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Recent high-resolution Nuclear Resonance Fluorescence experiments performed on the even-even
Chromium isotopes 50,52,54Cr have lead to the identification (energy, spin, parity and transition
strength) of altogether 108 nuclear levels of spin J=1 (70 levels with Jπ = 1− and 38 with Jπ = 1+)
at excitation energies Ex ranging roughly from 4.5 to 9.7 MeV. In this region just above the orbital
magnetic dipole Scissors Mode sizable spin-flip magnetic dipole strength as well as electric dipole
strength belonging to the Pygmy Dipole Resonance (PDR) is expected. Using statistical measures
for short- and long-range correlations, we perform an analysis of the fluctuation properties in the
subspectra of the energy levels and also of the distributions of their respective dipole transition
strengths. We compare the results with those of a random matrix ensemble interpolating between
Poisson statistics generally describing the fluctuation properties in the energy spectra of many-body
systems with collective, i.e., regular motion of the particles and the Gaussian orthogonal ensemble
(GOE) for complex, i.e., chaotic behavior. This comparison reveals that the spectral properties of
the 1+ states are close to the GOE results while those of the 1− states are closer to Poisson. This is
confirmed by an analysis of the spectral fluctuations based on the method of Bayesian inference and
corroborated by large-scale shell-model and quasiparticle-phonon model calculations, respectively.
The nearly Poissonian behavior of the 1− levels suggests a sizable collectivity of the PDR indeed.

I. INTRODUCTION

Rich information on nuclear structure from recent
high-resolution Nuclear Resonance Fluorescence exper-
iments [1–3] on the three stable isotopes 50,52,54Cr with
proton number Z=24 and neutron numbers N=26, 28
and 30, respectively, affords an excellent opportunity
to investigate spectral fluctuation properties of complex
many-body systems in the realm of quantum chaos. The
data consist of excitation energies of Jπ = 1− and 1+

states and of the respective electric B(E1) and magnetic
B(M1) dipole transition strengths. For 52Cr the data
were obtained at the Superconducting Darmstadt Elec-
tron Linear Accelerator (S-DALINAC) and have already
been published in [1] while the ones for 50,54Cr stem from
recent measurements [2, 3] at the high intensity γ-ray
source (HIγS) of the Triangle Universities Nuclear Lab-
oratory (TUNL). Some experimental details relevant for
the particular analysis discussed in the present article are
given in Tab. I. As listed there, dipole excitations were
observed at excitation energies from as low as 4.5 MeV
up to 9.7 MeV. In this region just above the Scissors
Mode which consists of orbital M1 strength, sizable spin-
flip M1 strength from 1f7/2 → 1f5/2 and 2p3/2 → 2p1/2
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shell-model excitations are expected [4]. This is, how-
ever, also the region of low-energy E1 strength commonly
termed Pygmy Dipole Resonance (PDR) [5].

FIG. 1: Transition strength B(E1) for the 1− states. Shown
are in the (a)-(c) the experimentally determined strengths [1–
3] and in (d)-(f) the corresponding calculated ones as de-
scribed in the main text. The black dashed lines indicate
the experimental threshold for detectability.

Figures 1 and 2 present the experimental B(E1) and
B(M1) transition strengths for 50,52,54Cr together with
quasiparticle-phonon and shell model calculations to be
discussed below. It is not the aim to enter into thor-
ough discussions of the underlying nuclear structure of
the particular M1 and E1 excitations observed, for which
predictions from a whole variety of nuclear models exist
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FIG. 2: Transition strength B(M1) for the 1+ states. Shown
are in (a)-(c) the experimentally determined strengths [1–3]
and in (d)-(f) the corresponding calculated ones as described
in the main text. The black dashed lines indicate the experi-
mental threshold for detectability.

– often with conflicting conclusions in particular for the
interpretation of the PDR. We rather suggest to follow
an alternative approach based on random matrix theory
(RMT) which allows us to analyze the spectral properties
of the excited Jπ = 1− and 1+ states within the same re-
gion of excitation energy to draw conclusions about their
single-particle or collective character. Furthermore, this
approach renders possible the comparison of the exper-
imental data with those obtained from large-scale shell-
model and quasiparticle-phonon model calculations. To
our knowledge this particular RMT analysis has not been
done before and reveals interesting results with respect to
the nature of the PDR. Briefly, the fluctuation properties
in the spectra of generic quantum systems with classi-
cally integrable dynamics are predicted to coincide with
those of Poissonian random numbers [6]. In contrast,
those of time-reversal invariant chaotic systems gener-
ally coincide with the spectral properties of the eigenval-
ues of real-symmetric matrices with Gaussian distributed
random entries from the Gaussian orthogonal ensemble
(GOE) [7–12], in accordance with the Bohigas-Giannoni-
Schmit conjecture [13]. Similar features are observed in
the energy spectra of nuclear many-particle systems even
though there is no obvious classical analogue [14–16].
If the motion of the nucleons is collective, their spec-
tral properties coincide with those of random Poissonian
numbers, whereas they are well described by the GOE
if it is sufficiently complex [16–19]. There are various
semiclassical [20–23] and RMT approaches [16, 24–26] to
obtain information on the chaoticity vs. regularity in a
nuclear many-body system. We analyzed spectral fluctu-
ation properties of 50,52,54Cr by proceeding similarly to
Ref. [27], and the distributions of the transition strengths
by following [28].

TABLE I: The number of energy levels N with spin J=1 and
positive (π = +), respectively, negative (π = −) parity, mea-
sured in 50Cr, 52Cr and 54Cr, the corresponding energy-ranges
and the smallest experimentally observed transition strength
Bmin.

Nucleus Parity N Energy range Bmin

50Cr − 17 6.3-9.4 MeV 0.00046 e2fm2

50Cr + 12 7.6-9.7 MeV 0.04500 µ2
n

52Cr − 16 6.4-9.2 MeV 0.00050 e2fm2

52Cr + 9 6.8-9.4 MeV 0.03800 µ2
n

54Cr − 37 6.6-9.7 MeV 0.00076 e2fm2

54Cr + 17 4.5-9.6 MeV 0.00059 µ2
n

II. ANALYSIS OF THE EXPERIMENTAL DATA

First, we present results on the fluctuation properties
in the energy spectra of the low-lying electric (E1) and
magnetic (M1) dipole excitations in the nuclei 50Cr, 52Cr
and 54Cr corresponding to angular momentum J=1 with
negative (π = −) and positive (π = +) parity, respec-
tively. The numbers of observed excitations and the en-
ergy ranges are listed in Tab. I. In order to obtain infor-
mation on the chaoticity of these nuclear many-body sys-
tems we evaluated for each sequence separately [29] the
nearest-neighbor spacing distribution (NNSD) P (s), the
number variance Σ2, the Dyson-Mehta ∆3 statistics [10–
12] which provides the least-square deviation of the in-
tegrated spectral density from the best-fit straight line,
the distribution P (r) of the ratios of consecutive level
spacings [26, 30, 31] and the distributions of the transi-
tion strengths B(E1) and B(M1) [28]. Since the spacing
ratios are dimensonless, no unfolding of the energy levels
is needed for the determination of P (r). This can be of
great advantage, especially when no analytical expression
for the smooth part of the integrated spectral density is
available.

The energy levels Ei in each sequence were unfolded
by replacing them by the smooth part ei = N̄(Ei) of
the integrated spectral density, yielding a mean spac-
ing of unity, 〈s〉 = 1. For this we fit an empirical for-
mula [32, 33], N̄(E) = exp((E−E0)/T )+N0 with T, E0

and N0 the fit parameters to N̄(Ei). It was applied hith-
erto to low-lying nuclear levels in Ref. [34]. In Fig. 3
we show the resulting NNSD (histograms) for the neg-
ative (a) and positive (b) parity states in 54Cr. Both
are compared to the NNSD of Poissonian random num-
bers (dashed lines) and of eigenvalues drawn from the
GOE (full lines). While the 1+ states exhibit a behav-
ior which is close to GOE, the NNSD of the 1− states is
closer to Poisson. In order to scrutinize these results, we
also computed the statistical measures for the other two
nuclei (see Figs. 4 and 5) and then performed ensemble
averages, separately, for the positive and negative parity
states. The results are summarized in Figs. 6 and 7, re-
spectively. Although we are dealing with three nuclei of
different structure – 50Cr has two holes in the N = 28
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FIG. 3: Nearest-neighbor spacing distributions of the exper-
imental Jπ = 1− (a) and Jπ = 1+ (b) energy levels of 54Cr
(histograms) in comparison with the Poisson (dashed lines)
and the GOE (full line) results.

shell, 52Cr is semi-magic and 54Cr has two neutrons above
the closed shell – their statistical properties are similar.

Deviations of Σ2 from GOE for L & 1 in Fig. 6 and
from Poisson in Fig. 7 may be attributed to the short
lengths of the level sequences (see Tab. I). Another possi-
ble explanation might be the incompleteness of the spec-
tra. Analytical expressions were derived for such spectra
on the basis of the results for the Gaussian ensembles of
random matrices in [35]. The NNSD of a system exhibit-
ing GOE behavior in the complete spectrum is expressed
in terms of a sum over the (n+1)st nearest-neighbor spac-
ing distributions of the GOE with n = 1, 2, · · · , which
depend on s/ϕ instead of the spacing s, with ϕ denoting
the fraction of detected levels. Similarly, the Σ2 and ∆3

statistics are given in terms of the corresponding GOE
results with the argument depending on ϕ. This missing
level statistics describes the statistical measures obtained
for the 1+ states well for values of ϕ corresponding to
30% of missing levels for 50Cr and 52Cr and 16 % for
54Cr (see Fig. 8). Such a good agreement was not found
for the spectral properties of the 1− states. Their com-
parison with missing level statistics yielded ϕ = 0.4 (see
Fig. 8), which would imply 60% of missing levels. We,
furthermore, compared the spectral properties of the 1+

and 1− states to those of a random matrix ensemble in-
terpolating between Poisson for λ = 0 and GOE for λ = 1
(see [25, 27, 36, 37]) yielding λ = 0.8 and λ = 0.3, re-
spectively (see Fig. 9), respectively, thus indicating that
the behavior of the 1− states indeed is close to Pois-
son, whereas it is close to GOE for the 1+ states. At
this point we would like to emphasize that the Poisso-
nian statistics does not originate from weakly interacting
1p-1h and 3p-3h states. Actually, the excitation of 3p-

FIG. 4: Spectral statistics of the experimental 1− energy
levels of 50Cr, 52Cr and 54C (triangles up and histograms)
as indicated in the insets in comparison to the Poissonian
(dashed lines) and the GOE (full lines) results. Shown are
the nearest-neighbor spacing distribution P (s), the integrated
nearest-neighbor spacing distribution I(s), the number vari-
ance Σ2(L) and the ratio distribution P (r).

3h states from the nuclear ground state through photon
scattering is of higher order and therefore not observed
in our experimental spectra. Accordingly, 3p-3h states
are not included in the theoretical analysis.

To further validate this assumption, we followed an
idea of Rosenzweig and Porter [38], and considered su-
perimposed spectra of positive and negative parity, re-
spectively, composed of those of 50Cr, 52Cr and 54Cr.
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FIG. 5: Same as Fig. 4 for the experimental 1+ energy levels
of 50Cr, 52Cr and 54C as indicated in the insets.

We analyzed their fluctuation properties in terms of the
NNSD using the method of Bayesian inference [39] which
involves a chaoticity parameter f̄ interpolating between
Poisson (f̄ = 0) and GOE statistics (f̄ = 1). For
this, we first computed the spacings between adjacent
unfolded energy levels for each nucleus separately, and
then merged them according to the associated parity into
two sequences of spacings [40–42]. For the determination
of the parameter f̄ we proceeded as described in [27].
The resulting NNSDs for negative and positive parity
are shown in Fig. 10 (a) and (b), respectively.
Besides the spectral fluctuation properties we also

analyzed the distributions of the transition strengths

FIG. 6: Comparison of the averaged spectral fluctuation prop-
erties of the experimental Jπ = 1− energy levels of 50Cr,52Cr
and 54Cr with the Poisson (dashed lines) and the GOE (full
lines) results and those obtained from QPM calculations (red
triangles down and dash-dotted lines).

FIG. 7: Same as Fig. 6. Comparison of the results for the
experimental Jπ = 1+ energy levels with those obtained from
shell-model calculations (red triangles down and dash-dotted
lines).

B(E1) and B(M1). For this we proceeded as described
in [28]. Accordingly, we first unfolded the measured
transition strengths Bi for each nucleus and parity, i.e.,
for Bi=B(E1) and Bi=B(M1), individually by dividing
them by an average value, yi = Bi/Bav,i, with Bav,i =
∑

j Bj exp
(

−(ei − ej)
2/8

)

/
∑

j exp
(

−(ei − ej)
2/8

)

de-
noting the average around the transition strength Bi.
The ensemble averaged distributions of yi are shown in
(a) and (b) of Fig. 11 (full-line histograms) for negative
(a) and positive (b) parities. Panels (c) amd (d) show
the distributions of zi = log10(yi). The results are com-
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FIG. 8: Comparison of the averaged spectral fluctuation
properties of the experimental 1+ and 1− energy levels of
50Cr,52Cr and 54Cr with the Poisson (dashed lines) and the
GOE (full lines) results and with those obtained from missing-
level statistics [35] (red circles and dash-dotted lines). Best
agreement was found for a fraction of ϕ = 0.75 detected ones,
corresponding to 25 % for the 1+ states and ϕ = 0.4 corre-
sponding ot 60 % missing levels for the 1− states.

pared to a truncated Porter-Thomas distribution, which
is obtained by considering only values of y ≥ y0, where y0
denotes the minimal observed transition strength. The
agreement is good for the 1+ states whereas the devia-
tions from Porter-Thomas behavior observed for the 1−

states may be attributed to a nearly Poissonian behav-
ior [28] in accordance with the spectral fluctuation prop-
erties exhibited by the corresponding energy levels.

FIG. 9: Same as Fig. 8. Comparison with the spectral statis-
tics of a random matrix ensemble interpolating between Pois-
son (λ = 0) and GOE [25, 27, 36, 37] (λ = 1) (red triangles
down and dash-dotted lines). Best agreement was found for
λ = 0.8 for the 1+ states and λ = 0.3 for the 1− states.

III. ANALYSIS OF SPECTRA FROM NUCLEAR

MODEL CALCULATIONS

The results for the fluctuation properties of the en-
ergy levels and transition strengths were also compared
to model calculations. We performed shell model calcu-
lations employing effective KB3G and GPFX1A interac-
tions for the description of the spectral properties of the
Jπ = 1+ states and quasiparticle-phonon model (QPM)
calculations for the Jπ = 1− states. The calculated in-
dividual transition strengths are shown in Figs. 1 and 2
and are compared there to the respective experimental
ones. The center of gravity is about 1 MeV lower than
the experimental one for the 1+ states while it is roughly
2 MeV higher for the 1− states.
Excitation energies and B(M1) values for the 1+

states were obtained from configuration interaction cal-
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FIG. 10: (color online) Nearest-neighbor spacing distribu-
tion of the experimental energy levels with Jπ = 1− (a) and
Jπ = 1+ (b) in comparison with the NNSDs of the calculated
ones for Jπ = 1− (c) and Jπ = 1+ (d) obtained by taking into
account only those levels with transition strengths above the
experimental minimum value. They are compared to the Pois-
son (dashed line) and the GOE (full line) distributions. The
dash-dotted curves in red were determined with the method
of Bayesian inference. The resulting values for the chaoticity
parameter f̄ are given in the insets.

FIG. 11: Averaged distribution of the unfolded transition
strengths yi = Bi/Bav,i [(a) and (b)] and of zi = log10(yi)
[(c) and (d)] of the experimental results (histograms) for the
Jπ = 1− [(a) and (c)] and Jπ = 1+ [(b) and (d)] states in com-
parison with a truncated Porter-Thomas distribution P (y)
with y ≥ y0 and y0 denoting the smallest experimentally ob-
served transition strength (dashed and dash-dotted lines).

culations in the pf model space with the shell-model
code NuShellX [43] employing the effective Hamiltoni-
ans KB3G [44] and GPFX1A [45]. The B(M1) values
were reduced by a factor of 0.5 to take into account the
quenching of observed M1 strength in 48Ca compared to
these types of calculation [46]. Excitation energies and
B(E1) values for the 1− states were calculated based on

the QPM [47] employing the Woods-Saxon potential with
parameters from global parametrization as a mean field.
All single particle levels from the bottom up to narrow
quasibound levels in the continuum are accounted for.
To describe excited states of nuclei, the model Hamil-
tonian is diagonalized in two steps. Firstly, the 1p-1h
excitations are projected on quasi-bosonic 1-phonon con-
figurations of different multipolarity, by solving equations
of the quasiparticle random phase approximation with
the residual interaction in separable form. Then, ex-
cited states are described by wave functions made up
from interacting one- and multi-phonon configurations.
Their energies and internal fermion structure are ob-
tained by the second diagonalization of the model Hamil-
tonian on the set of these states. We refer for details
to [48, 49]. In the calculations presented below, the ba-
sis contains phonons of multipolarities from 1± to 7±.
Only two-phonon configurations with excitation energies
below 20 MeV have been taken into account.
The results for the spectral fluctuation properties and

the distributions of the transition strengths are shown in
Figs. 12 and 13. Here, the numbers of levels taken into
account were chosen similar to those of the experimen-
tal levels. For the 1+ case the agreement with GOE is
very good, while for the 1− states small deviations to-
wards Poisson are observed. For the description of the
experimental data in each sequence of calculated levels
only those were taken into account for which the transi-
tion strength was larger or equal to the smallest exper-
imentally observed ones. For the 1+ states the number
of the thus removed energy levels was simlar to that of
the missing levels estimated based on the missing-level
statistics for the experimental ones. In the case of the
1− states smaller fractions of energy levels needed to be
removed [50]. This corroborates our assumption that the
deviations of the spectral properties of the corresponding
experimental data may not be attributed to a large num-
ber of missing levels, but are indeed Poissonian-like. The
results deduced from the model calculations are shown
in Figs. 6-10.

IV. CONCLUSION

We have investigated the fluctuation properties in the
energy spectra of Jπ = 1− and Jπ = 1+ states in the
three medium-heavy nuclei 50,52,54Cr between about 4.5
and 9.7 MeV within the RMT approach. The results for
the 1+ states show evidence for correlations between the
unfolded levels which are similar to GOE behavior. The
situation is different for the 1− states which lack level
correlations and, thus, behave like Poissonian random
numbers. These findings are corroborated by large-scale
shell model and quasiparticle-phonon model calculations,
respectively. The dominantly regular behavior of the 1−

states is consistent with an interpretation of the PDR
within an extreme semiclassical picture in which the ex-
cess neutrons forming a skin around a core oscillate col-
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FIG. 12: Averaged spectral statistics of the 1+ and 1− energy
levels obtained from shell-model calculations using the effec-
tive KB3G interaction and from QPM calculations (red dash-
dotted lines and histograms), respectively. Here, the number
of energy levels taken into account for each nucleus were cho-
sen similar to those of the corresponding experimental energy
levels.

lectively in dipole-like motion against the latter [5]. In
passing we note further that the method of using RMT
to draw this conclusion has also been successfully applied
before to the fine structure of orbital magnetic dipole ex-
citations belonging to the Scissors Mode [51]. The cor-
responding semiclassical picture is the rotational motion
of two ellipsoids of all neutrons and protons, respectively,
performing small angle oscillations against each other [4].

Acknowledgments

This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research
Center 1245. BAB acknowledges U.S. NSF Grant No.

FIG. 13: Averaged distribution of the unfolded transition
strengths yi = Bi/Bav,i [(a) and (b)] and zi = log10(yi) [(c)
and (d)] obtained from QPM and shell model calculations in-
cluding the KB3G interaction (histograms) for the Jπ = 1−

[9a) and (c)] and Jπ = 1+ [(b) and (d)] states, respectively,
in comparison with the Porter-Thomas distribution (dashed
lines).

PHY-1404442. BD thanks the NSF of China for finan-
cial support under Grant No. 11775100.



8

[1] H. Pai, J. Beller, N. Benouaret, J. Enders, T. Hartmann,
O. Karg, P. von Neumann-Cosel, N. Pietralla, V. Yu.
Ponomarev, C. Romig, M. Scheck, L. Schnorrenberger,
S. Volz, and M. Zweidinger, Phys. Rev. C 88, 054316
(2013).

[2] H. Pai, T. Beck, J. Beller, R. Beyer, M. Bhike, V. Derya,
U. Gayer, J. Isaak, Krishichayan, J. Kvasil, B. Lher,
V. O. Nesterenko, N. Pietralla, G. Martnez-Pinedo, L.
Mertes, V. Yu. Ponomarev, P.-G. Reinhard, A. Repko,
P. C. Ries, C. Romig, D. Savran, R. Schwengner, W.
Tornow, V. Werner, J. Wilhelmy, A. Zilges, and M. Zwei-
dinger, Phys. Rev. C 93, 014318 (2016).

[3] P. C. Ries, H. Pai, T. Beck, J. Beller, M. Bhike, U. Gayer,
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