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Isospin relaxation times characterizing isospin transport processes between the projectile and the
target with different N/Z ratios and that between the neck and the spectator with different isospin
asymmetries and densities in intermediate-energy heavy-ion collisions are studied within an isospin-
dependent Boltzmann-Uehling-Uhlenbeck transport model using the lattice Hamiltonian approach.
The respective roles and time scales of the isospin diffusion and drift as the major mechanisms
of isospin transport in intermediate-energy heavy-ion collisions are discussed. Effects of nuclear
symmetry energy and neutron-proton effective mass splitting on the isospin relaxation times are
examined.

PACS numbers: 25.70.-z, 24.10.Lx, 21.30.Fe

I. INTRODUCTION

Understanding properties of isovector nuclear interac-
tions as well as the related nuclear symmetry energy and
the neutron-proton effective mass splitting in neutron-
rich matter is a major thrust of nuclear science. In partic-
ular, the density dependence of nuclear symmetry energy
Esym(ρ) has important ramifications in not only nuclear
structures and nuclear reactions but also several areas of
astrophysics and cosmology. Despite of the great efforts
made over the last few decades, Esym(ρ) at both subsat-
uration and suprasaturation densities are still uncertain,
see, e.g., Refs. [1–11] for reviews. The nucleon effective
mass is a fundamental quantity characterizing the nu-
cleon’s propagation in nuclear medium [12–14], and it is
related to the momentum/energy dependence of the nu-
cleon potential in the non-relativistic approach. In recent
years, whether the neutron-proton effective mass split-
tingm∗

n−p(m
∗

n−p ≡ m∗

n−m∗

p) is negative, zero, or positive
in neutron-rich matter becomes a hotly debated topic.
It affects the isospin dynamics in nuclear reactions [15–
21], thermodynamic and transport properties of neutron-
rich matter [22–26], and isovector giant dipole resonances
in neutron-rich nuclei [27, 28]. Moreover, based on the
Hugenholtz-Van Hove theorem, the isospin splitting of
the nucleon effective mass is closely related to the nu-
clear symmetry energy [29, 30]. For a very recent review
on the nucleon effective mass in neutron-rich medium, we
refer the reader to Ref. [31].

Heavy-ion reactions at intermediate energies provide a
means to probe the nuclear symmetry energy and the
neutron-proton effective mass splitting in neutron-rich
matter. In particular, both the degree and time scale for
isospin transport in heavy-ion reactions are known to be
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affected by nuclear isovector interactions [32–34]. There
are two driving mechanisms for isospin transport, i.e., the
isospin diffusion and the isospin drift. The isospin diffu-
sion is the dominating effect when the projectile and the
target nuclei have different N/Z ratios [35]. The degree
of isospin mixing as a result of isospin transport between
the two nuclei is quantitatively described by the so-called
isospin transport ratio. The latter was proposed to be a
useful probe of the nuclear symmetry energy [36, 37].
It was later realized that the isospin transport ratio is
affected by the momentum dependence of the nucleon
potential [38], the in-medium nucleon-nucleon scattering
cross section [39], and the neutron-proton effective mass
splitting [18]. On the other hand, since different density
regions can be reached in intermediate-energy heavy-ion
collisions, they generally have different isospin asymme-
tries due to the isospin fractionation effect depending on
the density dependence of the nuclear symmetry energy,
i.e., the low-density neck region in non-central heavy-ion
collisions is more neutron-rich compared to the normal-
density spectator. The isospin transport between the
neck and the spectator is driven by both the isospin dif-
fusion and the isospin drift. While various observables
have been proposed to measure the degree of isospin
transport in heavy-ion reactions, it has been rather chal-
lenging to obtain experimental information about the
time scale of isospin transport. Very interestingly, the
isospin relaxation time for the neck and the spectator in
the projectile-like fragment (PLF) or target-like fragment
(TLF) to reach isospin equilibrium was recently extracted
by a group at Texas A&M University (TAMU) [40]. It
is thus physically useful and timely to know how sen-
sitive the isospin relaxation time in PLF or TLF is to
Esym(ρ) and/or m∗

n−p, and whether the new data is pre-
cise enough for constraining the properties of isovector
nuclear interactions within the model considered. For
these purposes, we carry out a study within an isospin-
dependent Boltzmann-Uehling-Uhlenbeck (IBUU) trans-
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port model using an improved isospin- and momentum-
dependent interaction (ImMDI) [24]. In order to improve
the stability for the momentum-dependent mean-field po-
tential at lower beam energies, the lattice Hamiltonian
(LH) method [41] was employed for calculating the mean-
field potential. Appreciable effects of Esym(ρ) and m∗

n−p

on the isospin relaxation time are observed. However,
they are much smaller than the current uncertainty range
of the isospin relaxation time extracted from the experi-
ment by the TAMU group.

The rest part of the manuscript is organized as fol-
lows. Section II briefly introduces the ImMDI interac-
tion as well as the LH method in calculating the mean-
field potential for the IBUU transport simulation. We
discuss the isospin transport process between projectile
and target in central 40Ca +124 Sn collisions, and study
the isospin transport process between neck and specta-
tor within the PLF in non-central 70Zn+70Zn collisions
in Sec. III. A summary is made in Sec. IV.

II. THEORETICAL FRAMEWORK

A. An improved isospin- and
momentum-dependent interaction

The potential energy density of the ImMDI interaction
can be obtained from an effective two-body interaction
with a zero-range density-dependent term and a finite-
range Yukawa-type term based on the Hartree-Fock cal-
culation [42, 43]. In the asymmetric nuclear matter with
isospin asymmetry δ and nucleon number density ρ, it
has the following form [24, 42]

V (ρ, δ) =
Auρnρp

ρ0
+

Al

2ρ0
(ρ2n + ρ2p) +

B

σ + 1

ρσ+1

ρσ0

×(1− xδ2) +
1

ρ0

∑

τ,τ ′

Cτ,τ ′

×

∫ ∫
d3pd3p′

fτ (~r, ~p)fτ ′(~r, ~p′)

1 + (~p− ~p′)2/Λ2
. (1)

In the above, ρn and ρp are number densities of neutrons
and protons, respectively, ρ0 is the saturation density,
δ = (ρn − ρp)/ρ is the isospin asymmetry, and fτ (~r, ~p) is
the phase-space distribution function, with τ = 1(−1) for
neutrons (protons) being the isospin index. The single-
particle mean-field potential for a nucleon with momen-
tum ~p and isospin τ in the asymmetric nuclear matter
with isospin asymmetry δ and nucleon number density
ρ can be obtained from Eq. (1) through the variational

principle as

Uτ (ρ, δ, ~p) = Au
ρ−τ

ρ0
+Al

ρτ
ρ0

+B

(
ρ

ρ0

)σ

(1− xδ2)− 4τx
B

σ + 1

ρσ−1

ρσ0
δρ−τ

+
2Cτ,τ

ρ0

∫
d3p′

fτ (~r, ~p
′)

1 + (~p− ~p′)2/Λ2

+
2Cτ,−τ

ρ0

∫
d3p′

f−τ (~r, ~p
′)

1 + (~p− ~p′)2/Λ2
, (2)

where the four parameters Au, Al, Cτ,τ , and Cτ,−τ can
be expressed as [24]

Al(x, y) = A0 + y + x
2B

σ + 1
, (3)

Au(x, y) = A0 − y − x
2B

σ + 1
, (4)

Cτ,τ (y) = Cl0 −
2yp2f0

Λ2 ln[(4p2f0 + Λ2)/Λ2]
, (5)

Cτ,−τ (y) = Cu0 +
2yp2f0

Λ2 ln[(4p2f0 + Λ2)/Λ2]
. (6)

In the above, pf0 = ~(3π2ρ0/2)
1/3 is the nucleon Fermi

momentum in symmetric nuclear matter at saturation
density. The isovector parameters x and y are introduced
to mimic the density dependence of the symmetry energy,
i.e., the slope parameter L = 3ρ0(dEsym/dρ)ρ=ρ0

, and
the momentum dependence of the symmetry potential or
the neutron-proton effective mass splitting. The values of
the parameters are A0 = −66.6973 MeV, Cu0 = −99.67
MeV, Cl0 = −60.36 MeV, B = 141.697MeV, σ = 1.2658,
and Λ = 2.423pf0, in order to obtain the empirical nu-
clear matter properties: the saturation density ρ0 = 0.16
fm−3, the binding energy E0(ρ0) = −16 MeV, the in-
compressibility K0 = 230 MeV, the symmetry energy
Esym(ρ0) = 32.5MeV, the isoscalar potential at infinitely
large momentum U0,∞ = 75 MeV, and the isoscalar ef-
fective mass at saturation density m∗

s = 0.7m, with m
being the nucleon mass in vacuum. The non-relativistic
k-mass in the present study is defined as

m∗

n(p)

m
=

(
1 +

m

p

∂Un(p)

∂p

)
−1

. (7)

B. Lattice Hamiltonian approach within the IBUU
transport model

The IBUU transport model [1] has incorporated prop-
erly the isospin degree of freedom into the BUU transport
model [44], with the later basically solving numerically
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the BUU equation

∂f

∂t
+∇~pU · ∇~rf −∇~rU · ∇~pf

= −
1

(2π)
6

∫
d3~p2d

3~p2′dΩ
dσ

dΩ
v12

× [ff2(1− f1′)(1− f2′)− f1′f2′(1− f)(1− f2)]

×(2π)3δ(3)(~p+ ~p2 − ~p1′ − ~p2′), (8)

where dσ
dΩ and v12 are respectively the nucleon-nucleon

differential cross section and relative velocity. The left-
hand side of the above BUU equation describes the time
evolution of the phase-space distribution function f(~r, ~p)
in the mean-field potential, and this can be approxi-
mately realized by solving the canonical equations of
motion for test particles [44, 45]. In this approach, the
phase-space distribution f(~r, ~p) as well as the local den-
sity can be obtained by averaging N parallel collision
events:

f(~r, ~p) =
1

N

AN∑

i

h(~r − ~ri)δ(~p− ~pi), (9)

ρ(~r) =
1

N

AN∑

i

h(~r − ~ri), (10)

where h is a smooth function in coordinate space, and A
is the number of real particles, with each represented by
N test particles.
In order to improve the stability for the momentum-

dependent mean-field potential especially at lower colli-
sion energies, we improve the calculation by using a bet-
ter function h based on the lattice Hamiltonian frame-
work as in Ref. [41]. The average density ρL at the sites
of a three-dimensional cubic lattice is defined as

ρL(~rα) =

AN∑

i

S(~rα − ~ri), (11)

where α is a site index and ~rα is the position of site α. S
is the shape function describing the contribution of a test
particle at ~ri to the value of the average density ρL(~rα)
at ~rα, i.e.,

S(~r) =
1

N(nl)6
g(x)g(y)g(z) (12)

with

g(q) = (nl − |q|)Θ(nl − |q|). (13)

In the above, l is the lattice spacing, n determines the
range of S, and Θ is the Heaviside function. In the fol-
lowing study, we adopt the values of l = 1 fm and n = 2.
After using the above smooth function ρL(~rα), the

Hamiltonian of the system can be expressed as

H =

AN∑

i

~p2i
2m

+NṼ , (14)

with the total potential energy expressed as

Ṽ = l3
∑

α

Vα

= l3
∑

α

{
AuρL,n(~rα)ρL,p(~rα)

ρ0
+

Al

2ρ0
[ρ2L,n(~rα)

+ρ2L,p(~rα)] +
B

σ + 1

ρσ+1
L (~rα)

ρσ0
(1− xδ2) +

1

ρ0

×
∑

i,j

∑

τi,τj

Cτi,τj

S(~rα − ~ri)S(~rα − ~rj)

1 + (~pi − ~pj)2/Λ2

}
, (15)

where ρL,n(~rα) and ρL,p(~rα) are respectively the number
density of neutrons and protons at ~rα. The canonical
equations of motion for the ith test particle of isospin τi
from the above Hamiltonian can thus be written as

d~ri
dt

=
∂H

∂~pi
=

~pi
m

+N
∂Ṽ

∂~pi

=
~pi
m

−Nl3
∑

α

4

ρ0

∑

j

∑

τj

Cτi,τjS(~rα − ~ri)

×
S(~rα − ~rj)(~pi − ~pj)

[1 + (~pi − ~pj)2/Λ2]2/Λ2
, (16)

d~pi
dt

= −
∂H

∂~ri
= −N

∂Ṽ

∂~ri

= −Nl3
∑

α

∂S(~rα − ~ri)

∂~ri

{
Au

ρL,−τi(~rα)

ρ0

+Al
ρL,τi(~rα)

ρ0
+B

[
ρL(~rα)

ρ0

]σ
(1− xδ2)

−4τix
B

σ + 1

ρσ−1
L (~rα)

ρσ0
δρL,−τi(~rα) +

2

ρ0

×
∑

j

∑

τj

Cτi,τj

S(~rα − ~rj)

1 + (~pi − ~pj)2/Λ2

}
. (17)

III. RESULTS AND DISCUSSIONS

In the following study, we employ the improved IBUU
transport model using the LH approach for the mean-
field potential from the ImMDI interaction to investi-
gate the isospin transport in heavy-ion collisions at in-
termediate energies. Generally speaking, effects of the
isospin transport in intermediate-energy heavy-ion colli-
sions may manifest itself in both the single-nucleon mo-
mentum spectra and fragment distributions in the final
state [46–55]. While the IBUU transport model does not
have the dynamical cluster formation mechanism, it is
a useful tool for investigating the isospin transport dy-
namics by tracing the evolution of the isospin asymme-
try during the reaction. Our following study is divided
into two parts. In the first part, we study effects of the
symmetry energy Esym(ρ) and the neutron-proton effec-
tive mass splitting m∗

n−p on the isospin transport process
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between the projectile and the target with different N/Z
ratios. The degree and time scale of the isospin transport
are investigated by using a method similar to that used in
Ref. [35]. In the second part, we investigate the isospin
transport process between the low-density neutron-rich
neck and the normal-density but less neutron-rich spec-
tator in the projectile-like fragment as in the recent ex-
periment done at TAMU [40]. By varying values of the
x and y parameters in the ImMDI interaction, heavy-ion
collisions are simulated with different slope parameters
L of the symmetry energy and the neutron-proton effec-
tive mass splittings m∗

n−p. Typical isospin splittings of
the nucleon effective mass used in the following studies
are m∗

n−p/m = 0.426δ by setting y = −115 MeV as an
example of m∗

n−p > 0, and m∗

n−p/m = −0.251δ by set-
ting y = 115 MeV as an example of m∗

n−p < 0. We note
that the parameter sets (x = 0, y = −115 MeV) and
(x = 1, y = 115 MeV) give the same symmetry energy
with L = 60 MeV but different m∗

n−p [24]. The initial
density distribution of the projectile and the target nu-
cleus is sampled according to that generated from the
Skyrme-Hartree-Fock calculation with the same nuclear
matter properties as in the ImMDI interaction, so the
neutron skin effect is properly taken into account. The
initial nucleon momentum distribution is sampled using
the local Thomas-Fermi approximation with the isospin-
dependent nucleon Fermi momentum determined by the
local neutron or proton density.

A. Isospin transport between projectile and target
with different N/Z ratios

As an example for studying the isospin transport pro-
cess between the projectile and the target with different
N/Z ratios, 40Ca +124 Sn collisions at an impact param-
eter of 1 fm and beam energies from 25 to 300 AMeV
are simulated with the improved IBUU transport model,
with each case 10 runs and each run 100 test particles.
Similar to Ref. [35], the relative neutron/proton ratios in
the bounded residue (defined as regions where ρ > ρ0/8)
at forward and backward rapidities in the center-of-mass
frame of the projectile-target system

λ(t) ≡
(n/p)y>0

(n/p)y<0
(18)

is used to measure the degree of isospin equilibrium.
The fractions of particles in the resides in 40Ca+124 Sn

collisions at beam energies from 25 to 300 AMeV us-
ing the parameter set (x = 0, y = −115 MeV) for the
ImMDI interaction are shown in Fig. 1. The time evolu-
tions of these fractions mainly reflect the time scales of
particle emissions. Reaching a flat fraction of bounded
particles indicates that the particle emission is over. It
is seen that this time scale drops quickly with increasing
beam energy. As the beam energy changes from 25 to 300
AMeV, the particle emission time scale changes approxi-
mately from 150 fm/c to about 75 fm/c. Such time scales
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FIG. 1: (Color online) Time evolution of the ratio of the par-
ticle number in the resides (Ares) to the total particle number
(Atarg + Aproj) in 40Ca +124 Sn collisions at different beam
energies using the parametrization (x = 0, y = −115 MeV)
for the ImMDI interaction.

set a useful reference for discussing the isospin relaxation
times.
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FIG. 2: (Color online) Time evolution of the isospin equili-
bration meter [λ(t) − 1]/[λ(0) − 1] in 40Ca +124 Sn collisions
and beam energies of 25 (a), 100 (b), 200 (c), and 300 AMeV
(d) from calculations using different symmetry energies and
neutron-proton effective mass splittings.

In order to reveal the symmetry energy effect on the
isospin relaxation, we have done the same calculations
with the parametrization (x = 1, y = −115 MeV), which
leads to the same neutron-proton effective mass splitting
as (x = 0, y = −115 MeV) but a softer Esym(ρ) with
a slope parameter L = 10 MeV. With different slope
parameters L of the symmetry energy and the neutron-
proton effective mass splittings, the time evolutions of
the isospin equilibration meter [λ(t) − 1]/[λ(0) − 1] are
displayed in Fig. 2 as functions of time at various beam
energies. As in Ref. [35], the isospin relaxation time
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τ is defined as the time when [λ(t) − 1]/[λ(0) − 1] ap-
proaches 0 for the first time. It is an approximate mea-
sure of how fast the isospin transport happens. Obvi-
ously, the complete isospin equilibrium does not occur
even at the lowest energy considered as indicated by the
oscillating [λ(t) − 1]/[λ(0) − 1] values. Moreover, as in-
dicated in Fig. 1, the fraction of masses in the resides
are still decreasing as the isospin oscillations continue.
More quantitatively, with the parameter set of (x = 0,
y = −115 MeV), the fractions of masses in the residues
at 25 AMeV are about 84% and 71%, respectively, when
[λ(t)− 1]/[λ(0)− 1] reaches zero for the first and the sec-
ond time, respectively. For the reaction at 300 AMeV,
they are about 89% and 13%, respectively.
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FIG. 3: (Color online) Beam energy dependence of the isospin
relaxation time in 40Ca+124Sn collisions from calculations us-
ing different symmetry energies and neutron-proton effective
mass splittings.

The isospin relaxation times from simulations using
different L and m∗

n−p at beam energies from 25 to 300
AMeV are compared in Fig. 3. The decreasing trend
of the isospin relaxation time with the increasing col-
lision energy, as already observed in Fig. 2, is due
to stronger dissipations as a result of more successful
nucleon-nucleon collisions at higher beam energies. Gen-
erally, a softer symmetry energy with L = 10 MeV leads
to a shorter isospin relaxation time. This is understand-
able since the symmetry energy at the dominating low-
density phase acts as a restoring force for the system
to reach isospin equilibrium, and the time for reach-
ing isospin equilibrium becomes shorter if this force is
stronger. The case with m∗

n−p < 0 generally leads to a
longer isospin relaxation time, especially at higher colli-
sion energies. This is due to the weaker symmetry po-
tential at lower momenta for m∗

n−p < 0 than that from
m∗

n−p > 0, especially when the density increases, as can
be seen from Fig. 8 of Ref. [24]. The above calcula-
tions were done with the isospin-dependent in-medium
nucleon-nucleon scattering cross sections scaled by the
nucleon effective mass [39]. We have also tried free-space
nucleon-nucleon scattering cross sections in the calcula-

tions, and found that the difference is much smaller com-
pared to those caused by the nuclear symmetry energy
and the neutron-proton effective mass splitting. Gen-
erally speaking, smaller in-medium cross sections reveal
more about the mean-field potential effects on the isospin
transport.

B. Isospin transport between neck and spectator in
non-central 70Zn+70Zn collisions

Because the symmetry energy generally increases with
increasing density, a more neutron-rich neck compared to
the less neutron-rich spectator is expected to be formed in
non-central heavy-ion reactions as a result of the isospin
fractionation effect. Such effect has been studied exten-
sively in the literature and is well understood, see, e.g.,
Refs. [2, 4] for reviews. However, it is not so clear how
fast the neutron-rich neck exchanges its isospin asymme-
try with the spectator and how this process may depend
on the properties of isovector nuclear interactions. In-
terestingly, an experimental investigation on the isospin
transport process between the neck and the spectator in
non-central 70Zn+70Zn collisions at a beam energy of 35
AMeV was recently carried out by the TAMU group [40].
It was assumed that the PLF will rotate in a constant
angular frequency after the breakup of the neck while
the more neutron-rich light fragment (LF) from the neck
and the less neutron-rich heavy fragment (HF) from the
spectator evolve towards an isospin equilibrium state.
The alignment angle serves as a clock once the angu-
lar momentum of the PLF is known, and the difference
in isospin asymmetry between the LF and the HF was
found to decrease with the increasing alignment angle.
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purpose by setting (L = 90 MeV, m∗
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p) at t = 0 − 170
fm/c and (L = 60 MeV, m∗
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p) at t = 170 − 300 fm/c.
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The neck formation and fragmentation were previously
investigated using the constrained molecular dynamics
model [56]. Although the fragmentation process is not
properly described in the IBUU transport model, some
useful information can still be obtained by tracing the
isospin asymmetry in heavy-ion collisions. Plotted in
Fig. 4 are the isospin asymmetry contours from calcu-
lations using different symmetry energies and neutron-
proton effective mass splittings, from averaging 200 runs
for each case and 200 test particles for each run. The
rotation of the whole system can be clearly observed.
Moreover, the time evolutions of the less neutron-rich
normal-density phase and the more neutron-rich low-
density phase are vividly shown. A stiffer symmetry en-
ergy with a larger slope parameter L generally leads to a
more neutron-rich neck, while the neutron-proton effec-
tive mass splitting seems to have only small effects on the
evolution of the isospin asymmetry. To further examine
effects of the symmetry energy and isospin splittings of
the nucleon effective mass on the isospin fractionation,
the correlation between the isospin asymmetry δ and the
reduced nucleon number density ρ/ρ0 is shown in Fig. 5.
It is more clearly seen that a stiffer symmetry energy
leads to a more neutron-rich low-density phase, while the
isospin asymmetry of the low-density phase is insensitive
to the isospin splitting of the nucleon effective mass. The
case with L = 90 MeV for the first half of the reaction
but L = 60 MeV for the latter half in the bottom row of
Fig. 4 is to study the isospin transport between the neck
and the spectator with different symmetry energies but
starting from the same initial isospin asymmetry differ-
ence. This will be further discussed later.
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0.15

0.20

/ 0

 L=60MeV,m*
n>m*

p

 L=60MeV,m*
n<m*

p

 L=90MeV,m*
n>m*

p

t = 170 fm/c

FIG. 5: (Color online) Correlation between the isospin asym-
metry δ and the reduced nucleon number density ρ/ρ0 at
t = 170 fm/c in non-central 70Zn+70Zn collisions at the beam
energy of 35 AMeV from calculations using different symme-
try energies and neutron-proton effective mass splittings, cor-
responding to the reactions in Fig. 4.

As seen from Fig. 4, the neutron-rich neck is gradu-
ally assimilated by the spectator in the later stage, and

the PLF will eventually reach an isospin equilibrium. In
our IBUU calculations, the PLF, defined as bounded nu-
cleons (ρ > ρ0/8) at z > 0, doesn’t break up into a
neutron-rich LF and a less neutron-rich HF. In order to
describe quantitatively the isospin relaxation within the
PLF, we examine the isovector dipole moment

~D(t) ≡ ~RZ(t)− ~RN (t), (19)

where ~RZ(t) and ~RN (t) are the centers of mass of neu-
trons and protons in the PLF, respectively. This quan-
tity is similar to the operator for isovector giant dipole
resonances (IVGDR) [28]. The full isospin equilibrium

in the PLF is reached when | ~D(t)| is 0. Figure 6 dis-

plays the time evolution of | ~D(t)| in the later stage of
non-central 70Zn+70 Zn reactions from simulations using
different symmetry energies and neutron-proton effective
mass splittings, corresponding to the four scenarios in
Fig. 4. The instant t = 170 fm/c is taken as the initial
time when the norm of the dipole moment is the largest.

The different initial | ~D(t)| values correspond to different
isospin asymmetries of the neck from using different sym-

metry energies. The | ~D(t)| shows not only an exponential
decay but also a damped oscillation, with the later simi-
lar to that of an IVGDR. Based on this observation, we

fit the time evolution of | ~D(t)| using

| ~D(t)| = a exp[−(t− 170)/τ1]

+ b cos[ω · (t− t0)] exp[−(t− 170)/τ2]. (20)

The second term in the above expression is also used in
our previous study of IVGDR [28]. The simulation results

of | ~D(t)| are fitted reasonably well with Eq. (20) as shown
by the solid black lines in Fig. 6. The fitting parameters
in the four scenarios are given in Table I. Comparing
results from using the same L but different m∗

n−p, it is
seen that the difference is mainly in the oscillation part,
i.e., the second term in Eq. (20). A slower decay of the
oscillation magnitude and a lower frequency are observed
for the case of m∗

n < m∗

p compared with the m∗

n > m∗

p

case. This is qualitatively consistent with that observed
in Ref. [28], as a result of the weaker symmetry potential
in the case of m∗

n < m∗

p at lower nucleon momenta [24].

From Fig. 6, | ~D(t)| is seen to decrease more slowly for
m∗

n < m∗

p than for m∗

n > m∗

p, due to the difference in
the second term of Eq. (20) as discussed above. This
means that in the presence of oscillations the measure of
the isospin relaxation time τ should consider the second
term. Here, we define the isospin relaxation time τ as

the time needed for the upper envelope of | ~D(t)|, i.e.,
a exp[−(t − 170)/τ1] + b exp[−(t − 170)/τ2], to decrease
to 1/e of its initial value, i.e., (a + b)/e. The values of
τ are shown in the final column of Table I. It is worth
noting that the isospin relaxation time τ is quite long for
m∗

n < m∗

p, qualitatively consistent with our findings in
Sec. III A.
It is interesting to note that for the same m∗

n−p, the
calculation with L = 90 MeV leads to a shorter isospin
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TABLE I: The slope paramters of the symmetry energy L, the neutron-proton effective masse splittingm∗

n−p, and the parameters
from fitting the isovector dipole moment according to Eq. (20) corresponding to the four scenarios in Figs. 4 and 6, as well as
the final isospin relaxation time τ .

L (MeV) m∗

n−p (m) a (fm) b (fm) τ1 (fm/c) τ2 (fm/c) ω [rad(fm/c)−1] τ (fm/c)

60 0.426 δ 0.064 ± 0.001 0.012 ± 0.001 67.43 ± 0.62 71.11 ± 4.53 0.089 ± 0.001 68.00 ± 1.22

60 -0.251 δ 0.071 ± 0.002 0.011 ± 0.001 66.03 ± 1.64 155.14 ± 25.62 0.062 ± 0.002 73.52 ± 3.45

90 0.426 δ 0.102 ± 0.002 0.036 ± 0.001 59.47 ± 0.86 61.61 ± 1.59 0.068 ± 0.001 60.02 ± 1.05

90 and 60 0.426 δ 0.079 ± 0.001 0.056 ± 0.001 60.34 ± 0.10 51.05 ± 1.02 0.074 ± 0.001 56.30 ± 0.51
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0.00
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n>m*

p

 L=60MeV, m*
n<m*

p

 L=90MeV, m*
n>m*

p
 L=90MeV (0,170)fm/c; 

         L=60MeV (170,300)fm/c, m*
n>m*

p
 fit curves

|D
| (

fm
)

t (fm/c)

FIG. 6: (Color online) Time evolution of the magnitude of the
isovector dipole moment for the projectile-like fragment in the
later stage of non-central 70Zn +70 Zn collisions from simula-
tions using different symmetry energies and neutron-proton
effective mass splittings corresponding to the four scenarios
in Fig. 4. The scatters are results from simulations, while the
solid lines are from the fit according to Eq. (20).

relaxation time τ than that with L = 60 MeV. However,
this seems to be opposite to what we found in Sec. III A.

This discrepancy is mainly due to different initial | ~D(t)|
values from different L. Neglecting the effective mass
difference between neutrons and protons, the isovector
current can be expressed as [4, 33, 34, 49]

~jn −~jp = (Dρ
n −Dρ

p)∇ρ− (DI
n −DI

p)∇δ, (21)

where the difference of the drift coefficient Dρ
N and the

diffusion coefficient DI
N between neutrons and protons is

related to the nuclear symmetry energy via

Dρ
n −Dρ

p ∝ 4δ
∂Esym

∂ρ
,

DI
n −DI

p ∝ 4ρEsym. (22)

In the analysis in Sec. III A, it is understood that the
isovector current is dominated by the isospin diffusion,
i.e., mainly due to the gradient of the isospin asymmetry
∇δ as a result of different N/Z ratios between the projec-
tile and the target. A smaller L corresponding to a larger
symmetry energy at the dominating low-density phase
leads to a larger isovector diffusion coefficient DI

n −DI
p,

and thus a stronger isovector current ~jn−~jp. In the anal-
ysis of isospin transport between the neck and the spec-
tator, the isovector current is driven by both the isospin
diffusion and the isospin drift, i.e., due to the gradients of
both the isospin asymmetry ∇δ and the density ∇ρ. For
different L values, the dynamics leads to similar ∇ρ but
different ∇δ values. The longer isospin relaxation time
from L = 90 MeV is likely due to the larger ∇δ and the
larger isovector drift coefficient Dρ

n − Dρ
p, although the

isovector diffusion coefficient DI
n − DI

p is smaller, com-
pared to the L = 60 MeV case. To further understand
the difference, we perform a simulation with L = 90 MeV
from 0 to 170 fm/c, and L = 60 MeV for the rest of
the reactions. As shown in Fig. 4, the evolution of the
isospin asymmetry becomes different for t > 170 fm/c

as expected. In Fig. 6, it is seen that | ~D(t)| is the same
in the initial stage, but drops more quickly and oscil-
lates more strongly in the later stage, compared to the
scenario with a fixed L = 90 MeV throughout the simula-
tion. After considering the oscillation, the overall isospin
relaxation time τ is shorter as shown Table I, due to the
same initial ∇δ from L = 90 MeV at t = 170 fm/c but
a stronger restoring force from L = 60 MeV at t > 170
fm/c.

The above analyses were done at the impact parameter
of 4 fm, which is larger than the average value of mini-bias
70Zn+70Zn collisions. This is similar to the experimen-
tal situation where more peripheral collision events were
chosen [57]. With a smaller impact parameter, there will
be more participating nucleons, a higher-density and less
neutron-rich neck, and thus a weaker isovector current
due to the smaller gradients of the density and isospin
asymmetry according to Eq. (21). From our simulations
with similar analysis method, we found that the isospin
relaxation time generally increases with a smaller impact
parameter.

IV. SUMMARY

Within an improved isospin-dependent Boltzmann-
Uehling-Uhlenbeck transport model using the lattice
Hamiltonian method to calculate the mean-field poten-
tial, we have studied the effects of the nuclear symmetry
energy and the neutron-proton effective mass splitting
on the isospin relaxation time in two different isospin
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transport processes in intermediate-energy heavy-ion col-
lisions. In the isospin transport process dominated by the
isospin diffusion between the projectile and the target
with different N/Z ratios, the isospin relaxation time is
generally shorted for a softer symmetry energy compared
with a stiffer one, and longer for m∗

n < m∗

p compared
with m∗

n > m∗

p. The situation is different in the isospin
transport process between the low-density neutron-rich
neck and the normal-density but less neutron-rich spec-
tator driven by both the isospin diffusion and the isospin
drift mechanisms in non-central heavy-ion collisions. In
this case, the isospin relaxation time is shorter for a
stiffer symmetry energy because the isospin asymmetry
of the neck is also affected by the symmetry energy, while
the effect from the isospin splitting of the nucleon ef-
fective mass is qualitatively similar. Although the ex-
tracted isospin relaxation time in 70Zn+70Zn collisions
from the present study is within the experimental uncer-
tainty range, i.e, 0.3±0.7

0.2 zs (100±
233
67 fm/c) from Ref. [40],

significant improvement of the accuracy for measuring
experimentally the isospin relaxation time and additional
information about the collision centrality are necessary
to extract useful information about the symmetry en-
ergy and the neutron-proton effective mass splitting from

comparing quantitatively the model calculations with the
experimental result. Meanwhile, our study may help bet-
ter understand the isospin diffusion and the isospin drift
mechanisms for the isospin transport in intermediate-
energy heavy-ion collisions.
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[6] B. A. Li, À. Ramos, G. Verde, and I. Vidaňa, Topical
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