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We develop a Boltzmann-Uehling-Uhlenbeck transport model based on the Skχm* energy density
functional, which is constructed from fitting the nuclear equation of state and nucleon effective
masses in asymmetric nuclear matter predicted by the two- and three-body chiral interactions as
well as the binding energies of finite nuclei. This new χBUU transport model is then used to study
how baryon mean-field potentials affect the kinematics of a scattering or decay process and the
equilibrium properties of a hot N-∆-π system in a box with periodic boundary conditions. We find
that the inclusion of mean-field potentials in the energy conservation condition for scattering and
decay processes is necessary to maintain the equilibrium numbers of N , ∆ and π. Although the
baryon mean-field potentials have significant effects on the total ∆ and π numbers, they only slightly
affect the ratio of effective negatively to positively charged pions. We also study pion production in
central 197Au+197Au collisions at the incident energy of E/A=400 MeV, and compare the results
with the experimental data from the FOPI Collaboration at GSI. We find that our model can
well describe the experimental results, and the threshold effect due to baryon mean-filed potentials
does not affect much the charged pion ratio in this model. We further make predictions on pion
production for the ongoing experiments of 132Sn+124Sn and 108Sn+112Sn at the incident energy of
E/A = 270 MeV by the SPiRIT Collaboration at RIKEN in Japan.

PACS numbers: 25.75.Dw, 21.65.+f, 21.30.Fe,24.10.Jv, 24.10.Lx

I. INTRODUCTION

Chiral effective field theory provides a systematic
framework for constructing the nucleon-nucleon interac-
tions based on the symmetries of QCD and their break-
ings [1, 2]. The resulting chiral nuclear interactions have
been extensively used in various many-body methods,
such as the no-core shell model [3], Quantum Monte-
Carlo methods [4], coupled-cluster method [5], and in-
medium similarity renormalizaton group theory [6], to
study properties of light and medium-mass nuclei as well
as infinite nuclear matter. Although significant pro-
gresses have been achieved in these ab initio calcula-
tions, it is still a challenge to use chiral nuclear inter-
actions for studying more complicated nuclear systems,
such as heavy nuclei and neutron stars. Also, there has
not been any attempt to implement the chiral nuclear
interactions in the transport model to study the dynam-
ics of heavy-ion collisions. For these cases, the most
feasible approach is to use the nuclear energy density
functional constrained by chiral effective field theory [7–
9]. Very recently, a new Skyrme energy density func-
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tional, called Skχm*, has been constructed from fitting
the equation of state of asymmetric nuclear matter and
nucleon effective masses from chiral two- and three-body
forces [10, 11] as well as the binding energies of finite nu-
clei, and it has been successfully used in studying the nu-
clear giant dipole resonance [8]. In this work, we employ
the Skχm* energy density functional in a Boltzmann-
Uehling-Uhlenbeck (BUU) transport model to study pion
production in intermediate energy heavy ion collisions.

The study of pion production in heavy ion collisions
near the threshold energy has recently attracted much at-
tention since the charged pion ratio from these collisions
has been proposed as a unique probe of the high-density
behavior of nuclear symmetry energy [12]. The latter
is essential for understanding the properties of neutron
stars and the gravitational waves from spiraling neutron
star binary, but is still poorly known [13–17]. During the
last decade, a lot of efforts have been devoted to study
and explore the possibility of determining from pion pro-
duction in heavy ion collisions the properties of nuclear
symmetry energy at high densities [18–32]. With soon
to be available systematic experimental measurements of
the pion yield from intermediate energy heavy ion colli-
sions, which are being carried out by the FRIB-RIKEN
SPiRIT Collaboration in Japan [33], theoretical studies
of pion production becomes even more important.

Before employing the Skχm* energy density functional
to study pion production in heavy ion collisions, we first
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carry out a box calculation with periodic boundary con-
ditions to investigate the effect of energy conservation
in nucleon-∆ inelastic scattering, ∆ decay, and pion ab-
sorption in the presence of mean-filed potentials on the
equilibrium properties of a hot N−∆−π matter. We find
that the inclusion of baryon mean-field potentials in the
energy conservation condition is necessary to maintain
the equilibrium numbers and momentum distributions of
N , ∆ and π. Without taking into this account, the ∆ and
π equilibrium numbers would be significantly affected, al-
though the charged pion ratio is only slightly modified.
We then study pion production in central 197Au+197Au
collisions at the incident energy of E/A = 400 MeV. As
in the case of box calculations, including baryon mean-
field potentials in the energy conservation condition in
nucleon-∆ inelastic scattering, ∆ decay, and pion absorp-
tion has a significant effect on the total pion yield but
only slightly affects the charged pion ratio. By introduc-
ing a density dependence in the delta production cross
section, our model can well reproduce the experimental
data on both the total pion yield and the charged pion ra-
tio. Finally, we make predictions on the double and sub-
tracted charged pion ratio as well as the isoscaling pion
yield ratio in mid-central 132Sn+124Sn and 108Sn+112Sn
collisions at the incident energy of E/A = 270 MeV
that are being studied in the ongoing experiment by the
SPiRIT Collaboration.

This paper is organized as follows. In Sec. II, we give
an introduction to our Boltzmann-Uehling-Uhlenbeck
transport model including the baryon mean-field poten-
tials, the scattering cross sections and the in-medium
delta decay width, and the detailed balance relations for
the NN ↔ N∆ and ∆↔ Nπ processes in medium. Re-
sults from box calculations and heavy ion collisions using
this transport model are shown in Sec. III. Finally, we
give a summary in Sec. IV.

II. THE BOLTZMANN-UEHLING-UHLENBECK
MODEL

In the present work, the time evolution of the single-
particle distribution functions fi(r,p; t), where i denotes
N , ∆ and π in various charge states, in phase space is de-
scribed by the Boltzmann-Uehling-Uhlenbeck equation,
which can be written as

∂

∂t
fi +∇pEi · ∇rfi −∇rEi · ∇pfi = C. (1)

In the above, Ei is the single-particle energy and C de-
notes the collision integral, which includes baryon-baryon
elastic scattering, inelastic scattering that produces or
absorbs a ∆ resonance, ∆ decay and π absorption. Be-
cause of the nonrelativistic nature of Skχm* interac-
tion, we treat nucleons and ∆ resonances as nonrela-
tivistic particles with their single particle energies given

by Ei = mi +
p2

i

2mi
+ Ui, where mi, pi and Ui are the

mass, momentum, and potential, respectively. For pi-
ons, they are treated as relativistic particles due to their
small masses (138 MeV), and their single particle ener-

gies are taken to be Eπ =
√
m2
π + p2

π by neglecting their
potentials as in most transport models.

A. Baryon mean-field potentials

We only include the mean-field potentials of baryons
while treat pions as if they are in free space. The poten-
tials for nucleons and ∆ resonances are taken from the
nonrelativistic Skχm* energy density functional, which
is constructed from fitting the nuclear equation of state
and nucleon effective masses from the chiral effective field
theory and the binding energies of finite nuclei [8]. In
uniform nuclear matter, the potential energy part of the
Skχm* energy density functional has the form [34]:

εpot(r) = A0ρ
2 −A1(ρ2

n + ρ2
p)

+B0ρ
α+2 −B1ρ

α(ρ2
n + ρ2

p)

+C

∫
d3pd3p′f(r,p)f(r,p′)(p− p′)2

+D

∫
d3pd3p′

[
fn(r,p)fn(r,p′)(p− p′)2

+ fp(r,p)fp(r,p
′)(p− p′)2

]
,

(2)

where f = fp + fn with fp(fn) being the phase-space
distribution function of proton (neutron), and ρ(r) =
ρp(r) + ρn(r) with ρp(r) =

∫
d3pfp(r,p) [ρn(r) =∫

d3pfn(r,p)] being the proton (neutron) density at r.
The coefficients A0, A1, B0, B1, C and D can be ex-
pressed in terms of the parameters in the conventional
Skyrme interaction,

v(r1, r2) = t0(1 + x0Pσ)δ(r1 − r2)

+
1

2
t1(1 + x1Pσ)[p′2δ(r1 − r2) + c.c.]

+t2(1 + x2Pσ)p′ · δ(r1 − r2)p

+
1

6
t3(1 + x3Pσ)ρα

(
r1 + r2

2

)
δ(r1 − r2)

+iW0(σ1 + σ2) · [p′ × δ(r1 − r2)p], (3)

where σi is the Pauli spin operator, Pσ = (1 +σ1 ·σ2)/2
is the spin-exchange operator, p = −i(∇1 − ∇2)/2 is
the relative momentum operator, and p′ is the conjugate
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operator of p acting on the left. Specifically, they are

A0 =
1

4
t0 (2 + x0) ,

A1 =
1

4
t0 (1 + 2x0) ,

B0 =
1

24
t3 (2 + x3) ,

B1 =
1

24
t3 (1 + 2x3) ,

C =
1

16
[t1(2 + x1) + t2(2 + x2)],

D =
1

16
[t2(2x2 + 1)− t1(2x1 + 1)]. (4)

Values of these Skyrme parameters can be found in
Ref. [8].

The single-particle potential of a nucleon, which can

be calculated from ∂εpot/∂ρq or
∂εpot/∂fq
∂ρq/∂fq

, is then given

by

Uq(r,p) = 2A0ρ− 2A1ρq +B0(α+ 2)ρα+1

−B1αρ
α−1(ρ2

n + ρ2
p)− 2B1ρ

αρq

+2C

∫
d3p′(p− p′)2f(r,p′)

+2D

∫
d3p′(p− p′)2fq(r,p

′)

= aqp
2 − bq · p+ cq, (5)

where q = p, n, and the coefficients aq, pq and cq are
given by

aq = 2Cρ+ 2Dρq

bq = 4C

∫
d3p′p′f(r,p′) + 4D

∫
d3p′qp

′
qfq(r,p

′
q)

cq = 2A0ρ− 2A1ρq +B0(α+ 2)ρα+1

−B1αρ
α−1(ρ2

n + ρ2
p)− 2B1ρ

αρq

+2C

∫
d3p′p′2f(r,p′) + 2D

∫
d3p′qp

′2
q fq(r,p

′
q).

(6)

For the potentials of ∆ resonances, they are deter-
mined from those of nucleons according to the extensively
used relations in literatures based on isospin considera-
tions [16],

U∆++ = Up,

U∆+ =
2

3
Up +

1

3
Un,

U∆0 =
1

3
Up +

2

3
Un,

U∆− = Un. (7)

For example, we have the coefficients a∆+ = 2ap/3 +
an/3, b∆+ = 2bp/3 + bn/3 and c∆+ = 2cp/3 + cn/3 for
the ∆+ resonance.
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FIG. 1: (Color online) Momentum dependence of the nu-
cleon single-particle potential in symmetric nuclear matter at
saturation density from the Skχm* interaction. Also shown
are the optical potential predicted by the chiral effective the-
ory [35] and the empirical optical potential from Hama et
al. [36, 37] .

Figure 1 shows the momentum dependence of the nu-
cleon single-particle potential in symmetric nuclear mat-
ter at saturation density from the Skχm* interaction.
For comparison, we also show by filled circles the pre-
dictions from the chiral effective field theory [35] and by
filled squares the empirical optical potential from Hama
et al. [36, 37]. It is seen that the Skχm∗ interaction can
reasonably describe these nucleon single-particle poten-
tials up to momentum p ∼ 700 MeV.

From Eq. (5), we find that baryons in the Skχm* inter-
action can be treated like free particles with the effective
mass m∗q , kinetic momentum p∗ and energy E∗ defined
by

1

2m∗q
=

1

2mq
+ aq

pq∗ = pq −Σq,

E∗q = Eq − Σ0
q, (8)

where Σ0
q = cq−

m∗qb
2
q

2 +mq−m∗q and Σq = m∗qbq. In terms
of these quantities, the kinetic and canonical energis of
a baryon can be expressed as E∗q = m∗q + p∗2q /(2m

∗
q) and

Eq = m∗q + p∗2q /(2m
∗
q) + Σ0

q, respectively. It should be
noted that the total kinetic momentum p∗ and energy
E∗ in an inelastic collision, such as N +N ↔ N + ∆, are
not necessarily conserved due to the difference between
initial and final potentials, although the total canonical
momentum p and energy E are conserved.

B. Scattering cross sections and Delta decay width

Following the relativistic Valsov-Uehling-Uhlenbeck
(RVUU) model [38, 39] used in Ref. [27], we use the
baryon-baryon elastic cross sections parameterized in
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Ref. [40], and the ∆ production cross section from the
one-boson exchange model [41]. As discussed in Ref. [27],
the baryon mean-field potentials modify the ∆ produc-
tion threshold and also the total energy of two collid-
ing nucleons, leading to a change in the ∆ production
cross section called the threshold effect [26, 27]. For the
N + N → N + ∆ reaction in the presence of mean-field
potentials, the energy in the final state is

Ef = m∗3 +m∗4 +
p∗23

2m∗3
+
p∗24

2m∗4
+ Σ0

3 + Σ0
4

= m∗3 +m∗4 +
(p∗3 + p∗4)2

2(m∗3 +m∗4)
+
k∗2

2µ34

+Σ0
3 + Σ0

4, (9)

with m∗3 and p∗3 being the effective mass and kinetic
momentum of nucleon, and m∗4 and p∗4 being those of
∆. The second line with the reduced effective mass
µ34 = m∗3m

∗
4/(m

∗
3 + m∗4) follows after introducing the

relative kinetic momentum k∗ = p∗3 − m∗3
p∗3+p∗4

(m∗3+m∗4) =

−
[
p∗4 −m∗4

p∗3+p∗4
(m∗3+m∗4)

]
. The threshold energy can then be

determined by taking p∗3+p∗4 = 0 and k∗ = 0 [27], leading
to the following invariant threshold energy

√
sth =

√
(m∗3 +m∗4 + Σ0

3 + Σ0
4)2 − (Σ3 + Σ4)2. (10)

As an example, for a head-on collision in the local rest
frame, i.e., p3 + p4 ' 0, one has b3,4 ' 0. As a result,
Σ3,4 = 0 and Σ0

3,4 = c3,4 +m3,4−m∗3,4, and the difference
of the total energy and the threshold energy in the frame
p∗3 + p∗4 = 0 is

√
sin −

√
sth ' m1 +m2 −m3 −m4

+
p2

1

2m∗1
+
p2

2

2m∗2
+ c1 + c2 − c3 − c4,

(11)

where m1 and m2 denote the masses of initial two nucle-
ons in the reaction. For nuclear matter at zero temper-
ature and of density ρN = 1.5ρ0 and isospin asymmetry
δ = 0.2, the Skχm* interaction gives m∗n = 687.7 MeV,
m∗p = 659.4 MeV, cn = −64.10 MeV and cp = −77.05
MeV. Due to the c1 + c2 − c3 − c4 term in Eq.(11), the
energy difference is increased (reduced) by 12.95 MeV
for the reaction n + n → p + ∆− ( p + p → n + ∆++)
reactions. This would lead to enhanced and suppressed
production cross sections for ∆− and ∆++ in neutron-
rich nuclear matter, respectively, if the scattering ampli-
tudes for these reactions are assumed to be not affected
by the medium. Since nucleon effective masses in nuclear
medium are less than their bare masses, the energy dif-
ference turns out to always increase, leading thus to en-
hanced ∆ production cross sections in nuclear medium.
In particular, for p1 = p2 ≈ 360 MeV, which is roughly
the minimum momentum that can produce a ∆ reso-
nance in a head-on nucleon-nucleon collision in vacuum,

the energy difference increases by about 55 MeV due to
the change of nucleon effective masses, which can lead to
a significant enhancement of ∆ production in all chan-
nels. Because of m∗n > m∗p, the effective mass effect en-

hances ∆++ production more than ∆− production. For
the π−/π+ ratio in heavy ion collisions, there is therefore
a competition between the effects of the baryon effective
masses and the momentum-independent part of baryon
mean-field potentials.

For a ∆ resonance of mass m∆ and in isospin state mT ,
we take its decay width to have the following form [42] :

Γ =
∑
mt

0.47Cq3

m2
π + 0.6q2

, (12)

where mt is the isospin state of the emitted pion;

C =
∣∣〈 3

2 ,mT

∣∣ 1,mt;
1
2 ,mT −mt

〉∣∣2 is the square of the
Clebsch-Gordan coefficient from the isospin coupling;
and q is the magnitude of the momentum of pion or nu-
cleon in the rest frame of ∆ and is given by

q =

√
[m′2∆ − (m′N +mπ)2][m′2∆ − (m′N −mπ)2]

2m′∆
. (13)

Here the in-medium mass m′q is defined as Eq(pq = 0) to
include the effect of mean-field potentials on the ∆ decay
width. The spectral function of ∆ resonance is then given
by

A(m′) =
1

N
4m′20 Γ(m′)

(m′2 −m′20 )2 +m′20 Γ2(m′)
, (14)

where m′0 is the pole mass (1.232 GeV) of the ∆ reso-
nance shifted by the mean-field potential and N is the
normalization factor determined by

∫
dm
2π A(m) = 1.

C. Detailed balance relations in nuclear medium

In the last section, we have introduced the Delta pro-
duction cross section and decay width in nuclear medium.
For the inverse processes, they can be determined by the
detailed balance relations.

Considering the reaction N +N → N + ∆ of nucleons
and Delta in certain isospin states and labeling the initial
two nucleons by 1 and 2 and the final nucleon and Delta
by 3 and 4, respectively, the total cross section in the
nonrelativistic approximation can be expressed as

σNN→N∆

=

∫
dm4

2π
A(m4)

∫
d3p∗3
(2π)3

d3p∗4
(2π)3

|MNN→N∆|2
|v1 − v2|

× (2π)4δ4(p1 + p2 − p3 − p4), (15)

where |M|2 is the squared invariant scattering amplitude
after averaging over the spins of initial particles and sum-
ming over the spins of final particles, m4 is the mass of
∆, pi(p

∗
i ) is the canonical (kinetic) four momentum of
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particle i (i=1,2,3,4), and |v1 − v2| = |p∗1/m∗1 − p∗2/m∗2|
is the relative velocity of particles 1 and 2. In terms of
their relative kinetic momentum

k∗i =
p∗1
m∗1
−m∗1

p∗1 + p∗2
m∗1 +m∗2

= −
(
p∗2
m∗2
−m∗2

p∗1 + p∗2
m∗1 +m∗2

)
(16)

and evaluating the integral in the center-of-mass frame,
the cross section becomes

σNN→N∆

=
1

(2π)3

∫
dm4A(m4)

∫
4πk∗2f dk

∗
f

|MNN→N∆|2
k∗i /µi

×δ

(
E′f −

k∗2f
2µf

)

=
1

2π2

µi
k∗i

∫
dm4A(m4)k∗fµf |MNN→N∆|2, (17)

where µi = m∗1m
∗
2/(m

∗
1 + m∗2) is the reduced effective

mass of initial particles, and µf = m∗3m
∗
4/(m

∗
3 + m∗4)

and k∗f are, respectively, the reduced effective mass of
final particles and their relative momentum introduced
below Eq.(9), which can be determined from energy and
momentum conservations. The mass of ∆ resonance pro-
duced in the reaction N +N → N + ∆ can have various
values with their distribution given by its spectral func-
tion A(m∆) [Eq.(14)], and is determined according to the
probability

P (m∆) =
A(m∆)k∗fµf∫
dm∆A(m∆)k∗fµf

. (18)

For a ∆ resonance of mass m∆, its absorption cross
section by a nucleon in nucleon medium via the inverse
reaction N + ∆→ N +N is given by

σN∆→NN =
1

π

k∗i
k∗f
µiµf |MN∆→NN |2. (19)

Comparing Eq. (17) and (19) and using the relation

|MNN→N∆|2 = 2|MN∆→NN |2, we obtain the detailed
balance relation as

σN∆→NN =
σ12

2(1 + δ12)

k∗2i
k∗f

µf∫
dm′

2π k
∗′
f µ
′
fA(m′)

. (20)

For the total decay width of a Delta in nuclear medium,
it is already given in Eq.(12) as the sum of its partial
widths. As to the cross section of the inverse process
π + N → ∆ in a particular isospin channel, we can ob-
tain it from the partial decay width of the Delta in this
isospin channel by using the detailed balance relation as
described in the following. Since the N + π center-of-
mass frame cannot be trivially defined when nucleons
and pions are treated differently with nucleons as non-
relativistic particles and pions as relativistic particles,
we therefore treat both ∆ decay and pion absorption in

the nuclear matter frame and express the decay width of
∆ in terms of the squared invariant scattering amplitude
|M∆→Nπ|2 averaged over the spin of ∆ and summed over
the spin of nucleon, that is

Γ =

∫
d3p∗N
(2π)3

d3pπ
(2π)3

|M∆→Nπ|2
2ω

(2π)4δ4(pN + pπ − p∆),

(21)

with ω(p) =
√
m2
π + p2 being the pion energy. Taking

the direction of P ∗ = p∗N +pπ = p∆−ΣN as the z-axis,
the decay width can be rewritten as

Γ =
1

8π2

∫
d3pπ

|M∆→Nπ|2
ω

×δ
(
E∆ −mN −

(P ∗ − pπ)2

2m∗N
− Σ0

N − ω
)

=
1

4π

∫
p2
πdpπ

|M∆→Nπ|2
ω

m∗N
P ∗pπ

=
m∗N |M∆→Nπ|2

4πP ∗

∫
pπ
ω
dpπ

=
m∗N |M∆→Nπ|2

4πP ∗
[ω(pmax)− ω(pmin)], (22)

where pmin and pmax are the allowed minimum and max-
imum pion momenta and can be analytically determined
from the energy conservation in ∆ decay and the condi-
tion of −1 6 cosθ 6 1, with θ being the angle between the
pion momentum and the z-axis. In the above, we have
assumed that the squared invariant transition matrix el-
ement |M∆→Nπ|2 is independent of the pion momentum
pπ. The decay width of ∆ of certain charge state can
be obtained from Eq.(22) by taking into consideration of
appropriate isospin factors.

The spin averaged cross section for the processN+π →
∆ is given by

σNπ→∆ =

∫
dm

2π
A(m)

∫
d3p∗∆
(2π)3

|MNπ→∆|2
2ω|vN − vπ|

×(2π)4δ4(pN + pπ − p∆),

=
A(m)|MNπ→∆|2

2ω|vN − vπ|
1

|1− p∆

m∆
|

(23)

where vN = p∗N/m
∗
N and vπ = pπ/ω. Using the relation

2|M∆→Nπ|2 = |MNπ→∆|2, we then have

σNπ→∆ =
4πP ∗

m∗N |vN − vπ||1−
p∆

m∆
|

× A(m∆)Γ(m∆)

ω(pπ)[ω(pmax)− ω(pmin)]
, (24)

where the ∆ mass is determined by m∆ = P 2/2(E −
a∆P

2+b∆ ·P−c∆) with E and P being, respectively, the
total energy and momentum of the colliding nucleon and
pion. We note again that both σNπ→∆ and Γ(m∆) refer
to the same isospin channel of the processes ∆ ↔ Nπ,
while the Delta width in A(m∆) given in Eq.(14) refers
to its total width.



6

III. RESULTS AND DISCUSSIONS

In this section, we present results obtained from cal-
culations using the χBUU transport model for pion pro-
duction in a hot neutron-rich nuclear matter in a box and
from heavy ion collisions. They are obtained by solving
the BUU equation using the test particle method [40, 43].
In this method, the time evolution of baryon phase-space
distribution functions is described by following equations
of motion for test baryons:

ṙ =
p∗

m∗
,

ṗ = ∇
(
m∗ +

p∗2

2m∗
+ Σ0

)
, (25)

with the baryon mean-field potentials calculated self-
consistently according to the local nucleon and ∆ dis-
tributions determined from corresponding test particles.
The same is for the phase-space distribution functions
of pions except that the test pions move freely with the
constant velocity p/

√
m2
π + p2 as we have neglected the

pion potentials in the present study.
For particle collisions, they are treated using the stan-

dard geometric method described in Ref. [40]. How-
ever, instead of using the parallel ensemble method, in
which only physical particles in each event can collide
although particles from many parallel events are used as
the test particles for calculating the mean-field poten-
tials, we adopt the partition method [44] by using in ad-
dition NT test particles for a physical particle in an event
and reducing accordingly all scattering cross sections by
NT. As to the ∆ decay probability in each time step dt,
it is determined by its width according to

P = 1− exp(−Γdt). (26)

For both box and heavy ion collisions calculations dis-
cussed in the following, we use NT = 10 and dt =
0.1fm/c.

A. Pion production in a box

As in Ref. [45], we first study the role of baryon mean-
field potentials in the energy conservation condition of
collision and decay processes and their effect on pion
production in a hot neutron-rich matter. Specifically,
we study the final equilibrium numbers of N , ∆ and π
for the two cases of with and without baryon mean-field
potentials in the energy conservation condition.

For a static and uniform hadronic matter in a box,
the baryon vector potentials bi due to the flow effect are
absent. For simplicity, we ignore the quantum nature of
N , ∆, and π, and take their momentum distributions at
thermal equilibrium to be Boltzmann-like. For pions and
nucleons, their momentum distributions at temperature

T are then given by

fi(pi) =
gi

(2π)3
exp

[
−Ei − µi

T

]
, (27)

where i = n, p, π+, π0, π−, gi = 1(2) is the spin degen-
eracy of pion (nucleon), µi is the chemical potential of
particle i and Ei is its energy. For ∆ resonances with a
mass distributions, their momentum distributions are

fi(pi) = 4

∫
dm

(2π)4
A(m)exp

[
−Ei − µi

T

]
, (28)

where i = ∆++,∆+,∆0,∆−, and the factor 4 is due to
the spin degeneracy of ∆.

For N , ∆, and π in chemical equilibrium, their chemi-
cal potentials satisfy following relations:

µ∆++ = 2µp − µn,
µ∆+ = µp,

µ∆0 = µn,

µ∆− = 2µn − µp,
µπ+ = µp − µn,
µπ0 = 0,

µπ− = µn − µp. (29)

Given the temperature T , baryon density ρB , and isovec-
tor density ρI = ρp− ρn + ρ∆++ + ρ∆+/3− ρ∆0/3− ρ∆− ,
the mean-field potentials of baryons and their numbers
can be obtained by solving above questions iteratively.

In our box calculation, all particles are confined in
a cubic box of volume 10 × 10 × 10 fm3 with periodic
boundary conditions, and both the Coulomb interac-
tion and the Pauli blocking effect are neglected. Ini-
tially, the temperature, baryon and isovector densities
are taken to be T = 60 MeV, ρ = 0.24 fm−3, and
ρI = 0.096 fm−3, respectively, which resemble the condi-
tions of the dense matter in intermediate energy heavy
ion collisions where most pions are produced [22]. The
resulting parameters in Eq.(6) for nucleon mean-field po-
tentials are ap = 0.2617 GeV−1, cp = −59.87 MeV,

an = 0.2360 GeV−1, cn = −50.34 MeV. The initial
numbers of N , ∆ and π of various charges are shown in
the first row of Table I. For the initial momentum spec-
tra, which are determined by Eqs. (27) and (28), they
are shown by solid lines in Figs. 2 (a), (b) and (c) for
neutron, ∆− and π−, respectively.

Evaluating baryon mean fields using test particles from
20 parallel events and averaging results from 20 such par-
allel ensemble calculations, we have studied the time evo-
lutions of ∆ and π numbers for the two cases of with
and without baryon mean-field potentials in the energy
conservation condition of scattering and decay processes.
As shown in Figs. 3 and 4, the numbers of ∆ and π in
the ‘Skχm*’ case remain almost unchanged except small
statistical fluctuations due to the finite numbers of test
particles and events used in the calculations. In the ‘free’
case without including the baryon mean-field potentials
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TABLE I: Temperature T , chemical potentials of neutron µn and proton µp, multiplicities of nucleons, Deltas, and pions,
pion-like particle multiplicity πlike, and effective charged pion ratio (π−/π+)like in initial and final states in the ’free’ case (see
text for details) from thermal model calculations.

T (MeV) µn(MeV) µp(MeV) N Z ∆++ ∆+ ∆0 ∆− π+ π0 π− πlike (π−/π+)like

initial 60 891.7 865.6 134.1 96.9 1.12 1.67 2.49 3.72 0.79 1.22 1.88 12.9 2.61

final (free) 47.2 934.6 916.7 140.6 96.2 0.42 0.61 0.89 1.30 0.28 0.40 0.59 4.48 2.44

0.0 0.2 0.4 0.6 0.8 1.00

100

200

300

400

500
(a) neutron Sk m*

free

0.0 0.2 0.4 0.6 0.8 1.00

4

8

12
(b) 

0.0 0.2 0.4 0.60

3

6

9
(c) 
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/d

p 
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)

1

FIG. 2: (Color online) Momentum distributions of neutron (left panel), ∆− (middle panel) and π− (right panel) in a box at
t = 50 fm/c. Solid lines are theoretical momentum distributions from the thermal model with the inclusion of baryon potentials
at T = 60 MeV, and dash lines are those in the final state of the ‘free’ case (see text for details). Solid circles are results from
χBUU model including the effect of baryon potentials in the energy conservation condition in elementary reactions (Skχm*),
and open circles are those without including this effect (free).

in the energy conservation conditions of scattering and
decay processes, the numbers of ∆ and π decrease with
time. The final equilibrium numbers in the system for
the ‘free’ case can also be determined by thermal model
calculations using the conditions of energy, baryon den-
sity and isospin density conservations. These results are
given in the second rows of Tab. I, and also shown in
Figs. 3 and 4 by open circles. It is seen that the box cal-
culations well reproduce the thermal model results with
a deviation less than ∼ 2%. The momentum distribu-
tions of neutron, ∆− and π− in the box at t = 50 fm/c
for the two cases are shown by solid and open circles in
Figs. 2 (a), (b) and (c), respectively, while corresponding
momentum spectra from the thermal model are exhibited
as curves. It is seen that in both cases the N − ∆ − π
system is at the expected thermal equilibrium states.

We note that including mean-field potentials in the
energy conservation condition in elementary reactions is
also needed to guarantee the conservation of the total
energy of the system, which can be evaluated according
to

E =
∑
i

(
mi +

p2
i

2mi
+

1

2
Ui

)
+
∑
j

√
m2
π + p2

j + Er,(30)

with i = n, p,∆++,∆+,∆0,∆−, and j = π+, π0, π−.

Here the rearrangement energy Er is given by

Er = −α
2

∫
d3rρα

[
B0ρ

2 −B1(ρ2
p + ρ2

n)
]

(31)

with the integration over the volume of the box. It is
found that with an initial total energy of 237.2 GeV, the
total energy increases by only 120 MeV after 50 fm/c for
the Skχm* case but by 1.02 GeV for the ‘free’ case.

It is known in heavy ion collisions that the effec-
tive pion number, which includes all pion-like particles,
changes very little after the colliding nuclear matter
reaches maximum compression [46, 47]. In our case, the
effective pion number is given by the sum of ∆ resonance
and pion numbers, i.e., πlike = π− + π0 + π+ + ∆++ +
∆+ + ∆0 + ∆− as shown in Tab. I. Also shown in Tab. I
is the effective charged pion ratio (π−/π+)like defined as

(π−/π+)like =
π− + ∆− + ∆0/3

π+ + ∆++ + ∆+/3
. (32)

Comparing results with and without baryon potentials,
we find that omitting the baryon potentials in the energy
conservation condition significantly decreases the effec-
tive pion number by a factor of 3 but decreases the effec-
tive charged pion ratio by only about 6.5%. The reduc-
tion of total pion number by baryon mean-field potentials
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FIG. 3: (Color online) Time evolutions of ∆ numbers in box calculations for the two cases of with and without mean-filed
potentials in the energy conservation condition of scattering and decay processes. For comparison, results from the thermal
model are shown as open cycles.
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FIG. 4: (Color online) Same as Fig. 3 for π numbers.

can be understood from the nucleon momentum distri-
bution

f(p) ∝ exp

(
− p2

2m∗T

)
exp

(
µ−m− c

T

)
. (33)

It shows that removing baryon potentials increases the
effective mass of baryons and thus decreases the tem-
perature of the system compared to the ‘Skχm*’ case as
shown in Tab.I, leading to a significant reduction of ef-
fective pion numbers. The small decrease of the effective
pion ratio can be understood from the following relation
based on thermal and chemical equilibrium,

π−

π+
= exp

[
2(µn − µp)

T

]
=

N2

Z2

(
m∗p
m∗n

)3

exp

[
2(cn − cp)

T

]
, (34)

where N and Z are the neutron and proton numbers,
respectively. For the Skχm* energy density functional,
m∗n (cn) is larger than m∗p (cp) in neutron-rich nuclear

matter. Compared with the case without baryon poten-

tials,
(
m∗p/m

∗
n

)3
increases but exp

[
2(cn−cp)

T

]
decreases

after including the potentials. The cancellation of the
two contributions then leads to a smaller decrease of ef-
fective pion ratio.

We note that the decrease of the effective pion ratio
after removing baryon potentials is much smaller than
that based on the RVUU model, where the effective pion
ratio is reduced by 26.7% [45]. As discussed in Sec. II B,
the baryon mean-field potentials can lead to a change
in the energy difference between the center-of-mass en-
ergy of two colliding nucleons and the threshold energy
for ∆ production and thus affect the ∆ production cross
sections in nuclear medium. For a system confined in a
box as in the present study, changing these cross sections
only influences the time for the system to reach a new
equilibrium after neglecting the potentials, but does not
affect the final equilibrium particle numbers. However,
in nuclear collisions, where thermal and chemical equi-
libriums may not be completely reached, the change of
cross sections could have a large effect on the final pion
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number and the charged pion ratio [27]. In next section,
we further study such non-equilibrium effects in heavy
ion collisions.

B. Heavy ion collisions

In this section, we employ the transport model to study
pion production in heavy ion collisions. For the initial
positions of nucleons inside in each nucleus, they are dis-
tributed according to the density distribution obtained
from the self-consistent Hartree-Fock calculation using
the Skχm* interaction. As to their momentum-space dis-
tributions, we use the Fermi gas model with the Fermi
momentum determined by the local density. Unlike the
box calculation, the effect of electromagnetic fields and
Pauli blocking are both included. The electric and mag-
netic fields acting on a charged particle i are evaluated
according to

E(ri) =
e

4πNtest

∑
j 6=i

qj
rij
r3
ij

,

B(ri) =
e

4πNtest

∑
j 6=i

qj
vj × rij
r3
ij

, (35)

where e2/(4π) = 1/137, rij = ri−rj , vj is the velocity of
particle j, qj is its electric charge in units of e, and Ntest

is the number of test particles used for representing a
physical particle in the calculation. Here the index j runs
over all test particles. In all collision (or decay) processes,
the Pauli blocking for final-sate baryons is included via
the same method used in the RVUU model [27, 40, 48,
49], except that the phase-space radii ∆r and ∆p are
taken to be 1.5 fm and 150 MeV, respectively.

In the following, we show results obtained with mean-
field potentials calculated using test particles from 20
parallel events as in the box calculations, and from aver-
aging 20 and 300 such parallel ensemble calculations for
197Au+197Au collisions at E/A = 400 MeV and Sn+Sn
collisions at E/A = 270 MeV, respectively.

1. 197Au+197Au collisions at E/A=400 MeV

We first study central 197Au+197Au collisions at in-
cident energy of E/A = 400 MeV and compare the
results with experimental data measured by the FOPI
Collaboration [50]. Fig. 5 shows the time evolutions of
the effective π− and π+ numbers, namely (π−)like =
π−+∆−+∆0/3 and (π+)like = π++∆+++∆+/3, in col-
lisions at the impact parameter of 1 fm for the ‘free’ case
without including the effect of baryon mean-field poten-
tials in treating their collisions and decays, although it is
included in their propagations. The central nucleon den-
sity ρc divided by the saturation density in the dinuclear
system is also shown as the black dash-dot line. It is seen
that pion-like particles are mostly produced during the
high density stage and their numbers change very little

TABLE II: π− and π+ yields in 197Au+197Au collisions at the
impact parameter of 1 fm and the incident energy of E/A=400
MeV. Experimental data from the FOPI Collaboration [50]
are also listed for comparison.

FOPI [50]
free Skχm*

A = 0 A = 0 A = 1.9

π− 2.80(14) 2.70(3) 7.84(4) 2.96(2)

π+ 0.95(8) 0.90(2) 2.57(2) 0.92(1)

π− + π+ 3.75(22) 3.60(5) 10.41(6) 3.88(3)

π−/π+ 2.95(29) 3.02(6) 3.05(3) 3.2(5)

0 20 40 600
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3

4
197Au+197Au  @ E/A=400 MeV ( )like

( + )like
c/ 0

0.0 0.2 0.4 0.6 0.8 1.0

t (fm/c)
0.0

0.2

0.4

0.6

0.8
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FIG. 5: (Color online) Time evolutions of the central density
ρc and effective π− and π+ numbers in Au+Au collisions at
impact parameters of 1 fm and incident energy of E/A=400
MeV. The mean-field potential effects in the collision terms
are not included.

during later expansion of the system. The final charged
pion numbers and ratio π−/π+ are listed in the second
column (free/A = 0) of Tab. II together with their ex-
perimental values measured by the FOPI collaboration
shown in the first column [50]. The theoretical results
in this case are seen to well reproduce the charged pion
ratio but underestimate the total charged pion yield by
about 13%.

We further include mean-field potentials of baryons in
determining the collision kinematics and list the results
in the third column (Skχm*/A = 0) in Tab. II. Similar
to the case of box calculations, the inclusion of mean-
field potential effects on the collision kinematics increases
both π− and π+ numbers by a factor of about 3, although
the charged pion ratio remains almost unchanged. To re-
produce the experimental data, we follow Ref. [27] by
taking into account the medium modification of ∆ pro-
duction cross section, and introduce the following density
dependence:

σNN→N∆(ρ) = σNN→N∆(0)exp(−AρN/ρ0), (36)
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where the ρN is the nucleon density and A is a fit-
ting parameter. Cross sections for the inverse reactions
are accordingly modified through the detailed balance
relation introduced in Sec. II C. We find that taking
A = 1.9 in the ‘Skχm*’ case, our model can well re-
produce the experimentally measured total charged pion
yield. With the density-dependent cross sections, the re-
sulting charged pion ratio is sightly increased by about
5% and becomes 3.2, which is consistent with the experi-
mental value within the error bar [50]. These results thus
provide an empirical validation of the behavior of nuclear
symmetry energy at high density predicted by the Skχm*
energy density functional.

The significant increase of the pion yield due to the
threshold effect is consistent with previous results from
the RVUU model based on the relativistic NLρmean-field
model [27]. In both studies, this is because the smaller
baryon effective masses in nuclear medium increase the
difference between the collision energy of two nucleons
and the threshold energy for ∆ production. The small
change in the charged pion ratio is, however, in stark
contrast with the RVUU model calculations, which shows
a much larger change, and this is due to the fact that in
neutron-rich nuclear matter, one has m∗n > m∗p in the
Skχm* energy density functional but m∗n = m∗p in the
NLρ model. As discussed in Sec. II B, a positive neuron-
proton effective mass splitting would lead to a smaller
charged pion ratio.

2. 132Sn+124Sn and 108Sn+112Sn collisions at E/A = 270
MeV

Including both the effect of baryon mean-field poten-
tials on scattering and decay processes and the medium
modification of ∆ production cross sections, we further
study pion production in 132Sn+124Sn and 108Sn+112Sn
collisions at the incident energy of E/A = 270 MeV and
the impact parameter of 3 fm, which is being studied
experimentally by the SPiRIT Collaboration at the Ra-
dioactive Isotope Beam Facility (RIBF) at RIKEN in
Japan. As in Au+Au collisions at E/A = 400 MeV stud-
ied in the previous subsection, pions are mostly produced
during the compression stage of the reactions, which can
lead to a maximum central density of 0.27/fm3 (1.7 ρ0),
and their effective numbers remain essentially constant
during the expansion of the system. The obtained total
π− and π+ numbers and the charged pion ratio π−/π+

are, respectively, 0.273, 0.136 and 2.01 for 108Sn+112Sn
collisions, and 0.508, 0.109 and 4.68 for 132Sn+124Sn col-
lisions. The charged pion ratio π−/π+ in the neutron-
richer system (132Sn+124Sn) is thus larger as a result
of more neutron-neutron collisions. As in Ref. [31], we
select charged pions with the polar angles θcm of their
momenta relative to the incident beam direction lying in
the range of 60◦ < θcm < 120◦ and shows their kinetic
energy spectra in Fig. 6. In both collisions, the charged
pion ratio decreases with pion kinetic energy. The very

large π−/π+ ratio at low kinetic energy is mainly due
to the Coulomb potential, which is repulsive for π+ but
attractive for π− [32].

0 100 200
Ekin (MeV)

0

2

4

6

/
+

E/A = 270 MeV
b = 3 fm
60 < cm < 120

108Sn+112Sn
132Sn+124Sn

FIG. 6: (Color online) π−/π+ ratios as functions of pion ki-
netic energy from central (b=3 fm) collisions of 132Sn+124Sn
and 108Sn+112Sn at the incident energy of E/A = 270 MeV.
θcm is the polar angle of pion momentum relative to the inci-
dent beam direction.
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FIG. 7: (Color online) Same as Fig. 6 for dou-
ble [(π−/π+)132+124/(π

−/π+)108+112] and subtracted
[(π−/π+)132+124 − (π−/π+)108+112] π−/π+ ratios.

To reduce the Coulomb effect as well as
other isospin-independent effects, the double
[(π−/π+)132+124/(π

−/π+)108+112] [51] and subtracted
[(π−/π+)132+124 − (π−/π+)108+112] [31] π−/π+ ratios of
the two reaction systems have been proposed as better
probes of nuclear symmetry energy. In Fig. 7, we show
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FIG. 8: (Color online) Same as Fig. 6 for isoscaling
[π132+124/π108+112] ratios of π− and π+.

the double and subtracted π−/π+ ratios as functions of
the pion kinetic energy. We find that the double ratio
is flat with respect to the pion kinetic energy, while the
subtracted ratio decreases with increasing pion kinetic
energy. Because of its negative charge, π− should be
easier to detect than π+. Therefore, the isoscaling ratio
π132+124/π108+112 of π− from these two reactions may
be a more sensitive observable for probing the nuclear
symmetry energy at high density [31]. Figure 8 shows
the isoscaling ratio of π− and π+ for these two reactions,
and it indicates that both are flat with respect to the
pion kinetic energy with the isoscaling ratio of π− larger
than that of π+.

We note that if the effect of mean-field potentials is
not included in collisions and decays, the total π− and
π+ numbers and the charged pion ratio π−/π+ would,
respectively, be 0.126, 0.063 and 2.01 for 108Sn+112Sn
collisions, and 0.233, 0.053 and 4.40 for 132Sn+124Sn col-
lisions. As in Au+Au collisions at E/A = 400 MeV, the
charged pion ratio is only slightly affected by the effect
of baryon mean-field potentials in treating their collisions
and decays. Although this is also the case for the kinetic
energy spectra of double, subtracted and isoscaling ra-

tios, the total pion number is, however, reduced by about
a factor of two without including the baryon mean-field
potentials in their collisions and decays.

IV. SUMMARY

We have developed a BUU transport model based on
the Skχm* interaction, which is constructed from fitting
the equation of sate and nuclear effective masses pre-
dicted by the chiral effective theory as well as the bind-
ing energies of finite nuclei. This χBUU model is then
used to study the effect of energy conservation in the
collision (or decay) kinematics due to baryon mean-field
potentials on the equilibrium properties of a N −∆− π
system in a box with periodic conditions. We have found
that the inclusion of baryon mean-field potentials in the
energy conservation is necessary to maintain the equilib-
rium state of the N −∆− π system, and neglecting this
effect would significantly decrease the number of pion-like
particles, although only slightly decreases the effective
charged pion ratio.

We have also used the χBUU transport model to study
pion production in central 197Au+197Au collisions at the
incident energy of E/A = 400 MeV. It is found that the
χBUU model can well reproduce the experimental mea-
surement by the FOPI Collaboration, thus providing an
empirical validation of the behavior of nuclear symmetry
energy at high density predicted by the Skχm* energy
density functional. We have further predicted the pion
kinetic energy dependence of the double and subtract
π−/π+ ratio as well as the isoscaling pion ratio in cen-
tral collisions (b = 3 fm) of 132Sn+124Sn and 108Sn+112Sn
at the incident energy of E/A = 270 MeV. Comparing
our predictions with future experimental data from the
ongoing experiments at RIKEN in Japan by the SPiRIT
Collaboration will provide further check on the validity
of the Skχm* energy density functional at high density.
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