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We present results of centroid energies Ecen, of the isoscalar (T = 0) and isovector (T =
1) giant resonances of multipolarities L = 0 to 3 in #%*¥Ca, %Ni, *Zr, !'°Sn, **Sm and 2%*Pb,
calculated within the fully self-consistent Hartree-Fock (HF)-based random phase approximation
(RPA) theory, using 33 different Skyrme-type effective nucleon-nucleon interactions of the
standard form commonly adopted in the literature. We compare the results of our theoretical
calculations with the available experimental data. We also study the sensitivity of the calculated
Ecen to physical properties of nuclear matter (NM), such as effective mass m*/m, nuclear matter
incompressibility coefficient Knv, enhancement coefficient k of the energy weighted sum rule
for the isovector giant dipole resonance and symmetry energy at saturation density, associated
with the Skyrme interactions used in the calculations. This is done by determining the Pearson
linear correlation coefficient between the calculated Ecen and a certain NM property.
Constraining the values of the NM properties, by comparing the calculated values of Ecen to the
experimental data, we find that interactions associated with the values of Knm = 210 to 240 MeV

and « = 0.25 to 0.70 best reproduce the experimental data.
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I. INTRODUCTION

The phenomena of collective motion of strongly interacting nucleons in the many-body
system of the atomic nucleus have been the subjects of experimental and theoretical
investigations for many decades [1-3]. Of particular interest are the determination of properties
of isoscalar (isospin T = 0) and isovector (T = 1) giant resonances of various
multipolarities [1,2,4], evolution of astrophysical objects and the description of heavy-ion
collisions (HIC) [5,6]. These studies are important for determining properties of the nucleon-
nucleon interaction, nuclei and infinite nuclear matter (NM). It is common to adopt a
parametrized form for the energy density functional (EDF) for the nuclear many-body system
and determine its parameters by a fit to ground state properties of nuclei, such as binding
energies and radii, and thereby determine the equation of state (EOS) of NM. Over the years the
strength function distributions S(E) and centroid energies, Ecen, of the isoscalar and isovector
giant resonances have been found to be sensitive to physical quantities of NM [4,5,7,8], such as
the incompressibility coefficient Knm and symmetry energy, Eqm(p), as a function of the density
p. Many attempts have been made to determine the values of the bulk properties of NM. The
resulting values of the bulk properties of NM can also be used to constrain the EDF, which then
can be used to better determine the EOS of NM and calculate properties of nuclei away from the

valley of stability.

The first observation of giant resonance dates back to 1947 made by Baldwin and
Klaiber [9] by bombarding targets of uranium and thorium with y-rays from the newly developed
100-MeV betatron. They found a strong peak in the photo-fission cross-section: the isovector
giant dipole resonance (IVGDR). With the use of inelastic proton and electron scattering
experiments on nuclei the isoscalar giant quadrupole resonance (ISGQR) was determined over
two decades later, see Refs. [10] and [11]. D. H. Youngblood et al. found the isoscalar giant

monopole resonance (ISGMR) in *Sm and 2%®Pb using inelastic o-scattering and angular

coverage close to 0° [12], and subsequently lead the systematic study of the strength distributions

of isoscalar giant resonances in many other nuclei.

In this work we consider the isoscalar (T=0) and isovector (T=1) giant resonances, of

multi-polarities L = 0 - 3 in 4%%Ca, %Ni, °°Zr, 1°Sn, **Sm and 2°*Pb and present results of



calculations of the centroid energies Ecen, within fully self-consistent spherical Hartree-Fock
(HF)-based random phase approximation (RPA) theory, including all the particle-hole
components of the Coulomb and the adopted effective nucleon-nucleon Skyrme type
interactions [13—15]. Over the past decades, many parametrized Skyrme interactions have been
obtained [16,17] by fitting the HF results to experimental data of ground state properties of
nuclei. In the following we present results for Ecen using 33 Skyrme-type effective nucleon-
nucleon interactions of the standard form [18], which cover a wide range of values of NM
properties and commonly employed in the literature. We compare the calculated values of Ecen
with experimental data, obtained from different experiments carried out over a wide time frame;
however, when possible we use data from the same experimental group for a better comparison.

We also calculate the Pearson linear correlation coefficient to investigate the sensitivity of the
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Ecen to bulk properties of NM including: the incompressibility coefficient Kyy = 9p

where Eo [p] is the binding energy per nucleon and py is the saturation density, the effective mass

m*/m, the symmetry energy coefficients at po: J = Egm[po], and its first and second derivatives
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, respectively, and «, the enhancement coefficient
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L = 3p, as;ym N and K, = 9pg
of the energy weighted sum rule (EWSR) of the isovector giant dipole resonance (IVGDR). We
consider spherical nuclei with a wide range of mass to determine better constraints on the values
of various NM properties, associated with the standard form of the Skyrme interaction adopted in

this investigation.

In section II, we present the theoretical approach to calculate the centroid energies Ecex
of the giant resonances. In section III, the calculated values of Ecen are compared with the
experimental data for each multi-polarity. Here we also study the sensitivity of Ecen to NM

properties. Our summary and conclusions are given in section IV.

II. FORMALISM

The Skyrme effective nucleon-nucleon interactions used in our calculations have the

standard form [18]:
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In Eq. (1), 4 x; Wy and « are the 10 parameters of the Skyrme interaction. Pj; is the spin
exchange operator and &; is the Pauli spin operator. The momentum operators are defined by
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they act, right and left, respectively. The parameters of the effective nucleon-nucleon Skyrme
interaction in Eq. (1) are generally determined by a fit of results of HF calculations to
experimental data of ground-state properties, such as binding energies and radii of a wide range
of nuclei. The corresponding energy density functional can written as the sum of the individual

components [ 18],

H=K+H =K+ Hy+H;+ Hess + Hpip + Hgo + Hgg + Heoyy - (2)
2
In the right hand side (r.h.s.) of (2), K = zh_mT is the kinetic term, H, the zero-range term, H; the

density-dependent term, H,ss the effective mass term, Hy;y, the finite-range term, Hg, the spin
orbit term, H, the term due to tensor coupling with spin and gradient, and H¢y,; is the Coulomb

term. From Eq. (1) one finds that:
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where p = p, + pp, T =1, + T, and f = ]_p) +]_n), are the particle number density, the kinetic-
energy density and the spin-density, respectively. The subscript p denotes the protons and » the
neutrons [18]. The parameter x,, in Eq. (7) is introduced to tune the isospin dependence of the

spin-orbit term.



The Coulomb contribution to the energy density functional can be written as a sum of

two components, the direct and the exchange terms:

HCoul (T) = HgoiZl (T) + Hggul(r)' (9)

The direct Coulomb term is given by

HEr (r) = %ezpp(r) f%d%’, (10)
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while the exchange Coulomb term is commonly implemented using the Slater approximation

HEE (1) = = 2e2p, () [222] (1)

The Hartree-Fock total energy E of the system and corresponding mean-field Vxr are found

using

E=[H@dr, Vg =‘;—;’. (12)
Within the RPA formalism the strength function S(E) is given by

S(E) = X;|0IF, )8 (E; — Eo), (13)

where the sum is over all RPA states |j) of energy E; The electromagnetic single-particle

scattering operator for the isoscalar (T =0) excitation of multipolarity L is given by [19] F, =

Y f(r)Y,0(i) and the corresponding isovector (T=1) single-particle scattering operator is given
by F), = %Zn f(r)Y,e(n) — %Zp f (rp)YLO (p). The S(E) of the different multipolarities is then

determined by: f(r) = r?, for the isoscalar and isovector monopole (L=0) and quadrupole
(L=2), f(r) = r3 for the octupole (L=3), f(r) = r for the isovector dipole (T=1, L=1), and
lastly f(r) = r3 — (5/3)(r?)r for the isoscalar dipole (T=0, L=1). We point out that for the

isoscalar dipole we subtract the contribution from the spurious state [20,21].
We calculate the energy moments of the S(E) using,
— (B2 gk
my, = [ E*S(E) dE, (14)

where E1 — E2 is the appropriate excitation energy range. The constrained, centroid and scaling

energies of the resonances are then obtained using
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We note that the energy moment m, in Eq. (14), calculated by integrating over all excitation

energies, can be also determined directly from using only the HF ground state wave function,
thus leading to an energy weighted sum rule (EWSR) for S(E)[1,22]. The EWSR for the

isoscalar (T=0) F; operator is given by:

hZ
my(L,T = 0) = —— [ g,(r) p(r)4mr2dr , (16)
where p(r) is the HF ground-state matter density distribution and

0 =(9) +e+(L)" (17)

For the isovector (7= 1) operator F;, the EWSR is given by

NZ
m,(L, T = 1) =A—2m1(L,T=O)[1+K—Knp], (18)
Here, x is the EWSR enhancement coefficient of the isovector giant resonance of multipolarity L

and is due to the momentum dependence of the effective nucleon-nucleon interaction. For the

Skyrme interaction of Eq. (1) we have
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where t; and x; are the parameters of the interaction. The coefficient k,,, which is due to the
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difference in the profiles of the neutron and proton density distributions [i.e., when p,(r) —
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III. RESULTS

In this section we present results of our spherical HF-based RPA calculations of the
centroid energies Ecex of isoscalar and isovector giant resonances of multipolarity L = 0 - 3 in
048Ca, 6Ni, Zr, "6Sn, “Sm and 2%Pb, obtained from the 33 Skyrme-type effective
interactions of the standard form of Eq. [1], commonly employed in the literature. We use the
occupation number approximation for the single-particle orbits for the open-shell nucleus **Sm,
to ensure a spherical nucleus, and we use all the interaction terms from the HF when we carry
out the RPA calculations, for self-consistency [23]. The interactions used in this work are:
SGII [24], KDEO [25], KDEOv1 [25], SKMx* [26], SK255 [27], SkI3 [28], SkI4 [28], SkI5 [28],
SV-bas [29], SV-min [29], SV-sym32[29], SV-m56-O [30], SV-m64-O [30], SLy4 [31],
SLy5 [31], SLy6 [31], SkKMP [32], SkO [33], SkO’ [33], LNS [34], MSLO [35], NRAPR [36],
SQMC650 [37], SQMC700 [37], SkTI1 [38], SkT2[38], SkT3[38], SkTS8[38], SkTO [38],
SkT1* [38], SkT3* [38], Skxs20 [39] and Zo [40]. A list of the parameters of each Skyrme
interaction used here is presented in TABLE 1. In TABLE II we show the different conditions
for using each Skyrme interaction as it was designed. The strength functions S(E), Eq. (13), for
all the giant resonances in all nuclei, have been calculated using the discretized RPA method
described in [19]. In all the calculations of S(E), we use the same sized box of 100 mesh points,
0.2 fm apart. In the RPA calculations the maximum cutoff single particle energy was varied only
for the different multi-polarities, with 100, 80, 45 and 45 MeV used for L = 0, 1, 2 and 3,
respectively. Our calculated values for the centroid energies Ecen were obtained from Eq. (14)
using the excitation energy ranges given in TABLE III, determined by studying the structure of

the corresponding strength functions in order to obtain accurate values for Ecen. We have



checked that the cutoff energies are large enough, so that the corresponding energy weighted
sum rules are exhausted and that the calculated values of Ecgn are accurate within 0.1 MeV, by
repeating the calculations using 200 mesh points with mesh size of 0.1 fm for several isoscalar
and isovector giant resonances (see also Ref. [23]). To ensure accuracy in the integration of the
strength function, Eq. (13), when obtaining the energy moments, we use a small parameter (y =
0.1 MeV) in the Lorentzian smearing of the strength function.

In Table IV we present the values of the nuclear matter (NM) properties associated with
the 33 interactions used in this work. In FIG. 1, we show the range of the NM properties relative
to these interactions as a function of the incompressibility coefficient, Knm, of NM. It is seen
from Table IV and FIG. 1 that the interactions used in this work cover wide ranges of values for
the properties of NM. We calculated the Pearson linear correlation coefficients between the
values of each pair of properties of NM and present the results in Table V. The sensitivity of the
centroid energies, Ecen, of the giant resonances to NM properties is also investigated by
calculating the Pearson linear correlation coefficient C between the calculated Ecen, of each
giant resonance, and each property of NM (see TABLE VI). By comparing the calculated values
of Ecen to the experimental data we extract constraints on values of NM properties, associated
with the standard form of Eq. (1) adopted in this investigation. Considering the limited no. of 33
interactions used in this work, we adopt the following nomenclature for the different degrees of
correlation: strong (|C| > 0. 80), medium (|C| = 0.61 — 0.80), weak (|C| = 0.35 — 0.60) and no
correlation (|C| < 0.35). As seen from TABLE V, we find no correlations between the values of
the NM properties, except for the weak correlations between the values of the effective mass
m*/m and Knm and the medium correlation between m*/m and the enhancement coefficient k for
the energy weighted sum rule (EWSR) of the IVGDR, and from weak to strong correlations
between symmetry energy coefficients, J, and its first and second derivatives L and Ky,
respectively. These correlations mainly reflect the limited form of the standard Skyrme

interaction given in Eq. (1) and may induce spurious correlations, such as the correlation



between Ecen and Knwm for isocalar quadrupole and octupole giant resonances seen in TABLE
VI. The spurious correlations can be removed by adopting an extended form of the Skyrme
interaction, as done, for example, in [41]. Other forms of extended Skyrme type interaction can
be found in Ref. [17]. We point out that adopting an extended form for the Skyrme interaction
may result with different constraints on the values of NM and nuclear properties see also [42,43].

In this work we compare the calculated centroid energies Ecen with the experimental
data, shown in Table VII, with the corresponding experimental errors. The **Ni measurement
was made at GANIL with inelastic alpha and deuteron scattering at S0A MeV [44]. All the other
isoscalar giant resonance data for the centroid energies, Ecen, is from the D. H. Youngblood
group at Texas A&M University, measured with inelastic scattering of 240 MeV alpha
particles [45—48]. A thorough description of the experimental setup can be found in [49-51]. For
the isovector giant resonances monochromatic photon beams were used to measure the
photonuclear cross sections [22,52-59], except for the 2Pb IVGDR which was done with
polarized proton inelastic scattering [60].

In the following sub-sections, we consider each giant resonance separately and present a
plot of the corresponding centroid energies, calculated with the HF-RPA method described
above for the 33 Skyrme interactions, as a function of a certain nuclear matter property of the
corresponding Skyrme interaction used in the calculation, for the nuclei ***Ca, ¥Ni, *Zr, '1°Sn,
144Sm and 2°®Pb. When available, experimental data is included in the plots and is delimited by

the dashed lines. We also discuss the sensitivities of Ecen to bulk properties of nuclear matter.

A. Isoscalar Giant Monopole Resonance

FIG. 2 shows the centroid energy, Ecen, of the isoscalar giant monopole resonance

(ISGMR) as a function of the nuclear matter incompressibility coefficient Knm of the



corresponding Skyrme interaction used in the calculation. Each nucleus is plotted separately, and
the appropriate experimental band is contained by the dashed lines. Overall we see the well-
known strong correlation between the Ecex and Knm [1,4,61], with a Pearson linear correlation
coefficient C ~ 0.87 for all nuclei. We find a weak correlation between Ecen and the effective
mass m*/m with C ~ -0.51, see FIG. 3. We find that all the interactions considered overestimate
the value of Ecen of the ISGMR in *°Ca in disagreement with the experimental data. In **Ca
some interactions, associated with a value of Knm = 200 — 240 MeV, reproduce the experimental
result for Ecen. For the case of ®®Ni we find that all the calculated Ecen are a few MeV below the
experimental result, except for interactions with very high values (~ 260 MeV) of Knm. On the
other hand, for the case of the Ecen of *Zr, '**Sm and 2®Pb we find that, of the 33 Skyrme
interactions considered here, the interactions associated with a value of the incompressibility
coefficient between 210 and 240 MeV reproduce the experimental data very well. Lastly, for the
case of '1°Sn, the calculated values for Ecen are mostly larger (1 MeV) than the experimental
result, which is an open problem [62]. We study the centroid energy of the ISGMR as a function
of the symmetry energy J and its first derivative L and do not find any correlation with the
calculated Ecen (Pearson linear correlation coefficients C = -0.10 and 0.25, respectively). We
point out that we find a weak correlation between the calculated Ecen and the second derivative,
Ksym, of the symmetry energy (C ~ 0.45), as seen in FIG. 4. We do not find any correlation with
any of the other NM properties or with Wy, see TABLE VI.

In FIG. 5a we plot Ecen of the ISGMR for the 7 nuclei studied here as a function of their
mass, A. The experimental data and relative error bars, available for all the nuclei studied, are
shown by the solid vertical lines, while the dots (connected by lines meant to guide the eye) are
the theoretical calculations. For the experimental data we find that the value of the centroid
energy increases as the mass increases from *°Ca to *3Ca to ®*Ni, then starting with °°Zr we find a
decreasing trend. The theory does not reproduce the trend of the lighter nuclei but shows the

value of the calculated Ecen to steadily decrease as the mass is increased.



B. Isoscalar Giant Dipole Resonance

The isoscalar dipole response function, S(E), is split into low-energy (17w, excitations)
and high-energy (3/w, excitations) components [63—65]. Here we only study the latter, the
isoscalar giant dipole resonance (ISGDR). The calculated centroid energies, Ecen, (full circles)
of the ISGDR are plotted against the NM incompressibility coefficient in FIG. 6. The
experimental region is delimited by the dashed lines. We find a weak correlation between Knwm

and the centroid energy (Pearson linear correlation coefficient C ~ 0.52). In FIG. 7 we plot the

ISGDR centroid energy against the effective mass m*/m. We find a strong correlation between
Ecen and the effective mass with Pearson linear correlation coefficient of C ~ -0.88. From the
Figure we see that most of the interactions predict a higher value for the centroid energy of the
ISGDR than the corresponding experimental value. For the two isotopes of ***Ca all the
calculated Ecen are above the experimental data by up to 6 MeV in some cases. For *°Zr most
interactions are within 2 MeV of the experimental Ecen. For 16Sn, %4Sm and 2%Pb only the
interactions with a high value of m*/m (i.e. 0.9 and above) reproduce the experimental result.
However, we must point out that a comparison between theoretical and experimental results may
be misleading since the fraction of the EWSR are quite far from 100% for the Ca
isotopes [45,66] but closer to 100% for the heavier nuclei ''°Sn, **Sm and 2°Pb [48]. These
discrepancies between theory and experiment were also pointed out for *%*¥Ca in [67] and for

116Sn, 4Sm and 2°*Pb in [48], albeit for a smaller number of interactions. In the case of the
symmetry energy terms J and L, we do not find any correlation with the calculated centroid
energy (Pearson linear correlation coefficients C = -0.10 and 0.13, respectively). For Ks,» we
find a weak correlation (C = 0.36), similar to the case of the ISGMR. We note that we also find a

weak correlation between the calculated values of Ecen and the enhancement coefficient, k, of



the EWSR for the IVGDR (Pearson linear correlation coefficient C = 0.55), a reflection of the
medium correlation between k and m*/m since both are sensitive to the momentum dependent
term of the Skyrme interaction, see TABLES V and VI.

The calculated values of Ecen for the ISGDR are plotted in FIG. 5b as a function of mass
for the 7 nuclei studied here. The experimental region is represented by the solid vertical lines
and is available for all but the ®*Ni nucleus. The results of the theoretical calculations are shown
as dots connected by lines to guide the eye. As shown in the figure we find that for most
interactions, the calculated value of the centroid energy of the ISGDR increases with A for the
lower mass nuclei up to maxima around ®*Ni and decreases later with increasing A. Similar

behavior is seen for the available experimental data.

C. Isoscalar Giant Quadrupole Resonance

In FIG. 8 we plot the calculated centroid energies, Ecen, (full circles) of the isoscalar
giant quadrupole resonance (ISGQR) as a function of the effective mass m*/m of the
corresponding interaction used in the calculation. Each nucleus is plotted separately, and the
appropriate experimental band is contained by the dashed lines. We report a decreasing value of
Ecen as m*/m is increased, as well as a strong correlation between Ecen and m*/m (Pearson
correlation coefficient C = -0.93), see also Ref. [67]. In particular, we find that the experimental
value of Ecen for 0%Ca, %®Ni, *Zr, ''Sn and '**Sm agrees with interactions associated with a
value of m*/m between 0.70 - 0.90, while for >°*Pb we see that the interactions with an effective
mass in the range of 0.8 — 1.0 best reproduce the experimental result. We find a weak correlation
between Ecen and Knwm, with a Pearson linear correlation coefficient C = 0.41, see FIG. 9. We
don’t find any correlation between Ecen and the symmetry energy terms, J or L with Pearson
linear correlation coefficients C = -0.09 and 0.15, respectively. However, we find a weak

correlation between Ecen and Ky, (C = 0.41). We also find a weak correlation between the value



of Ecen and the enhancement coefficient, k, of the EWSR for the IVGDR (Pearson linear
correlation coefficient C = 0.54), a reflection of the medium correlation between k and m*/m, see
TABLES V and VI

In FIG. 5¢ we plot Ecen of the ISGQR for all the nuclei studied here as a function of the
mass of the nucleus, A. The experimental data and relative error bars are shown by the solid
vertical lines, while the dots (connected by lines meant to guide the eye) are the theoretical
calculations. We point out a general trend for most of the 33 interactions used here and the
experimental results, predicting a decreasing value of the Ecen as A increases. A notable
exception to this is found in *8Ca whose centroid energy was measured to be higher than that of
the lighter isotope *°Ca by 0.74 + 0.50 MeV. This trend is reproduced by 17 of the interactions

considered, with a difference between the Ecen for these two isotopes of up to 0.58 MeV.

D. Isoscalar Giant Octupole Resonance

FIG. 10 compares the calculated centroid energies, Ecen, (full circles) of the isoscalar
giant octupole resonance (ISGOR), with the effective mass m*/m. The region between the
dashed lines is the experimental measurement, available in this case only for the four heaviest
nuclei, and each isotope has its own panel. We see a strong correlation between the value of the
effective mass and the value of the calculated centroid energy (Pearson linear correlation
coefficient C ~ -0.96). From the figure we see that the values of Ecen, for all the Skyrme
parameterizations used in our calculations, are well above the data of *°Zr and '**Sm; however,
for 11Sn and 2°*Pb we find that for the interactions with very high effective mass (above 0.9) the
calculated values of Ecen are within the experimental error bars. In FIG. 11 we show Ecen as a
function of the nuclear matter incompressibility Knm. We find a weak correlation (C = 0.42)
between Ecen and Knv. We don’t find any correlation between Ecen and the symmetry energy
terms, J or L with Pearson linear correlation coefficients C = -0.10 and 0.15, respectively.

However, we find a weak correlation between Ecen and Ky (C = 0.43), similar to the other



isoscalar resonances. We also find a weak correlation between the values of Ecen and the
enhancement coefficient, k, of the EWSR for the IVGDR (Pearson linear correlation coefficient
C =0.56), areflection of the medium correlation between k and m*/m, see TABLES V and VI.
We summarize in FIG. 5d the centroid energies, Ecen, of the ISGOR for all the nuclei
considered here as a function of their mass, A. Experimental data is available for the heaviest
nuclei *°Zr, '%Sn, **Sm and 2%*Pb and is plotted as solid vertical lines. The dots, connected by
lines meant to guide the eye, represent the calculated values of Ecen. We find the expected
decrease in the value of Ecen as A is increased. However, 9 of the interactions considered here
predict the value of the centroid energy of *8Ca above that of °Ca. On the other hand, only 2
interactions predict the value of the centroid energy of !'®Sn above that of °Zr, in agreement

with available experimental data.

E. Isovector Giant Monopole Resonance

In FIG. 12 we plot the calculated centroid energies, Ecen, (full circles) of the isovector
giant monopole resonance (IVGMR), an isovector compression mode, as a function of the
nuclear matter incompressibility coefficient Knm. The experimental result, available for *°Ca and
208Pb, is marked by the dashed lines. We do not find any correlation between the values of Ecen

and Knm with a Pearson linear correlation coefficient C = 0.23 for most nuclei. On the other

hand, we find a medium correlation between the values of Ecex of the IVGMR and m”*/m
(Pearson linear correlation coefficient C ~ -0.70) shown in FIG. 13. Next, we consider the
isovector NM properties of the symmetry energy J in FIG. 14. We find no correlation between
the values of Ecen and J (Pearson linear correlation coefficient C ~ -0.26). Similarly, for the first
derivative L and the second derivative Ky, of J, we don’t find any correlations with the values of
the centroid energy (Pearson linear correlation coefficient C ~ -0.12 and C ~ 0.00, respectively).

We find a strong correlation between the values of Ecen and the enhancement coefficient, k, of



the EWSR for the IVGDR (Pearson linear correlation coefficient C = 0.86) as shown in FIG. 15.
However, the experimental data for both °Ca and 2°*Pb has broad error-bars covering most of
the interactions considered here and doesn’t allow us to narrow down the value of « (or any other

NM property) using the Ecen of the IVGMR.

In FIG. 16a we plot the calculated and the available experimental values for Ecen of the
IVGMR as a function of the mass A. Most of the 33 interactions used here predict a decreasing
see-saw trend in the values of Ecen as A increases. In particular, the calculated values of Ecen for
48Ca are above those of *°Ca for all but two interactions (NRAPR and SkT3*). Similarly, the
predicted values of Ecen for °°Zr are above those of ®*Ni for all but one interaction (SKO), while
the centroid energy of '**Sm is calculated to be roughly the same as that of ''%Sn (within 0.2

MeV, for most interactions).

F. Isovector Giant Dipole Resonance

The calculated centroid energies, Ecen, of the isovector giant dipole resonance (IVGDR)
show a weak correlation with the symmetry energy coefficient J (Pearson linear correlation
coefficient C ~ -0.37), as can be seen in FIG. 17. The experimental data for Ecgn is delimited by
the dashed lines. We point out that the experimental errors for *°Zr and ''®Sn are too small,
making them hard to distinguish. Similar results to those obtained for the correlation between the
values of Ecen and the symmetry energy are found for its first derivatives, L (Pearson linear
correlation coefficient C ~ -0.42) and no correlation with its and second derivative K, (Pearson
linear correlation coefficient C ~ -0.30). It is commonly expected that the value of Ecen for the
IVGDR is quite sensitive to the density dependence of Ej.(p) [22,68], however our calculated
Pearson linear correlation coefficients do not reflect this. Similar to the results of Ref. [67], we
find a strong correlation (Pearson linear correlation coefficient C = 0.84) between the calculated

values of Ecen and the EWSR enhancement coefficient, «, of the IVGDR, plotted in FIG. 18,



especially for the heavier nuclei. We find that the experimental data of Ecen for most nuclei
agrees with interactions associated with a value of k between 0.25 and 0.7. In FIG. 19, we show
the centroid energy as a function of the effective mass m*/m. We find a weak correlation
between the values of Ecen and m*/m with a Pearson linear correlation coefficient close to C = -
0.60, for all the nuclei. As seen from TABLE VI, we do not find any correlation between Ecex

and Knm (C ~ 0.05).

In FIG. 16b we plot the calculated and experimental values of Ecen of the IVGDR for the
7 nuclei studied here as a function of the mass A. It is seen from the Figure that the experimental
values of Ecen decrease with A. Similarly, most of the 33 Skyrme interactions used here predict
a decreasing value of the Ecen with A. Deviations to this decreasing trend are found for 12 of the
interactions considered which predict the value of the centroid energy for **Ca to be higher, by

up to 0.60 MeV in some case, than that of *°Ca.

G. Isovector Giant Quadrupole Resonance

In FIG. 20 we show the calculated Ecen for the isovector giant quadrupole resonance
(IVGQR) as a function of the symmetry energy J. The experimental data, only available for *°Ca
and 2%Pb in this case, is marked by dashed lines. We find a weak correlation between the
calculated values of J and Ecen with a Pearson linear correlation coefficient C ~ -0.35. We don’t
find any correlation between the calculated values of the first derivative of the symmetry energy
L and Ecgn (Pearson linear correlation coefficient C ~ -0.29), as well as for the second derivative
of the symmetry energy Kj,» and the value of Ecen (Pearson linear correlation coefficient C ~ -
0.13). On the other hand, we find in FIG. 21 a medium correlation (C ~ 0.80) between Ecen and
the EWSR enhancement coefficient, k, of the IVGDR. We find that of the 33 interactions we
considered here the ones with a value of k between 0.25 and 0.7 best reproduce the experimental

value of Ecgn, in agreement with our above finding for the case of the IVGDR. In FIG. 22 we



demonstrate a medium correlation between the values of Ecen and m*/m (C ~ -0.74), with the
interactions that have a value of m*/m between 0.6 and 0.9 reproducing the available
experimental results the best. As seen from TABLE VI, we do not find any correlation between

the calculated values of Ecen and Knm (C ~ 0.18).

In FIG. 16¢c we plot the Ecen of the IVGQR as a function A. From the theoretical
calculations we see a general trend of a decreasing value of Ecen as A increases. In contrast with
the general trend, for the case of the Ca isotopes we find that only 9 of the interactions
considered predict the value of the centroid energy of **Ca below that of “°Ca (but only 6

interactions do so by more than 0.30 MeV).

H. Isovector Giant Octupole Resonance

No experimental data is available for the centroid energy of the isovector giant octupole
resonance (IVGOR). In FIG. 23 we study the centroid energy, Ecen, of the IVGOR, as a function
of the symmetry energy J. We do not find any correlation between the value of the calculated
Ecen and J, with a Pearson linear correlation coefficient C = -0.32. Likewise, for the first and
second derivatives of the symmetry energy, we don’t find any correlation between the values of
Ecen and both L or Kym (with Pearson linear correlation coefficients C ~ -0.19 and C ~ 0.02,
respectively). On the other hand, we find a strong correlation between the Ecen and the EWSR
enhancement coefficient, k, for the IVGDR (Pearson correlation coefficient C ~ 0.81) as can be
seen in FIG. 24. Also, for the case of the effective mass m*/m, shown in FIG. 25, we report a
strong correlation with the value of the centroid energy (Pearson linear correlation coefficient C
~-0.83). As seen from TABLE VI, we do not find any correlation between the value of Ecen and

Kxm (C ~0.29).



We report a decreasing trend in the calculated value of Ecen of the IVGOR as the nucleon
mass A is increased, see FIG. 16d. We note some exceptions for the calculated value of Ecen of
“8Ca which many (22 of the 33) interactions predict above that of *°Ca, although not by a

significant amount in most cases.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented results of fully self-consistent spherical HF-RPA
calculations, using the 33 commonly employed Skyrme-type effective nucleon-nucleon
interactions of the standard form, Eq. (1), shown in TABLE I, for the centroid energies, Ecen, of
the isoscalar and isovector giant resonances of multipolarities L = 0 to 3 in ***Ca, *Ni, *Zr,
116Sn, 1%4Sm and 2%Pb and compared with available experimental data. For the heavier nuclei,
NZr, 116Sn, 144Sm and 2°8Pb, we obtained good agreement between theory and experiment for the
ISGMR, ISGQR, and IVGDR for the calculated values of Ecenx for some of the 33 Skyrme
interactions used in our work. As the mass increases from #°Ca, to “®Ca to °*Ni, we don’t see an
increasing value of the calculated Ecen of the ISGMR, in sharp contrast to the experimental data.
All the interactions considered overestimate the Ecen of the ISGMR in #°Ca and underestimate it
for ®®Ni. However, the ISGMR centroid energy of *3Ca is reproduced by many interactions. We
point out that for most nuclei the calculated values of Ecen of the ISGDR and ISGOR are

significantly above (over 1 MeV) the corresponding experimental values.

We also studied the sensitivity of the calculated centroid energies, Ecen, of the giant
resonances to various properties of nuclear matter at saturation density, associated with the

adopted standard form of Eq. (1) of Skyrme type effective nucleon-nucleon interactions, by



determining the corresponding Pearson linear correlation coefficients C. This allows us to
constrain the values of NM properties, associated with this form of interaction. For the
correlations between the calculated values of Ecen and the nuclear matter incompressibility
coefficient Knm we find strong, weak, and no correlations for the compression modes of the
ISGMR, ISGDR and the IVGMR, respectively. For the correlations between the calculated
values of Ecen and the effective mass m*/m we find strong correlations for the ISGDR, ISGQR,
ISGOR, and IVGOR and medium correlations for the IVGMR, IVGDR and IVGQR. We also
find, for all the isovector giant resonances, strong correlations between the calculated values of
Ecen and the values of the enhancement coefficient, «, for the energy weighted sum rule of the
isovector giant dipole resonance. It is important to note that we find no correlations between the
calculated values of Ecen and the symmetry energy coefficient J, or its first derivative L, for all
the isoscalar giant resonances of multipolarities L = 0 to 3. We point out that we find weak
correlations between Ecen and Kgm, the second derivative of J, for all the isoscalar giant
resonances of multipolarities L = 0 to 3 for the symmetric nucleus *°Ca as well as for the
asymmetric nuclei *Ca, %Ni, °Zr, 11%Sn, '*4Sm and 2°®Pb. We find no correlations between the
calculated values of Ecen and J, L or Ky, for the IVGMR and IVGOR. For the IVGDR we find
weak correlations between Ecen and both J, and L and no correlation with K. For the IVGQR,
we find a weak correlation between Ecen and J and no correlations with L or Ky,m. To better
determine the density dependence of the symmetry energy Egm(p) one should consider the
dependence of Ecen on neutron-proton asymmetry, (N-Z)/A, and other properties such as the

IVGDR polarizability, which is the subject of further investigations, see for example [69].

In summary, considering the calculated HF-based RPA results for the Ecen for the
ISGMR, ISGQR, and IVGDR of 4%*Ca, %Ni, *Zr, ''%Sn, **Sm and 2°Pb we obtained good
agreement with the experimental data for some interactions. Comparing the calculated Ecen to

the experimental results we find that:



1) Strong correlations exist between the calculated centroid energies Ecen of the isoscalar
giant monopole resonance (ISGMR) and the nuclear matter (NM) incompressibility

coefficient, Knm, leading to the value of Knv = 210 to 240 MeV.

2) Strong correlations exist between the energy of the isovector giant dipole resonance
(IVGDR) and the enhancement coefficient k for the energy weighted sum rule, leading to
an accepted value in the range of k = 0.25 to 0.70.

We note that these constraints on the values of Knm and k can be used for determining a
modern energy density functional (EDF), associated with the standard form of the Skyrme
interaction, Eq. (1), adopted in our calculations. This can be done by imposing constraints on the
fit and thereby better determine the values of the parameters of Eq. (1), see Ref. [25]. We add
that, of course, the constraints on the values of Knm and k may depend on the specific form of
the interaction. However, the sensitivity of the centroid energy of the ISGMR to the value of
Kxm was confirmed in previous investigations using various models for the nucleon-nucleon
interaction; see for example Ref. [27] for the consistency between relativistic to non-relativistic
models. The value of « is very sensitive to the EWSR of the IVGDR which is given by a constant
value times (1 + k), see Eq. (18). The centroid energy of the ISGQR is sensitive the value of
m*/m, since m*/m affects the spacing between major shell in nuclei and thereby the distribution
of the response function. The variation between nuclei for the extracted range of m*/m, seen in

FIG. 8, may require further experimental and theoretical investigation.
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Figure Captions

FIG. 1. Various NM properties of the Skyrme interactions are plotted against the incompressibility

coefficient Knm. In each panel, from top left to bottom, we have the effective mass m"/m, the total
binding energy per nucleon E/A, the Landau parameter GO’, the saturation density p,, the symmetry

dEsym
op

energy at saturation density J, the first derivative of the symmetry energy L = 3p, , the second

Po
5 0%Esym

202 and the enhancement coefficient k of the

derivative of the symmetry energy Ksym = 9po
Po

IVGDR EWSR. We see no strong dependence for any of these parameters and K, although a weak

relation with m*/m and P, 1s still present.

FIG. 2. Calculated centroid energies Ecex in MeV (full circle) of the isoscalar giant monopole resonances
(ISGMR) for the different interactions, as a function of the incompressibility coefficient Knm. Each
nucleus has its own panel and the experimental uncertainties are contained by the dashed lines. As
expected we find strong correlation between the calculated values of Ecen and Knuv with a Pearson linear
correlation coefficient C ~ 0.87.

FIG. 3. Similar to FIG. 2, for the effective mass m*/m. We find a weak correlation between the calculated
values of Ecen and m*/m, with a Pearson linear correlation coefficient C ~ -0.51.

FIG. 4. Similar to FIG. 2 as a function of the second derivative of the symmetry energy coefficient Kgym.
We find weak correlation between the calculated values of Ecen and Kgym with a Pearson linear correlation
coefficient C ~ -0.45.

FIG. 5. The centroid energies [MeV] are plotted against the mass A of each nucleus. Each panel is a
different isoscalar multipolarity, a) L=0, b) L=1, ¢) L=2, and d) L=3. The experimental error bars are
shown by the solid vertical lines and are available for all nuclei in L=0 and L=2, for all but ®*Ni in L=1,
and only for the heavier nuclei, 97r, 115Sn, **Sm, and 2®Pb for L=3. The theoretical calculations are
shown as dots and are connected by lines meant to guide the eye.

FIG. 6. Similar to FIG. 2, for the isoscalar giant dipole resonance (ISGDR) as a function of Knm. We find
a weak correlation between the calculated values of Knv and Ecen with a Pearson linear correlation
coefficient C ~ 0.52.

FIG. 7. Similar to FIG. 2, for the ISGDR as a function of m*/m. We find strong correlation between the

calculated values of Eceny and m*/m the with a Pearson linear correlation coefficient C = -0.88.

FIG. 8. Similar to FIG. 2, for the isoscalar giant quadrupole resonance (ISGQR) as a function of the
effective mass m*/m. We find strong correlation between the calculated values of m*/m and Ecen with a
Pearson linear correlation coefficient C close to -0.93 in all cases.

FIG. 9. Similar to FIG. 2, for the ISGQR as a function of the incompressibility coefficient. We find a
weak correlation between the calculated values of Knv and Ecen with a Pearson linear correlation
coefficient close to C = 0.41 for all isotopes.

FIG. 10. Similar to FIG. 2, for the isoscalar giant octupole resonance (ISGOR) as a function of the
effective mass m*/m. We find strong correlation between the calculated values of m*/m and Ecen with a
Pearson linear correlation coefficient C = -0.96 in all cases.

FIG. 11. Similar to FIG. 2, for the ISGOR as a function of the incompressibility coefficient Knm. We find
a weak correlation between the calculated values of Knv and Ecen with a Pearson linear correlation
coefficient C = 0.42.

FIG. 12. Similar to FIG. 2, for the isovector giant monopole resonance (IVGMR) as a function of the
incompressibility coefficient. We do not find any correlation between the calculated values of Ecen and
Knwm with a Pearson linear correlation coefficient C = 0.23 in most cases.



FIG. 13. Similar to FIG. 2, for the IVGMR as a function of the effective mass. We find medium
correlation between the calculated values of Ecen and m*/m with a Pearson linear correlation coefficient
C =-0.70.

FIG. 14. Similar to FIG. 2, for the IVGMR as a function of the symmetry energy at saturation density, J.
We don’t find any correlation between the calculated values of J and Ecgn with a Pearson linear
correlation coefficient C ~ -0.26.

FIG. 15. Similar to FIG. 2, for the IVGMR as a function of the enhancement coefficient, k, of the EWSR
of the IVGDR. We find strong correlation between the calculated values of k and Ecgny with a Pearson
linear correlation coefficient C = 0.86 for all nuclei considered.

FIG. 16 The centroid energy [MeV] is plotted against the mass A of each nucleus. Each panel is a
different multipolarity, a) L=0, b) L=1, ¢) L=2 and d) L=3. The experimental error bars are shown by the
solid vertical lines and are available only for “Ca and 2°*Pb in L=0, for all nuclei in L=1, for “’Ca and
298p for L=2 and unavailable for all nuclei for L=3. The theoretical calculations are shown as dots and
are connected by lines meant to guide the eye.

FIG. 17. Similar to FIG. 2, for the isovector giant dipole resonance (IVGDR) as a function of J. We find a
weak correlation between the calculated values of J and Ecen with a Pearson linear correlation coefficient
C~-0.37.

FIG. 18. Similar to FIG. 2, for the IVGDR as a function of the enhancement coefficient, k, of the EWSR
for the IVGDR. We find a strong correlation between the calculated values of k and Ecen with a Pearson
linear correlation coefficient C = 0.84 for all nuclei considered.

FIG. 19. Similar to FIG. 2, for the IVGDR as a function of the effective mass. We find a weak correlation
between the calculated values of m*/m and Ecen with a Pearson linear correlation coefficient close to C =
-0.60 for all the nuclei considered here.

FIG. 20. Similar to FIG. 2, for the isovector giant quadrupole resonance (IVGQR) as a function of the
symmetry energy coefficient J. We find a weak correlation between the calculated values of J and Ecen
with a Pearson linear correlation coefficient C ~ -0.35.

FIG. 21. Similar to FIG. 2, for the IVGQR as a function of the enhancement coefficient, k, of the EWSR
of the IVGDR. We find medium correlation between the calculated values of k and Ecen with a Pearson
linear correlation coefficient C = 0.80 for all nuclei considered.

FIG. 22. Similar to FIG. 2, for the IVGQR as a function of the effective mass m*/m. We find medium
correlation between the calculated values of m*/m and Ecgny with a Pearson linear correlation coefficient
of C =-0.74 for all the nuclei considered here.

FIG. 23. Similar to FIG. 2, for the isovector giant octupole resonance (IVGOR) as a function of the
symmetry energy coefficient J. We don’t find any correlation between the calculated values of J and Ecen
with a Pearson linear correlation coefficient C ~ -0.32.

FIG. 24. Similar to FIG. 2, for the IVGOR as a function of the enhancement coefficient, k, for the EWSR
of the ISGDR. We find strong correlation between the calculated values of k and Ecexn with a Pearson
linear correlation coefficient C = 0.81 for all nuclei considered.

FIG. 25. Similar to FIG. 2, f the calculated values or the IVGOR as a function of the effective mass
m*/m. We find strong correlation between the calculated values of m*/m and Ecgx with a Pearson linear
correlation coefficient C = -0.83 for all nuclei considered.



TABLE 1. Parameters for Skyrme interactions, units: to (MeV fm?), t; (MeV fm®), t; MeV

fm3**D), Wy (MeV), and the remaining parameters are dimensionless.

Force

SGlI

KDEO
KDEOv1
SKM*
SK255
ski3

skia

Skis
SV-bas
SV-min
SV-sym32
SV-m56-0
SV-m64-0
SLy4

SLy5

SLy6
SkMmpP
sko

sko'

LNS

MSLO
NRAPR
SQMC650
SQMC700
SkT1
SkT2
SkT3
SkT8
SkT9
SkT1*

SkT3*
Skxs20

Z;

to
-2645.00
-2526.51
-2553.08
-2645.00
-1689.35
-1762.88
-1885.83
-1772.91
-1879.64
-2112.25
-1883.28
-1905.40
-2083.86
-2488.91
-2484.88
-2479.50

-2372.24
-2103.65
-2099.42
-2484.97
-2118.06
-2719.70
-2462.70
-2429.10
-1794.00
-1791.60
-1791.80
-1892.50
-1891.40
-1800.50
-1800.50
-2885.24

-1983.76

t
340.00
430.94
411.70
410.00
389.30
561.61
473.83
550.84
313.75
295.78
319.18
571.19
484.60
486.82
483.13
462.18

503.62
303.35
301.53
266.74
395.20
417.64
436.10
371.00
298.00
300.00
298.50
367.00
377.40
296.00
296.00
302.73

362.25

t;
-41.90
-398.38
-419.87
-135.00
-126.07
-227.09
1006.86
-126.69
112.68
142.27
197.33
1594.80
1134.35
-546.39
-549.40
-448.61

57.28
791.67
154.78

-337.14
-63.95
-66.69

-151.90
-96.70

-298.00

-300.00
-99.50

-228.76

-239.16

-296.00
-98.67

-323.42

-104.27

€]

15595.00
14235.52
14603.61
15595.00
10989.60
8106.20
9703.61
8206.25
12527.38
13988.57
12559.47
8439.04
10720.67
13777.00
13763.00
13673.00

12585.30
13553.25
13526.46
14588.20
12857.70
15042.00
14154.50
13773.60
12812.00
12792.00
12794.00
11983.00
11982.00
12884.00
12884.00
18237.49

11861.40

Wo
105.00
128.96
124.41
130.00
95.39
188.51
366.19
123.63
124.63
111.29
132.75
133.27
113.97
123.00
126.00
122.00

160.00
353.16
287.79
96.00
133.30
41.96
110.50
104.60
110.00
120.00
126.00
109.00
130.00
95.00
95.00
162.73

123.69

Xo
0.0900
0.7583
0.6483
0.0900

-0.1461
0.3083
0.4051
-0.1171
0.2585
0.2439
0.0077
0.6440
0.6198
0.8340
0.7780
0.8250

-0.1576
-0.2107
-0.0295
0.0628
-0.0709
0.1615
0.1300
0.1000
0.1540
0.1540
0.1380
0.4480
0.4410
0.1570
0.1420
0.1375

1.1717

X1
-0.0588
-0.3087
-0.3472

0.0000
0.1660
-1.1722
-2.8891
-1.3088
-0.3817
-1.4349
-0.5943
-2.9737
-2.3327
-0.3440
-0.3280
-0.4650

-0.4029
-2.8108
-1.3257
0.6585
-0.3323
-0.0480
0.0000
0.0000
-0.5000
-0.5000
-1.0000
-0.5000
-0.5000
-0.5000
-1.0000
-0.2555

0.0000

X2
1.4250
-0.9495
-0.9268
0.0000
0.0012
-1.0907
-1.3252
-1.0487
-2.8236
-2.6259
-2.1692
-1.2553
-1.3059
-1.0000
-1.0000
-1.0000

-2.9557
-1.4616
-2.3234
-0.9538
1.3583
0.0272
0.0000
0.0000
-0.5000
-0.5000
1.0000
-0.5000
-0.5000
-0.5000
1.0000
-0.6074

0.0000

X3
0.0604
1.1445
0.9475
0.0000

-0.7449
1.2926
1.1452
0.3410
0.1232
0.2581
-0.3095
1.7966
1.2101
1.3540
1.2670
1.3550

-0.2679
-0.4299
-0.1474
-0.0341
-0.2282
0.1361
0.0000
0.0000
0.0890
0.0890
0.0750
0.6950
0.6860
0.0920
0.0760
0.0543

1.7620

Xw
1.0000
1.0000
1.0000
1.0000
1.0000
0.0000

-0.9850
1.0000
0.5474
0.8255
0.4019
0.7949
1.1042
1.0000
1.0000
1.0000

1.0000
-1.1256
-0.5760

1.0000

1.0000

1.0000

1.3899

1.3910

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000
0.0000

1.0000

1/6
0.1676
0.1673

1/6
0.3563

1/4

1/4

1/4
0.3000
0.2554

0.3
0.2000
0.2000

1/6

1/6

1/6

1/6

1/4

1/4
0.1667
0.2359
0.1442
0.1667
0.1667

1/3

1/3

1/3
0.2850
0.2850

1/3

1/3

1/6

1/4



TABLE II. Same as Table I with the following conditions defining the interactions: HBTM = 0,
2

1 and 2, forzh—m= 20.7525 MeVfm? for neutron and proton, A2 /2m = 20.7213 MeV{m? for proton

and h?/2m= 20.7498 MeVfm? for neutron, and h?/2m= 20.7355 MeVfm? for neutron and

proton, respectively; JTM, contribution to the spin-orbit potential from t1 and t2 is taken for 1

and not for 0; CEX, Coulomb exchange on for 1 and off for 0; RHOC, proton density is used for

Coulomb potential for 0 and charge density is used for Coulomb potential for 1; ZPE, center-of-
mass correction is taken as (1— 1/A) factor on the mass for 0 and is computed explicitly a

posteriori as E,,,, = ﬁ (P?) for 1.

Force

SGlI

KDEO
KDEOv1
SKM*
SK255
Ski3

Skl4

Ski5
SV-bas
SV-min
SV-sym32
SV-m56-0
SV-m64-0
SLy4

SLy5
SLy6
SkMP
SkO

SkO'

LNS

MSLO
NRAPR
SQMC650
SQMC700
SkT1

SkT2

SkT3

SkT8

SkT9
SkT1*
SkT3*
Skxs20

Zo

Ref.
[24]
[25]
[25]
[26]
[27]
[28]
[28]
[28]
[29]
[29]
[29]
[30]
[30]
[31]
[31]
[31]
[32]
[33]
[33]
[34]
[35]
[36]
[37]
[37]
[38]
[38]
[38]
[38]
[38]
[38]
[38]
[39]
[40]

HBTM

o

O OFRP FPRFPRFRPEFRPFEPPFEPNMNDNMNDNMNNNNNONDINDMNRPRPRPPERPPERPPRPOOONONN

JTM

P PrPRPRRPRPRPRPPPOORFRPRPFPOPFRPFOO0OCORFRPRO0OO0CO0OO0CO0CDCO0OO0CO0OORFRL,ORRDO

CEX

P ORRRPRRRRPRRRRRORRRPRRRRRERRRRRERRRRROROOLR

RHOC

O ORFRPRRFPPFRPRPRPPPOOODODODOOODOOODODOOODODOOOOOoOOoOOoOo

ZPE

P P OO0O0O0O0O00O0OO0ORFRPRORRPROROORRRRERRPRERRERPRERLRORRLO



TABLE III: Excitation energy range E1 — E2 (in MeV) for calculating the centroid energies of the
isoscalar and isovector giant resonances from the corresponding strength functions.

40ca 48ca 68Ni SOZr 116Sn 144Sm 208Pb

LOTO | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60
L1TO | 20-60 | 20-60 | 20-60 | 20-60 | 16-60 | 16-60 | 16 - 60
L2T0 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60
L3TO | 20-60 | 20-60 | 20-60 | 15-60 | 15-60 | 15-60 | 15-60

LoT1 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60
L1T1| 0-60 | 0-60 | 0-60 | 0O-60 | O-60 | 0-60 | O-60
L2T1 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60 | 7-60
L3T1 | 25-60 | 25-60 | 25-60 | 25-60 | 25-60 | 25-60 | 25 - 60




TABLE IV. Nuclear matter (NM) properties of symmetric NM at nuclear saturation density
associated with the Skyrme interactions of TABLE I. We have the saturation density po [fm?], the
total binding energy per nucleon E/A [MeV], the incompressibility coefficient Knm [MeV] of
NM, the coefficients related to the symmetry energy density J [MeV], L [MeV] and K. sym

[MeV], the isoscalar effective mass m*/m, the enhancement factor of the EWSR of the IVGDR
K, the Landau parameter GO’ and the strength of the spin-orbit interaction W0 (MeV).

Force Po E/A Knm J L Ksym m*/m K W, Go'

SaGll 0.159 15.59 215.0 26.80 37.63 -14590 0.79 0.49 105.00 0.5052
KDEO 0.161 16.11 228.8 33.00 45.22 -144.78 0.72 0.30 12896 0.0474
KDEOv1 0.165 16.23 227.5 3458 54,70 -127.12 0.74 0.23 124.41 0.0006
SKM* 0.160 15.78 216.7 30.03 45.78 -15594 0.79 0.53 130.00 0.3142
SK255 0.157 16.33 255.0 37.40 95.00 -58.33 0.80 0.54 95.39 0.3733
Ski3 0.158 15.96 258.1 34.80 100.52 73.04 0.58 0.25 18851 0.2035
Skia 0.160 15.92 2479 29.50 60.39 -40.56 0.65 0.25 366.19 1.3813
Ski5 0.156 15.83 255.7 36.70 129.33 159.57 0.58 0.25 123.63 0.3013

SV-bas 0.160 15.90 234.0 30.00 45.21 -221.75 0.90 0.40 124.63 0.7279
SV-min 0.161 1591 222.0 30.01 44.76 -156.57 0.95 0.08 111.29 0.7963
SV-sym32 0.159 15.94 233.81 32.00 57.07 -148.79 0.90 0.40 132.745 0.8319
SV-m56-O 0.157 15.81 254.6 27.00 4996 -45.04 0.56 0.60 133.27 1.6523
SV-m64-O 0.159 15.82 2414 27.01 30.63 -144.76 0.64 0.60 113.97 1.4667

SLy4 0.160 15.97 2299 32.00 4596 -119.73 0.70 0.25 123.00 -0.1337
SLy5 0.160 15.98 2299 32.03 48.27 -112.76 0.70 0.25 126.00 -0.1414
SLy6 0.159 1592 229.8 31.96 47.44 -112.71 0.69 0.25 122.00 -0.0038
Skmp 0.157 15,56 2309 29.88 70.31 -49.82 0.65 0.71 160.00 0.4653
Sko 0.160 15.84 223.34 3197 79.14 -43.17 090 0.17 353.16 1.6191
Sko' 0.160 15.75 2223 3195 6893 -7882 090 0.15 287.79 0.7923
LNS 0.175 15.32 210.78 33.43 6145 -12736 0.83 0.38 96.00 0.1367
MSLO 0.160 16.00 230.00 30.00 60.00 -99.33 0.80 0.43 133.30 0.4160

NRAPR 0.161 15.85 225.65 32.78 59.63 -123.32 0.69 0.66 41.96 0.4100
sQMmce50 0.172 15.57 21811 33.65 5292 -173.15 0.78 0.59 1105 0.2018
SQMC700 0.171 15.49 222.20 33.47 59.06 -140.84 0.76 0.56 104.60 0.3600

SkT1 0.161 15.98 236.16 32.02 56.18 -134.83 1.00 0.00 110.00 0.1642
SkT2 0.161 15.94 235.73 32.00 56.16 -134.67 1.00 0.00 120.00 0.1573
SkT3 0.161 1595 235.74 31.50 55.31 -132.05 1.00 0.00 126.00 0.4516
SkT8 0.161 15.94 23570 29.92 33.72 -187.52 0.83 0.20 109.00 0.2386
SkT9 0.160 15.88 23491 29.76 33.74 -185.62 0.83 0.20 130.00 0.2142
SkT1* 0.162 16.20 23895 32.31 56.58 -136.66 1.00 0.00 95.00 0.1757
SkT3* 0.162 16.20 23895 31.97 56.32 -133.65 1.00 0.00 95.00 0.4616

Skxs20 0.162 15.79 201.76 35.49 67.07 -122.25 0.96 0.08 162.73 0.1286
Z, 0.163 15.88 233.33 26.69 -29.38 -401.43 0.78 0.51 123.69 0.3951



TABLE V. Pearson linear correlation coefficients for the values of pairs of nuclear properties
associated with the 33 Skyrme effective nucleon-nucleon interactions of Table 1.

Knm J L Ksym m*/m K Wo(Xw=1)
Knm 1.00 0.03 0.30 0.43 -0.37 -0.02 0.03
J 0.03 1.00 0.72 0.49 0.07 -0.24 -0.25
L 0.30 0.72 1.00 0.91 -0.15 -0.13 -0.08
Ksym 0.43 0.49 0.91 1.00 -0.41 -0.08 0.05
m*/m -0.37 0.07 -0.15 -0.41 1.00 -0.63 -0.19
K -0.02 -0.24 -0.13 -0.08 -0.63 1.00 -0.03

Wo(Xw=1) 0.03 -0.25 -0.08 0.05 -0.19 -0.03 1.00



TABLE VI. Pearson linear correlation coefficients between the calculated centroid energy of

each giant resonance and each nuclear matter property at saturation density.

ISGMR
ISGDR
ISGQR
ISGOR
IVGMR
IVGDR
IVGQR
IVGOR

Knm
0.87
0.52
0.41
0.42
0.23
0.05
0.18
0.25

-0.10
-0.10
-0.09
-0.10
-0.26
-0.37
-0.35
-0.32

L
0.25
0.13
0.15
0.15
-0.12
-0.42
-0.29
-0.19

Ksym
0.45
0.36
0.41
0.43
0.00
-0.30
-0.13
0.02

m*/m
-0.51
-0.88
-0.93
-0.96
-0.70
-0.60
-0.74
-0.83

0.13
0.55
0.54
0.56
0.86
0.84
0.80
0.81

Wo(Xw=1)
0.11
0.04
0.22
0.16
-0.09
-0.06
0.00
0.04
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resonances. The data was taken from the following references: [45] for a, [46] for b, [44] for
c, [47] for d, [48] for e, [22] for f, [52] for g, [53] for h, [54] for i, [55] for j, [56] for k, [57] for

TABLE VII. Experimental value for the centroid energies of isoscalar and isovector giant
m, [58] for n and [60] for p.
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FIG. 1. Various NM properties of the Skyrme interactions are plotted against the

incompressibility coefficient Knm. In each panel, from top left to bottom, we have the effective

mass m”/m, the total binding energy per nucleon E/A, the Landau parameter GO’, the saturation

density p,, the symmetry energy at saturation density J, the first derivative of the symmetry

a sym . .
energy L = 3py :; : | , the second derivative of the symmetry energy Ky, =
Po
2
9p,> a:% and the enhancement coefficient k of the IVGDR EWSR. We see no strong

Po



dependence for any of these parameters and K, although a weak relation with m*/m and p, is

still present.
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FIG. 2. Calculated centroid energies Ecen in MeV (full circle) of the isoscalar giant monopole
resonances (ISGMR) for the different interactions, as a function of the incompressibility



coefficient Knm. Each nucleus has its own panel and the experimental uncertainties are contained
by the dashed lines. As expected we find strong correlation between the calculated values of
Ecen and Knv with a Pearson linear correlation coefficient C ~ 0.87.
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FIG. 3. Similar to FIG. 2, for the effective mass m*/m. We find a weak correlation between the
calculated values of Ecgn and m*/m, with a Pearson linear correlation coefficient C ~-0.51.
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FIG. 4. Similar to FIG. 2 as a function of the second derivative of the symmetry energy
coefficient Ky,». We find weak correlation between the calculated values of Ecen and Kj,» with a

Pearson linear correlation coefficient C ~ -0.45.
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FIG. 6. Similar to FIG. 2, for the isoscalar giant dipole resonance (ISGDR) as a function of Knwm.
We find a weak correlation between the calculated values of Knwv and Ecen with a Pearson linear
correlation coefficient C ~ 0.52.
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between the calculated values of Ecen and m”*/m the with a Pearson linear correlation coefficient

C=-0.88.
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FIG. 8. Similar to FIG. 2, for the isoscalar giant quadrupole resonance (ISGQR) as a function of
the effective mass m*/m. We find strong correlation between the calculated values of m*/m and
Ecen with a Pearson linear correlation coefficient C close to -0.93 in all cases.
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FIG. 9. Similar to FIG. 2, for the ISGQR as a function of the incompressibility coefficient. We
find a weak correlation between the calculated values of Knm and Ecen with a Pearson linear
correlation coefficient close to C = 0.41 for all isotopes.
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FIG. 10. Similar to FIG. 2, for the isoscalar giant octupole resonance (ISGOR) as a function of
the effective mass m*/m. We find strong correlation between the calculated values of m*/m and
Ecen with a Pearson linear correlation coefficient C = -0.96 in all cases.



ISGOR (L3T0) ISGOR (L3T0)

40 °
33 - G oo™ 33 1165 .
Q “. ‘," . % .
.%29 e s o6 S 28 L %2, o ™
z = L N .
525 1 )3 Je®gyT
21
18
43¢5 o®
;33 _ . ." L —~33 - 144Sm
s Yo ‘|3
229 1* % §28 - o
525 - = *e
uP2> Fo3, cwpty .
21 Lo C-CCoooo---d
18
=33 58Ni )
% | oo =33 4 08Pb
S
So9 | eeile i
SEL vetn, | 23
625 = o
- $23 0 ewprems, :.
21 — 18 'i:::::::lﬁ____’.fz::::::
S 33 | Zr 200 220 240 260
v %o
229 4 . e " Knv [MeV]
2 ~ " [
S22 ¥ e
21 | !

200 220 240 260
Knm [MeV]

FIG. 11. Similar to FIG. 2, for the ISGOR as a function of the incompressibility coefficient Kxwm.
We find a weak correlation between the calculated values of Knv and Ecen with a Pearson linear
correlation coefficient C = 0.42.
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FIG. 12. Similar to FIG. 2, for the isovector giant monopole resonance (IVGMR) as a function of
the incompressibility coefficient. We do not find any correlation between the calculated values of
Ecen and Knv with a Pearson linear correlation coefficient C = 0.23 in most cases.
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FIG. 13. Similar to FIG. 2, for the IVGMR as a function of the effective mass. We find medium
correlation between the calculated values of Ecen and m*/m with a Pearson linear correlation

coefficient C = -0.70.
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FIG. 14. Similar to FIG. 2, for the IVGMR as a function of the symmetry energy at saturation
density, J. We don’t find any correlation between the calculated values of J and Ecen with a

Pearson linear correlation coefficient C ~ -0.26.
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FIG. 15. Similar to FIG. 2, for the IVGMR as a function of the enhancement coefficient, «, of the
EWSR of the IVGDR. We find strong correlation between the calculated values of k and Ecex
with a Pearson linear correlation coefficient C = 0.86 for all nuclei considered.
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FIG. 17. Similar to FIG. 2, for the isovector giant dipole resonance (IVGDR) as a function of J.
We find a weak correlation between the calculated values of J and Ecgn with a Pearson linear
correlation coefficient C ~ -0.37.
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FIG. 18. Similar to FIG. 2, for the IVGDR as a function of the enhancement coefficient, «, of the
EWSR for the IVGDR. We find a strong correlation between the calculated values of k and Ecen
with a Pearson linear correlation coefficient C = 0.84 for all nuclei considered.



218

>20

218
=

u.‘|)16

14

IVGDR (L1T1)

’0
e ©
. 48Ca
""" LI A S
"'6""0"0.!". _______
o ° e *%
e ©
68Ni
e o ¢
______ : ._0.'4?__:_______
___;___‘I_ii__; _______
. %
o &
QOZr
e o .

L ..
'!‘4,498
N “ea

L
0.5 0.7 0.
m*/m

IVGDR (L1T1)
19 S 116G
e o o o
16 —:9.‘9.!:.:~ ......
13 e *
10
19 - 144Sm
. o. i
16 _==:===.=-Q,=¢=‘_=:l==::=:=
L ] L ] P
. .
13 - .
10
19 - 208p|,
16 - .
e * L
13 _Iiiiiiiié'_'_ﬁi_f_;i.iiii
10 —
0.5 0.7 0.9 1.1
m*/m

FIG. 19. Similar to FIG. 2, for the IVGDR as a function of the effective mass. We find a weak
correlation between the calculated values of m*/m and Ecen with a Pearson linear correlation
coefficient close to C = -0.60 for all the nuclei considered here.
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FIG. 20. Similar to FIG. 2, for the isovector giant quadrupole resonance (IVGQR) as a function
of the symmetry energy coefficient J. We find a weak correlation between the calculated values
of J and Ecen with a Pearson linear correlation coefficient C ~ -0.35.
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FIG. 21. Similar to FIG. 2, for the IVGQR as a function of the enhancement coefficient, «, of the
EWSR of the IVGDR. We find medium correlation between the calculated values of « and Ecen
with a Pearson linear correlation coefficient C = 0.80 for all nuclei considered.
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FIG. 22. Similar to FIG. 2, for the IVGQR as a function of the effective mass m*/m. We find
medium correlation between the calculated values of m*/m and Eceny with a Pearson linear
correlation coefficient of C = -0.74 for all the nuclei considered here.
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FIG. 23. Similar to FIG. 2, for the isovector giant octupole resonance (IVGOR) as a function of
the symmetry energy coefficient J. We don’t find any correlation between the calculated values
of J and Ecen with a Pearson linear correlation coefficient C ~ -0.32.
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FIG. 24. Similar to FIG. 2, for the IVGOR as a function of the enhancement coefficient, «, for
the EWSR of the ISGDR. We find strong correlation between the calculated values of « and
Ecen with a Pearson linear correlation coefficient C = 0.81 for all nuclei considered.
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FIG. 25. Similar to FIG. 2, f the calculated values or the IVGOR as a function of the effective

mass m*/m. We find strong correlation between the calculated values of m*/m and Ecgn with a
Pearson linear correlation coefficient C = -0.83 for all nuclei considered.



