of a quark-antiquark pair or from a splitting of a gluon
which has a large virtuality following a semi-hard scat-
tering. The corresponding scattering matrix elements are
not singular because of the mass of the charm quark and
thus do not need any pcut-off

T
. We do realize, though,

that the momentum distribution of the charm quarks can
be modified by radiation of gluons or by scattering with
other partons, which will be affected by variation of the
pcut-off
T

used for regularizing the pQCD matrix elements
and the µ0 used for terminating the fragmentations. The
number of charm quarks which are produced is very small
and thus the probability that their number is depleted by
charm-anticharm annihilation is limited. Finally, there
is no production of charm quarks during the hadronic
phase.
We briefly discuss the basic ingredients of the PCM

model pertaining to this investigation in the next section,
results are given in Section III, and finally we summarize
our findings.

II. MODEL DESCRIPTION

The details of the parton cascade model, including its
Monte Carlo implementation VNI/BMS, have been dis-
cussed in significant detail in Refs. [11, 12], while pro-
duction of heavy quarks has been laid out in Ref. [15].
Presently, we shall just briefly summarize the features
most important to our investigation:
The parton cascade model is a transport model for the

time-evolution of an ensemble of quarks and gluons based
on the Boltzmann equation. We include 2 → 2 scatter-
ings between light quarks, heavy quarks and gluons, and
the 2 → 3 reactions via time-like branchings of the final-
state partons (see Refs. [12, 13]) following the well tested
procedure adopted in PYTHIA [20].
In the PCM, the IR-singularities in these pQCD cross-

sections are avoided by introducing a lower cut-off on the
momentum transfer pcut-off

T
= 2 GeV (please note that
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FIG. 1: (Color online) Number of collisions (a), number of
fragmentations (b) and number of charm quarks produced
per event (c) for minimum bias pp interactions as a function
of center of mass energy. The three calculations involve mul-
tiple collisions among partons by neglecting and including the
LPM effect and collisions only among primary partons with
radiations off the scattered partons.

results discussed in Refs. [15, 17] were obtained by using
a much smaller value for pcut-off

T
of about 0.7 GeV, which

increased the parton scatterings; see Fig. 4 later).

Most of the studies using VNI/BMS reported earlier were
performed using a constant value of αs = 0.3. In the
present work, we have taken αs(Q

2), as we wish to study
the momentum distribution of charm quarks for large val-
ues of transverse momenta. Details of the initial parton
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FIG. 2: (Color online) Number of collisions (a), number of
fragmentations (b) and number of charm quarks produced per
event (c) for pp interactions as a function of center of mass
energy at impact parameter equal to zero fm. The three calcu-
lations involve multiple collisions among partons by neglect-
ing and including the LPM effect and collisions only among
primary partons with radiations off the scattered partons.

distributions and the relevant matrix elements etc. have
already been discussed repeatedly [10, 12, 15] which we
closely follow.

For the sake of completeness, we recall that the 2 → 3
processes are accounted for by inclusion of radiative pro-
cesses for the final state partons in a leading logarithmic
approximation. The collinear singularities are then regu-
larized by terminating the time-like branchings, once the
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FIG. 3: (Color online) The transverse momentum spectra of
charm quarks in pp collisions at 200 GeV (a) and 2.76 TeV (b)
due to multiple collisions among partons and fragmentations
off final state quarks, with and without inclusion of LPM
effect.

virtuality of the parton drops to M2
0 (= m2

i
+ µ2

0), where
mi is the current mass of the parton (zero for gluons,
current mass for quarks) and µ0 has been kept fixed as
1 GeV. We have included g → gg, q → qg, g → qq̄, and
q → qγ branchings for which the relevant branching func-
tions Pa→bc are taken from Altarelli and Parisi [13]. The
interference of soft gluons is included by angular ordering
of radiated gluons as in PYTHIA.
Implementing the LPM effect in a semi-classical trans-

port such as the PCM is not easy. First of all, the quarks
and gluons are treated as quasi-particles in the PCM and
thus a full quantum mechanical treatment for the process
is out of question. We implement the LPM effect by as-
signing a formation time τ to the radiated particle:

τ =
ω

k2
T

, (1)

where ω is its energy and kT is its transverse momentum
with respect to the emitter. During the formation time,
the radiated particle is assigned zero cross-section and
thus it does not interact. The emitter, however contin-
ues to interact and if that happens, the radiated particle
is removed from the list and does not participate in later
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FIG. 4: (Color online) The transverse momentum spectra
of charm quarks in pp collisions at 200 GeV, with p

cut−off

T

=0.77 GeV and µ0=1 GeV (a) and with p
cut−off

T
=0.77 GeV

and µ0=0.5 GeV (b) due to multiple collisions among partons
and fragmentations off final state quarks, with and without
inclusion of LPM effect.

evolution of the system. This leads to suppression of
parton multiplication (see Refs. [17–19]). A similar pro-
cedure is adopted in the Boltzmann Approach to Mul-
tiParton Scattering, BAMPS, of the Frankfurt group [21].
This particular implementation of the LPM effect is quite
common for semi-classical transport models, but by no
means unique. An alternative method of implementing
the LPM effect by Baier, Dokshitzer, Mueller, Peigne and
Schiff (BDMPS) relies on recalculating the phase space
for the emission of the radiated gluon [22–24] (see also
Ref. [25]). Recently we have experimented with imple-
menting the LPM effect in a scheme that is assured to re-
produce the BDMPS limit of parton energy-loss [26, 27].
The energy loss suffered by charm quarks in an infinite
medium (at a fixed temperature) was well described us-
ing this formalism [28]. However, this implementation,
focussing on the evolution of the leading parton, is cur-
rently only feasible for infinite matter calculations in the
PCM and further development is required to adapt the
necessary algorithms to proton-proton or nucleus-nucleus
calculations.
Our expectation is that the LPM effect will lead to a

suppression of parton multiplication and thus to a reduc-
tion of primary-secondary or seconadary-secondary col-
lisions, where primary partons make up the initial state
of the two colliding protons and secondary partons are
the partons emerging from scatterings and subsequent
radiative interactions. It is expected that as the LPM
effect reduces the number of multiple scatterings (which
mainly produce charm quarks having low transverse mo-
menta), we should expect a lowering of the production
of charm quarks at smaller pT . In addition, the suppres-
sion of radiation of gluons through the LPM effect should
imply that charm quarks having large momenta radiate
gluons less frequently. This should lead to a hardening of
the transverse momentum spectra for charm quarks. Our
analysis is set up to confirm/refute these expectations.
In order to clearly bring out the consequences of the

LPM effect we proceed as follows: as a first step we study
the production of charm quarks with multiple parton col-
lisions and fragmentations without including the LPM ef-
fect. Next we give our results for calculations where the
LPM effect is included. We investigate whether the LPM
effect eliminates multiple parton scatterings by compar-
ing the results from the above to a calculation with only
primary-primary parton scatterings and fragmentations.
The difference of the results of these calculations should
clearly bring out the importance of multiple scatterings
of partons in proton-proton collisions and indicate the
possible emergence of an interacting medium created by
semi-hard pQCD interactions.
Finally, in order to investigate the rapidity dependence

of the LPM effect, we shall study the transverse momen-
tum distribution of charm quarks at different rapidities,
for which data have now become available.

III. RESULTS

A. Multiple scatterings and consequences of LPM

effect

An interacting medium would be characterized by par-
tons undergoing multiple interactions. This is different
from the case when we have several parton-parton in-
teractions involving only primary partons from the pro-
jectile and the target, without any further interaction
among the partons thus produced.
In Fig. 1 we show results for minimum bias collisions

of protons at several incident beam energies and show
the number of semi-hard partonic scatterings, number of
fragmentations, and the number of charm quarks pro-
duced per collision.
The first set of calculations restricts the interactions to

primary-primary collisions followed by fragmentations off
the final state partons. These results will not be affected
by assigning or not assigning a formation time (i.e, inclu-
sion or non-inclusion of LPM effect) to the radiated glu-
ons as, further scatterings are not considered. The second
set of calculations allows for primary-primary, primary-



5

10
-6

10
-5

10
-4

10
-3

d
N

/d
2
p

T
 (

G
eV

-2
)

0 2 4 6 8
10

-7

10
-6

10
-5

10
-4

10
-3

0 2 4 6 8

p
T
 (GeV)

0 2 4 6 8 10

VNI/BMS without LPM

VNI/BMS with LPM

LHCb 0.5(D
0
+D

0
)/0.565

-0.5<y<0.5 2.0<y<2.5 2.5<y<3.0

3.0<y<3.5 3.5<y<4.0 4.0<y<4.5

p+p@5.02 TeV

charm

FIG. 5: (Color online) The transverse momentum spectra of charm quarks in pp collisions at 5.02 TeV due to multiple collisions
among partons and fragmentations off final state quarks, with and without inclusion of LPM effect.

secondary, and secondary-secondary collisions along with
fragmentations off the final state parton, but the LPM
effect is not taken into account. The final set of cal-
culations describe the system when all possible multiple
scatterings and fragmentations off the final state partons
are included and the LPM effect is accounted for, using
the procedure discussed earlier.

We find that without the LPM effect, the number of
collisions and fragmentations rise rapidly with increase
in collision energy. The accounting of the LPM effect
moderates this rise considerably. The reduction in the
number of collisions is about 2% at 200 GeV and rises to
almost 80% at 13.00 TeV, showing a strong dependence
on the collision energy (for a fixed pcut-off

T
of 2 GeV). The

corresponding reduction in number of fragmentations is
similar, being about 2% at 200 GeV and rising to about
70% at 13.00 TeV. The similarity of these numbers should
not come as a surprise as in our approach scatterings are
followed by fragmentations. The reduction in the produc-
tion of charm quarks is smaller though, just about 1% at
200 GeV and about 60% at the top energy considered.
We attribute the smaller reduction in the charm quark
multiplicity compared to the reduction in overall scatter-
ings and fragmentations to the large mass of the charm
quark, which restricts the phase space for its production.

As discussed earlier, a comparison between results in-
cluding the LPM effect with those for only primary-
primary collisions and fragmentations reveal the extent

of multiple scatterings. We note that collisions involving
primary and secondary partons account for about 2% of
the total number of collisions when LPM is accounted
for at 200 GeV and increase to about 45% at the top
energy considered. The number of fragmentations also
rises similarly.
These results suggest that the semi-hard partonic in-

teractions in pp collisions at LHC energies produce a
dense medium, where partons undergo multiple interac-
tions, even when the LPM suppression of fragmentations
off final state partons is accounted for. These (additional)
multiple collisions are sufficiently large to leave an im-
print even in minimum bias events which are dominated
by collisions involving larger impact parameters where
the produced medium may not be very dense.
Evidence of the increasing importance of the LPM ef-

fect in more central collisions (which are likely to have a
larger multiplicity) is seen from Fig. 2 where the corre-
sponding results are plotted for zero impact parameter.
We see that the number of collisions, fragmentations, and
charm quarks for all the cases rise significantly and so also
the effect of LPM supression.

B. Transverse momentum distribution of charm

quarks

Next we discuss our results for the pT distribution of
charm quarks. Given the nature of charm quark frag-
mentation into D mesons, the pT spectra can be used as
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FIG. 6: (Color online)The transverse momentum spectra of charm quarks in pp collisions at 7.00 TeV due to mutiple collisions
among partons and fragmentaions off final state quarks, with and without inclusion of LPM effect.

a proxy for the pT distribution of prompt D0 mesons, by
accounting for the fraction (0.565) for which the charm
quark fragments into a D0 meson.

We have already seen that the LPM effect has only a
very small effect at the lowest incident beam energy con-
sidered here, namely 200 GeV. This is again confirmed by
Fig. 3 (upper panel), where the momentum distribution
of the charm quarks with and without the LPM effect are
shown. These are essentially identical. (The deviation of
experimental data [29] from the theoretical calculations
is mainly due to the value of pcut-off

T
of 2 GeV used at all

the energies.

We believe that a more appropriate value for this par-
ticular case could be about 0.7 GeV used earlier [15]).
Thus we digress here to explore this in a little more detail.
A reduction in pcut−off

T
affects our results in a complex

manner. For example, reducing pcut−off
T

increases two
body scatterings, due to increased cross-sections. How-
ever for a given

√
ŝ, the cross-sections for qq → cc and gg

→ cc do not change due to the threshold of 2Mc which
is larger than pcut−off

T
used here. However increase in

parton multiplication still raises charm production.

In Fig. 4 we show our results at 200 GeV where we
reduce pcut−off

T
to 0.77 GeV, keeping µ0=1 GeV (upper

panel). We see a a much improved description of charm
production now. The effect of including or not including
LPM effects remains marginal. How do our results de-
pend on the value used for µ0? In the same figure (lower
panel) we show our results with a smaller value of µ0 for

pcut−off
T

=0.77 GeV. The first thing we notice is only a
modest sensitivity of the results on µ0 when LPM effect
is accounted for. However the results without the inclu-
sion of LPM effect, show a larger production of charm
quarks at smaller pT and a smaller production at larger
pT . We do note however that these values for pcut−off

T
and

µ0 are rather uncomfortably small, for pQCD results to
be taken literally.

The LPM effect starts to become relevant in the theo-
retical results for the pT distribution of charm quarks at
2.76 TeV (see Fig. 3, lower panel), where a larger pro-
duction of charm quarks is seen at lower momenta. We
note however, that the results above pT equal to 2 GeV,
where we can trust our results, can not distinguish be-
tween the calculations with and with-out the LPM effect
at this beam energy. We also add that the agreement of
the calculation with the experimental data [30] is likely to
improve with a slight decrease in pcut-off

T
as it will increase

the number of partonic collisions and the accompanying
fragmentations.

LHCb has measured charm production at several for-
ward rapidities at 5.02 [31], 7.00 [32], and 13.00 TeV [33].
The results at central rapidity for the same at 7.00 TeV
beam energy from ALICE [34] are also available.

We see a good description of pT spectra of charm
quarks at all rapidities at 5.02 TeV (Fig. 5). An enhanced
production of charm quarks is seen at lower momenta,
when the LPM effect is neglected and the enhancement
decreases with increase in rapidity. It remains to be seen
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FIG. 7: (Color online) The transverse momentum spectra of charm quarks in pp collisions at 13.00 TeV due to mutiple collisions
among partons and fragmentaions off final state quarks, with and without inclusion of LPM effect.

if the data likely to be available at 5.02 TeV (and 13.00
TeV, see later) at central rapidity are in agreement with
these results.

The results for 7.00 TeV (Fig. 6) are of particular rele-
vance, since experimental data also exist at central rapid-
ity. Our calculations show a large suppression of charm
production at lower pT when the LPM effect is included
and closely reproduce the transverse momentum spectra
at all rapidities. We also see a hint of the hardening of
the pT spectra for large values of pT , which is also re-
produced by our calculations, even though the effect is
not large. As indicated earlier, this happens as the LPM
effect also suppresses the radiation of gluons by charm
quarks traversing the medium at large energy/momenta.

The hardening of the transverse momentum spectra
and suppression of charm quarks having low pT (the sup-
pression decreasing with increase in rapidity) is seen more
clearly at 13.00 TeV (Fig. 7). The experimental results
at all rapidities are adequately explained when the LPM
effect is accounted for. It will be interesting to see if the
substantial suppression predicted at central rapidity is
supported by data.

IV. SUMMARY AND CONCLUSIONS

We have studied the impact of the Landau Pomer-
anchuk Midgal effect on the dynamics of parton transport

in proton-proton collisions at LHC energies. In particu-
lar, we have focused on the production of charm quarks,
since these are only produced in hard pQCD interactions
for which the parton cascade model utilized in our study
is uniquely suited. We find that the inclusion of the Lan-
dau Pomeranchuk Midgal effect, which suppresses the
radiation of gluons off scattered partons leads to a reduc-
tion in the number of scatterings, number of fragmenta-
tions and number of charm quarks which are produced.
Even after this suppression, however, these quantities re-
main larger than the corresponding numbers for calcula-
tions where only primary-primary collisions among par-
tons is included along with fragmentation off final state
partons.
The results indicate the formation of an interacting

medium, which is dense enough for the LPM suppression
of radiation to set in and yet permits multiple scatterings
among partons. The LPM effect plays an important role
in moderating the production of charm quarks having low
transverse momenta. It also leads to a hardening of their
transverse momentum spectra at larger pT . The impact
of the LPM effect is found to rise with increasing collision
energy and to decrease with increase in rapidity.
Before closing, we add that the charm production in

pp collisions has been studied in detail using Fixed Or-
der Next to Leading Log (FONLL) calculations [35]. The
data at higher LHC energies are generally found to be
slightly above the upper limit given by these calculations
(see Refs. [31–34]). Realizing that our calculations with
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only primary-primary collisions and fragmentations tend
to roughly account for the higher order corrections in a
Leading Log Approximation, these studies then suggest
additional contributions from multiple scatterings. The
precise extent of this contribution and its dependence on
some of the parameters, e.g., current mass of the charm
quark, pcut-off

T
and µ0 remain to be investigated. We do

believe, however, that the additional contributions aris-
ing due to the multiple scatterings and suject to LPM
effect will be there, unless of-course pcut-off

T
and µ0 are

taken too large and too few interactions take place and
too few radiations occur.
In brief, our results provide an indication of emergence

of a dense and interacting medium of partons in pp col-
lisions at LHC energies due to semi-hard pQCD interac-

tions, even when LPM suppression of radiation of gluons
from scattered partons is accounted for.
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