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We use a reference state based on symmetry-restored states from deformed mean-field or
generator-coordinate-method (GCM) calculations in conjunction with the in-medium similarity-
renormalization group (IMSRG) to compute spectra and matrix elements for neutrinoless double-
beta (0νββ) decay. Because the decay involves ground states from two nuclei, we use evolved
operators from the IMSRG in one nucleus in a subsequent GCM calculation in the other. We
benchmark the resulting IMSRG+GCM method against complete shell-model diagonalization for
both the energies of low-lying states in 48Ca and 48Ti and the 0νββ matrix element for the decay
of 48Ca, all in a single valence shell. Our approach produces better spectra than either the IMSRG
with a spherical-mean-field reference or GCM calculations with unevolved operators. For the 0νββ
matrix element the improvement is slight.

PACS numbers: 21.60.Jz, 24.10.Jv, 23.40.Bw, 23.40.Hc

I. INTRODUCTION

The search for neutrinoless double-beta (0νββ) de-
cay is an important effort in modern nuclear and par-
ticle physics, in part because it offers the only real hope
of determining whether neutrinos are Majorana parti-
cles [1, 2]. The rate of decay, however, depends on nu-
clear matrix elements that must be accurately calculated
to allow experimentalists to plan efficiently and inter-
pret results. At present, the matrix elements predicted
by various nuclear models [3–15] differ by factors of up
to 3 [16]. Theorists have worked hard to identify the
shortcomings of the models and improve them accord-
ingly. Ultimately, however, we will need fully ab-initio
calculations with controlled uncertainty.

Ab-initio methods have improved rapidly in recent
years [17–24]. Most applications, however, are still in rel-
atively light nuclei near closed shells. The nuclei used in
ββ experiments, among them 76Ge, 82Se, 130Te, 100Mo,
136Xe, and 150Nd, are typically heavier and often far
from closed shells in protons, neutrons, or both. Among
the existing ab-initio methods, the in-medium similarity
renormalization group (IMSRG) method [24–26] is par-
ticularly suited to an extension to such mid-shell nuclei.
One scheme for making the extension involves choosing

the generators of the RG flow to decouple a shell-model
space from the rest of the full many-body Hilbert space
[27–30]. Although the framework, called the valence-
space IMSRG, has been used to describe nuclei as heavy
as tin [31], it suffers from the use of a closed-shell ref-
erence state or a spherical reference ensemble, both of
which omit collective correlations [32]. Such correlations
are difficult to capture in an approximate SRG flow that
simplifies induced many-body operators.

In the IMSRG as currently practiced, induced A-body
operators with A > 2 are included only approximately
by retaining just their normal-ordered one- and two-body
pieces. Collective effects will be better represented if they
are explicitly built into the reference state. To use a more
general reference state, one must extend the procedure
of normal ordering. Refs. [33–35] show how to define a
normal ordering that applies to any reference state; the
work of Refs. [36, 37] made use of the scheme with a
number-projected spherical Hatree-Fock-Bogoliubov ref-
erence state (which explicitly includes pairing correla-
tions) to apply the IMSRG to spherical open-shell iso-
topes. More recently, the authors of Ref. [38] used a no-
core shell-model reference state in just a few shells (for
lighter nuclei). They showed that the IMSRG flow with
respect to that reference generates a Hamiltonian for sub-
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sequent calculations in the same few shells that effectively
incorporates the physics from many higher shells.

In this paper, we generalize the reference state
even further, not only by including angular-momentum-
projected Hartree-Fock-Bogoliubov (HFB) states with
deformation, but also by using the generator-coordinate
method (GCM) to mix many such states, so that the
IMSRG can be applied to essentially any nucleus. The
GCM is flexible enough to include in the reference both
the “static” correlations associated with collectivity —
superfluidity and deformation — and “dynamic” corre-
lations associated with shape fluctuations. The IMSRG
flow then incorporates non-collective correlations, gener-
ating an improved Hamiltonian that we use in a second
GCM calculation and evolved transition operators with
which to obtain other nuclear properties. Here we fo-
cus not only on energy spectra, but also on the 0νββ
transition matrix elements, and show how to include the
effects of complicated non-collective correlations in that
process. We then benchmark the method against the
conventional shell model for the spectra of 48Ca and 48Ti
and the transition matrix element between the two.

The paper is organized as follows. In Sec. II we present
the IMSRG+GCM method for computing both the ener-
gies of low-lying states and the matrix elements for 0νββ
decay, and use 48Ca and 48Ti within a valence shell to
illustrate the method. Section III presents and discusses
the results. Section IV offers a summary and some per-
spective.

II. FORMALISM

In this section we present a general framework for the
IMSRG+GCM. Although we restrict our calculations to
a single shell with a phenomenological Hamiltonian here,
all the expressions we develop are more general. We will
report their application within an ab-initio calculation,
with interactions from chiral effective field theory, in a
separate paper.

A. The IMSRG

The basic idea of the IMSRG is to use a flow equation
to gradually decouple a chosen reference state |Φ〉 (or
more generally a space or ensemble) from all other states.
One defines a Hamiltonian H(s) that depends on a flow
parameter s as

Ĥ(s) = Û(s)Ĥ0Û
†(s) , (1)

with Û(0) = 1, where Ĥ0 is the initial Hamiltonian and

Û(s) represents a set of continuous unitary transforma-

tions that drive Ĥ0 to a specific form, e.g., by eliminat-
ing certain matrix elements or minimizing its expectation
value. Taking the derivative d/ds of both sides of Eq. (1)

yields the flow equation

dĤ(s)

ds
= [η̂(s), Ĥ(s)] , (2)

where we have introduced the anti-Hermitian generator
of the transformation,

η̂(s) ≡ dÛ(s)

ds
Û†(s) . (3)

Supposing the Hamiltonian Ĥ — either Ĥ0 or an ap-
proximate Ĥ(s) — is composed of one-body, two-body
and three-body terms, and writing strings of creation and
annihilation operators as

Apqr...stu... = a†pa
†
qa
†
r . . . auatas , (4)

we have

Ĥ =
∑
pq

tpqA
p
q+

1

4

∑
pqrs

V pqrs A
pq
rs+

1

36

∑
pqrstu

W pqr
stu A

pqr
stu . (5)

Using the generalized normal ordering of Kutzelnigg and
Mukherjee [33–35], we can normal-order Ĥ with respect
to our arbitrarily chosen reference state |Φ〉:

Ĥ = E +
∑
pq

fpq
{
Apq
}

+
1

4

∑
pqrs

Γpqrs {Apqrs}

+
1

36

∑
pqrstu

W pqr
stu {A

pqr
stu} . (6)

By definition, the expectation values of normal-ordered
operators, indicated by

{
Ap...q...

}
, with respect to the refer-

ence state are zero. Thus, the normal-ordered zero-body
term corresponds to the reference-state energy E, which
is given by

E = 〈Φ| Ĥ |Φ〉 =
∑
pq

tpqρ
p
q +

1

4

∑
pqrs

V pqrs ρ
pq
rs

+
1

36

∑
pqrstu

W pqr
stu ρ

pqr
stu . (7)

The normal-ordered one-body and two-body terms are

fpq = tpq +
∑
rs

V prqs ρ
r
s +

1

4

∑
rstu

W prs
qtu ρ

rs
tu , (8)

Γpqrs = V pqrs +
∑
tu

W pqt
rstuρ

t
u . (9)

In Eqs. (7)–(9), we have introduced the usual density
matrices

ρpq = 〈Φ|Apq |Φ〉 , (10a)

ρpqrs = 〈Φ|Apqrs |Φ〉 , (10b)

ρpqrstu = 〈Φ|Apqrstu |Φ〉 . (10c)
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Correlations within the reference state are encoded in the
corresponding irreducible density matrices (also referred
to as cumulants):

λpq = ρpq , (11a)

λpqrs = ρpqrs −A(λprλ
q
s) = ρpqrs − λprλqs + λpsλ

q
r , (11b)

λpqrstu = ρpqrstu −A(λpsλ
qr
tu + λpsλ

q
tλ
r
u) , (11c)

where the antisymmetrization operator A generates all
possible permutations (each only once) of upper indices
and lower indices. For independent particle states, the
two-body irreducible density vanishes and we recover the
usual factorization of many-body density matrices into
antisymmetrized products of the one-body density ma-
trix.

To decouple |Φ〉, one usually chooses an appropriate
generator η̂ and then solves a set of coupled ordinary
differential equations (ODEs), derived from Eq. (2), for

f̂ , Γ̂, . . . [26, 36]. Instead, however, one can solve a simi-
lar flow equation for the unitary transformation operator
Û(s),

dÛ(s)

ds
= η̂(s)Û(s) , (12)

whose solution can formally be written in terms of the
S-ordered exponential

Û(s) = S exp

∫ s

0

ds′η̂(s′) , (13)

which is short-hand for the Dyson series expansion of
Û(s). As shown first by Magnus [39, 40], if certain con-
vergence conditions are satisfied it is possible to write
Û(s) as a proper exponential of an anti-Hermitian oper-

ator Ω̂(s):

Û(s) ≡ eΩ̂(s) . (14)

Equation (12) can then be re-expressed as a flow equation

for Ω̂:

dΩ̂(s)

ds
=

∞∑
n=0

Bn
n!

[Ω̂(s), η̂(s)](n) , (15)

where we define nested commutators as[
Ω̂(s), η̂(s)

](0)

= η̂(s) , (16a)[
Ω̂(s), η̂(s)

](n)

=

[
Ω̂(s),

[
Ω̂(s), η̂(s)

](n−1)
]
, (16b)

and Bn=0,1,2,3,··· are the Bernoulli numbers
{1,−1/2, 1/6, 0, · · · }. As discussed in Ref. [41], the
reformulation of the IMSRG via the Magnus expansion
has two major advantages. First, the anti-Hermiticity of
Ω̂ guarantees that Û(s) is unitary throughout the flow,
even when low-order numerical ODE solvers are used
to integrate Eq. (15). Second, it greatly facilitates the
evaluation of observables. In the traditional approach,

we would need to solve flow equations for each additional
operator simultaneously with Eq. (2) because of the

dynamical nature of the generator, while Ω̂(s) allows us
to construct arbitrary evolved operators by using the
Baker-Campbell-Hausdorff (BCH) formula:

Ô(s) = eΩ̂(s)Ô(0)e−Ω̂(s) =

∞∑
n=0

1

n!
[Ω̂(s), Ô(0)](n) . (17)

As mentioned earlier, the IMSRG generator η̂(s) is cho-
sen to implement a specific decoupling. For closed-shell
nuclei, the ability to use an uncorrelated reference allows
us to distinguish particle and hole states, which simplifies
the formulation of decoupling conditions [24, 25], and the
subsequent construction of η̂(s). For correlated reference
states like those we aim to use here, this distinction is
lost, and one needs to carefully consider the proper gen-
eralization of the generator. Here, we use the Brillouin
generator, which is essentially the gradient of the energy
under a general unitary transformation (see Appendix B
and Ref. [25]):

ηpq ≡ 〈Φ|
[
Ĥ,
{
Apq
}]
|Φ〉 , (18a)

ηpqrs ≡ 〈Φ|
[
Ĥ, {Apqrs}

]
|Φ〉 . (18b)

To implement the IMSRG flow either in the traditional
(Eq. (2)) or Magnus formulations (Eq. (15)), we need to
close the system of flow equations by truncating the op-
erators at a given particle rank. We adopt the IMSRG(2)

approximation and truncate Ĥ(s), η̂(s), and Ω̂(s), as
well as all commutators, at the normal-ordered two-body
level. This is consistent with the so-called NO2B approx-
imation that is applied to the input Hamiltonian in a va-
riety of many-body approaches (see, e.g., [42–45]). With
this choice of operator truncation, up to three-body ir-
reducible density matrices of the reference states appear
in the Brillouin generator and the flow equations. We
will show that the irreducible three-body density in the
Brillouin generator is vital to the convergence of the IM-
SRG(2) flow equations.

B. Choice of reference state

We would like to explore reference states |Φ〉 that in-
corporate collective (or “static”) correlations, such as
those associated with pairing and deformation, plus fluc-
tuations in some of these collective quantities. To include
such correlations, we use the GCM to find an optimal lin-
ear combination of deformed HFB states (distinguished
from one another by a set of coordinates q), projected
onto states with both well-defined neutron (N) and pro-
ton (Z) number and angular momentum J = 0:

|ΦJ=0
α 〉 =

∑
q

fJ=0
α (q) |NZJ = 0,q〉 , (19)
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where α denotes a particular linear combination and the
non-orthogonal basis states in which the GCM states are
expanded are given by

|NZJ = 0(q)〉 = P̂N P̂Z P̂ J=0
00 |q〉 . (20)

Here, the particle-number projection operator is

P̂ τ =
1

2π

∫ 2π

0

dϕτe
i(N̂τ−Nτ )ϕτ , (21)

with N̂τ the particle-number operator for either neutrons
(τ = n) or protons (τ = p), and the angular-momentum
projection operator is

P̂ JMK =
2J + 1

8π2

∫
dΩDJ∗

MK(Ω)R̂(Ω) , (22)

with DJ
MK(Ω) a Wigner-D function. The projector P̂ JMK

extracts from the intrinsic state |q〉 the component whose
angular momentum along the intrinsic z axis is given
by K. In the following, we restrict ourselves to axially-
symmetric deformation, and thus K = 0.

We obtain the weight function fJα (q) from the varia-
tional principle, which leads to the Hill-Wheeler-Griffin
equation [46]:∑

qb

[
H J

qa,qb
− EJαN J

qa,qb

]
fJα (qb) = 0 . (23)

The Hamiltonian kernel H J
q,qb

and norm kernel N J
qa,qb

are given by

OJ
qa,qb

= 〈NZJ(qa)| Ô |NZJ(qb)〉 , (24)

with the operator Ô representing either Ĥ or 1.

C. Matrix elements for the 0νββ decay

Let us now consider the evaluation of the matrix el-
ement for the 0νββ decay of an initial nuclear state
|ΨI(0

+
1 )〉 to a final state |ΨF (0+

1 )〉,

M0ν = 〈ΨF (0+
1 )| Ô0ν(0) |ΨI(0

+
1 )〉 . (25)

Here, Ô0ν(0) is the bare, unevolved two-body transition
operator [10, 12–14] whose form is given by

Ô0ν(0) =
1

4

∑
pp′nn′

Opp
′

nn′

{
App

′

nn′

}
, (26)

where p, p′ and n, n′ are indices for proton and neutron
states, respectively.

In the IMSRG+GCM approach, we represent the ini-

tial and final states as |ΨI/F 〉 = e−Ω̂I/F (s) |ΦI/F 〉, where
the unitary transformations capture correlations that are
missing from the GCM wave functions |ΦI/F 〉. One can
readily show that the GCM wave functions are solutions

to the Schrödinger equations for the evolved Hamiltonian
operators,

ĤI/F (s) |ΦI/F 〉 = E |ΦI/F 〉 , (27)

up to IMSRG truncation errors (cf. Refs. [24, 25]).
The transition matrix element now reads

M0ν(s) = 〈ΦF | eΩ̂F (s)Ô0ν(0)e−Ω̂I(s) |ΦI〉 , (28)

and we encounter two complications. The first is that
Ω̂F (s) and Ω̂I(s) are normal-ordered with respect to dif-
ferent reference states; this difficulty can be overcome by
re-normal ordering all operators with respect to a com-
mon reference. The second, more challenging complica-
tion is that the difference between Ω̂I(s) and Ω̂F (s) pre-
vents us from using a straightforward BCH expansion to
evaluate the matrix element. To proceed, we note that
we can rewrite Eq. (28) either as

M0ν(s) = 〈ΦF | eΩ̂F (s)e−Ω̂I(s)eΩ̂I(s)Ô0ν(0)e−Ω̂I(s) |ΦI〉

= 〈ΦF | eΩ̂F (s)e−Ω̂I(s)Ô0ν
I (s) |ΦI〉 (29)

or

M0ν(s) = 〈ΦF | Ô0ν
F (s)eΩ̂F (s)e−Ω̂I(s) |ΦI〉 (30)

with Ô0ν
I/F (s) = eΩ̂I/F Ô0νe−Ω̂I/F . Inspecting the unitary

transformations acting on the initial GCM wave function
in the previous equation, we define

|ΦI〉 ≡ eΩ̂F (s)e−Ω̂I(s) |ΦI〉 = eΩ̂F (s) |ΨI〉 , (31)

so that we have the unitary transformation for the fi-
nal nucleus acting on an eigenstate of the initial nucleus.
An analogous definition for the final nucleus results from
Eq. (29):

|ΦF 〉 ≡ eΩ̂I(s)e−Ω̂F (s) |ΦF 〉 = eΩ̂I(s) |ΨF 〉 . (32)

Using these newly defined states, we set up two
schemes for evaluating the transition matrix element:

PI: M0ν = 〈ΦF | eΩ̂I Ô0νe−Ω̂I |ΦI〉 , (33)

PF: M0ν = 〈ΦF | eΩ̂F Ô0νe−Ω̂F |ΦI〉 . (34)

More explicitly, the procedures are as follows. We begin
with a GCM calculation for the ground state of either
the initial nucleus (in procedure PI) or the final nucleus
(in procedure PF) to obtain a reference state, and solve
the flow equation to obtain the corresponding unitary

transformation operator eΩ̂I or eΩ̂F . We then use the
unitary transformation to generate the evolved Hamilto-
nian ĤI/F (s) and decay operator Ô0ν

I/F (s). Finally, we

diagonalize the evolved Hamiltonian, approximately, in
the other nucleus — the final nucleus in PI and the ini-
tial nucleus in PF — to obtain the barred state |ΦF 〉 or
|ΦI〉. This second diagonalization — another GCM cal-
culation in our case — would provide an exact result if
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it and the flow were carried out without approximation.
Since the initial and final states are (approximate) eigen-
vectors of the same Hamiltonian, we can simply sandwich
the corresponding evolved 0νββ operator between those
states, as in Eqs. (33) or (34), to compute M0ν . If we
want, we can also use the evolved Hamiltonian to re-
compute the ground state of the first nucleus, the one for
which we solved the flow equations. We will show shortly
that both the energies of low-lying states and the matrix
elements M0ν can be improved in this way.

In either of the procedures above, one must use the
BCH expansion (17) to transform the charge-changing
operator (26). In the present work, we apply the NO2B
approximation to each operator appearing in the BCH se-

ries, including general nested commutators
[
Ω̂, Ô0ν

](n)

,

in the spirit of Ref. [41]. Dropping the flow-parameter
dependence for brevity, we see that the first commutator
in the series reads

[Ω̂, Ô] = [Ω̂(1), Ô] + [Ω̂(2), Ô] (35)

≡ 1

4

∑
pp′nn′

(
Opp

′

nn′(1B) +Opp
′

nn′(2B)
){

App
′

nn′

}
,(36)

where the contributions involving the one-body and two-
body parts of Ω are given by

Opp
′

nn′(1B) =
∑
p1

[
Ωpp1O

p1p
′

nn′ + Ωp
′

p1O
pp1
nn′

]
−
∑
n1

[
Ωn1
n O

pp′

n1n′ + Ωn1

n′O
pp′

nn1

]
, (37)

and

Opp
′

nn′(2B)

=
1

2

∑
p1p2

Ωpp
′

p1p2O
p1p2
nn′ (1− np1 − np2)

−1

2

∑
n1n2

Opp
′

n1n2
Ωn1n2

nn′ (1− nn1
− nn2

) ,

+
∑
p1n1

(np1 − nn1)
[
Ωn1p

′

n′p1
Op1pn1n − Ωn1p

n′p1
Op1p

′

n1n

+Ωn1p
np1O

p1p
′

n1n′ − Ωn1p
′

np1 O
p1p
n1n′

]
, (38)

(cf. Refs. [24, 25]). Since Ω̂(s) conserves charge, no
zero- or one-body terms are generated when we evalu-
ate the commutator (35) (induced higher-body operators
are truncated), and the resulting operator has the same
isospin structure as the initial transition operator itself.
This means that we can use Eqs. (35)–(38) to recursively

evaluate the BCH series by replacing Ô with the appro-

priate nested commutator
[
Ω̂, Ô

](n)

. Correlations in the

reference state only enter through fractional values of
the occupation numbers, 0 ≤ n ≤ 1. At the currently
employed NO2B truncation level, irreducible two- and
higher-body density matrices do not appear.
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FIG. 1. (Color online) The energy surface from the projected
HFB calculation and the energies of low-lying states in 48Ca
(a) and 48Ti (b). The x-axis is the quadrupole deformation
β2. Each low-lying state from the GCM calculation is placed
at the average β2 value for that state.

As discussed in Sec. II B, our GCM reference states
are projected onto states with good angular momentum,
allowing us to efficiently solve our equations by working
in a J-coupled scheme. Detailed expressions can be found
in Appendix A.

III. RESULTS AND DISCUSSION

A. Energies of low-lying states

Let us now apply the formalism described above
to 48Ca and 48Ti, within just the fp shell (compris-
ing the 0f7/2, 0f5/2, 1p3/2, and 1p1/2 orbits) and with
the interaction KB3G [47]. We aim to make our
GCM reference states as simple as possible while at
the same time including the most important collec-
tive correlations. We therefore construct them from
a set of axially-deformed, angular-momentum- and
particle-number-projected HFB states with different val-
ues for the quadrupole deformation parameter β2 ≡
χ 〈q| (r/b)2Y20 |q〉 /(~ω0), with ~ω0 = 41.2A−1/3 MeV,
and χ = 0.6. We let β2 ∈ {−0.3,−0.2, . . . 0.2, 0.3} in
48Ca, and β2 ∈ {−0.3,−0.2 . . . 0.4, 0.5} in 48Ti. For these
axially-deformed HFB states, one-dimensional angular-
momentum projection, together with particle-number
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FIG. 2. (Color online) The energies of low-lying states in 48Ca
(a) and 48Ti (c) as a function of the number of natural states
(NOS) adopted in the GCM calculations. The collective wave

functions, defined as gJα(β2) =
∑
β′
2

[
N J

]1/2
β2,β

′
2
fJα (β′

2), are

shown for different choices of the NOS for the ground state
of 48Ca (b) and 48Ti (d), as a function of the quadrupole
deformation β2.

projection, is sufficient to restore all the broken symme-
tries.

Figure 1 presents curves of HFB energy vs, deforma-
tion (often referred to as “energy surfaces” even in one
dimension) for 48Ca and 48Ti, both before and after pro-
jection onto states with J = 0 and well-defined particle
number. The global energy minimum is at a spherical
shape in 48Ca and a prolate shape in 48Ti. The figure
also shows the energies of the lowest lying states after the
full calculations, which mix the shapes indicated by the
dots. The ground states have GCM energies of −7.12
MeV in 48Ca and −22.18 MeV in 48Ti. The results of
exact diagonalization are −7.57 MeV and −23.81 MeV,
both significantly smaller than the corresponding GCM
results. Figure 2 shows that the energies of the low-lying
states are fairly stable against different choice of the num-
ber of natural states (NOS) in the GCM calculations. In
other words, there are good “plateaus” for the energies of
both nuclei. The collective wave function for the ground
state is, however, somewhat sensitive to the NOS.

Next we solve the IMSRG flow equations, starting both
from these GCM states and several simpler states, so that
we can check the dependence of the results on the refer-
ence. Figure 3 shows the ground-state energy of 48Ca
and 48Ti, as a function of the flow parameter, starting
from either the spherical projected-HFB state, deformed
projected-HFB states with β2 = 0.1, 0.2, (0.3), or the full
GCM ground state 0+

1 . In 48Ca, except when the refer-
ence state has β2 = 0.2, the energy converges to almost
the same value, quite close to the result of exact diag-
onalization. We note in passing that, as discussed in
Refs. [24, 25, 48] the IMSRG flow may lead to an excited
0+ state that has a larger overlap with the reference state
than the ground state. Because the energy of the refer-

- 8
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- 6
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1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1
- 2 4
- 2 3
- 2 2
- 2 1
- 2 0
- 1 9

4 8 T i

( b )

 E (
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4 8 C a
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 R e f .  S t a t e
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 β 2 = 0 . 1  
 β 2 = 0 . 2
 G C M

 

 

E (
Me

V)

 S M ( K B 3 G )  

FIG. 3. (Color online) The ground-state energy E a function
of flow parameter s for 48Ca (a) and 48Ti (b), starting from ei-
ther the spherical reference state, a symmetry-projected HFB
state, or a GCM state. The horizontal line represents the en-
ergy from exact shell-model diagonalization.

ence state with β = 0.2 is lower than that of the 0+
2 state,

the IMSRG, which cannot raise the energy, does not con-
verge to any sate at all. But we have checked that when
we start from a reference state with β2 = 0.3, the flow
indeed causes the energy to converge to that of the 0+

2

state.
In 48Ti, only projected-HFB reference states with β ≥

0.2 (and the GCM state) lead to a final energy that is
very close to the exact ground-state value. Starting from
smaller values of β, we fall short of the correct binding
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er
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M
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FIG. 4. (Color online) The low-lying states from the IM-
SRG+GCM and GCM alone, with the KB3G interaction, in
48Ca (a) and 48Ti (b). The exact shell-model results [49] are
on the left in both panels.
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TABLE I. Ground-state energies (in MeV) for 48Ca and 48Ti,
from several calculations.

SM IMSRG+GCM GCM HFB(Sph.)

48Ca -7.57 -7.56 -7.12 -6.45
48Ti -23.66 -23.81 -22.18 -18.76

energy. Clearly it is important that the reference state
be deformed in the right way; the IMSRG(2) flow by
itself is not able to capture collective correlations. The
bottom panel also shows that it is important to include
three-body irreducible densities in the flow equations. If
these are omitted, as the pathological blue open symbols
indicate, the energy fails to converge to any value.

The final step in computing low-lying spectra, as we
noted earlier, is to use the evolved Hamiltonian from the
IMSRG to carry out a second GCM calculation. Figure 4
compares the low-lying spectra from an initial GCM cal-
culation, from the second one (labeled IMSRG+GCM),
and from exact diagonalization. The IMSRG+GCM en-
ergies are systematically lower than those produced by
the GCM alone, and are closer to the shell-model re-
sults (mostly due to an overall shift). The GCM is ca-
pable in principle of reproducing the exact results with a
sufficiently high number of coordinates/basis states, but
computation time scales badly with the number of coor-
dinates. A more limited GCM calculation, followed by
IMSRG evolution and a second limited GCM calculation
is much more efficient.

Table I, finally, contains the ground-state energies for
48Ca and 48Ti in several approximation schemes. The
IMSRG+GCM overestimates the energy of 48Ti by about
1%. This discrepancy is consistent with other applica-
tions of the IMSRG in the NO2B approximation [25], and
preliminary results suggest that it can be reduced sig-
nificantly by using an improved truncation scheme that
accounts for induced three-body terms [48].

B. Matrix elements for neutrinoless double beta
decay

Figure 5 compares the exact shell model result for
the Gamow Teller (GT) part of M0ν to GCM and IM-
SRG+GCM results. The blue boxes represent the results
of the PI and PF procedures described above; the ver-
tical extent of the boxes represents the uncertainty in
the optimal NOS, i.e. the point at which to truncate the
GCM basis before the energy becomes numerically unsta-
ble. In the previous GCM studies this uncertainty must
also have existed, but was not explicitly investigated. We
show here that the matrix elements depend more on the
NOS than does the energy. The dependence reflects the
similar dependence of the collective wave functions shown
in Fig. 2 .

The matrix elements produced by the two IM-

SM

GC
M(
w/
o I
S)

GC
M(
w 
IS)

PI(
w/
o I
S)

PI(
w 
IS)

PF
(w
/o 
IS)

PF
(w
 IS
)0.0

0.5

1.0

1.5

2.0

2.5

M
0ν GT

IMSRG+GCM
48Ca → 48Ti

FIG. 5. (Color online) The Gamow-Teller part of M0ν from
several calculations. The blue boxes (w/o IS) are results of
the GCM and IMSRG+GCM calculations without an explicit
isoscalar pairing coordinate, and the red boxes (w IS) are re-
sults with that explicit coordinate. The uncertainty comes
from the different choice of natural states in the GCM calcu-
lation.

SRG+GCM procedures are in reasonable agreement with
one another, and both are slightly closer to the exact re-
sult than the value produced by the GCM. The inability
of the IMSRG evolution to reduce the matrix element
more significantly suggests that it is unable to fully cap-
ture isoscalar pairing correlations, which shrink the ma-
trix element noticeably [13, 14, 50]. The red boxes show
the result of including an isoscalar pairing amplitude as a
GCM coordinate, in the manner suggested by Refs. [13]
and [14]. Now the agreement with the exact result is
good even before the IMSRG evolution, which does not
spoil it either. We note that including the isoscalar pair-
ing amplitude as a generator coordinate introduces more
redundancy in the basis. By choosing the number of nat-
ural states properly, the low-lying eigenstates are at ener-
gies that are systematically somewhat smaller than with-
out the isoscalar pairing coordinate. Here we have run
into the limits of what we can test in a shell-model space.
Within the fp shell, collective correlations, which include
isoscalar pairing, almost completely determine the 0νββ
matrix element [50]. Because the IMSRG does not easily
capture these correlations, it has little effect on the ma-
trix element; the collective physics must thus all be built
into the GCM state, an unsurprising situation. In an ab-
initio calculation in many shells, however, the situation is
different. Non-collective correlations from higher energy,
including the short-range correlations usually inserted by
hand in shell-model calculations, will affect the IMSRG
operator evolution. We expect our procedure(s) for com-
puting 0νββ matrix elements to work well in these kinds
of calculations, even if we are not able to prove it in a
single shell.

Although neither IMSRG prescription affects the ma-



8

trix element very much, PF works slightly less well than
PI, a result that is consistent with the IMSRG ground-
state energies in the two nuclei. The discrepancy with
the exact calculation is larger in 48Ti than in 48Ca, sug-
gesting that the approximate evolution with respect to a
complicated GCM state containing both valence neutrons
and protons omits some important three-body contribu-
tions to the like particle interaction, which determines
the 48Ca energy and wave function.

IV. CONCLUSION

We have presented a very general framework for apply-
ing the IMSRG in conjunction with GCM reference states
to compute energies of low-lying states and 0νββ matrix
elements in nuclei with strong collective correlations, in-
cluding deformation. Our method involves first a GCM
calculation to generate a correlated reference state, then
an IMSRG calculation, based on that state, to transform
all operators, and finally a second GCM calculation that
employs those operators. This approach allows us to use
a single transformation to treat the transitions between
two potentially quite different nuclei.

We have benchmarked our method against the results
of exact shell-model diagonalization for 48Ca and 48Ti.
The IMSRG improves the GCM-alone energies signifi-
cantly, and the 0νββ matrix element slightly, though
in the one-shell calculations performed here the GCM
correlations by themselves are sufficient (and necessary)
to nearly reproduce the exact shell-model matrix ele-
ment when the coordinates include the isoscalar pairing
amplitude. We are in the process of applying the IM-
SRG+GCM in ab-initio calculations of this and other
decays.
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Appendix A: J-coupled operator evolution

It is convenient to rewrite the two-body matrix ele-
ments in the J-scheme with the relation [51]

|kl〉 =
∑
JM

〈jkmkjlml|JM〉 [NKL(J)]−1 |(KL)JM〉 ,

(A1)
where the normalized J-coupled two-body wave function
is defined as

|(KL)JM〉 = NKL(J)[a†Ka
†
L]JM |0〉 , (A2)

and the normalization factor is give by NKL(J) =√
1 + δKL(−1)J/(1 + δKL). Here the capital letter K

stands for the quantum numbers {τk, nk, lk, jk}. With
the above definition, normalized J-coupled non-zero two-
body matrix elements are related to those in M -scheme
as follows:

OJ(KL)(34) =
∑

mkmlm3m4

〈jkmkjlml|JM〉 〈j3m3j4m4|JM〉

× 1√
(1 + δKL)(1 + δ34)

Okl34. (A3)

The unnormalized versions of the same matrix elements
are given by

ŌJ(KL)(34)

=
√

(1 + δKL)(1 + δ34)OJKL34 (A4)

=
∑

mkmlm3m4

〈jkmkjlml|JM〉 〈j3m3j4m4|JM〉Okl34.

One can show that the unnormalized J-coupled two-body
matrix elements corresponding to the first two terms in
Eq.(38) (pp parts) are given by

ŌJ(KL)(34)(pp)

=
1

2

∑
CD

Ω̄J(KL)(CD)Ō
J
(CD)(34)(1− nc − nd)

−1

2

∑
12

ŌJ(KL)(12)Ω̄
J
(12)(34)(1− n1 − n2). (A5)

and those corresponding to the last two terms in Eq.(38)
(ph parts) are
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ŌJ(KL)(34)(ph) = −
∑
J′

Ĵ ′
2
{
jk jl J
j3 j4 J ′

}∑
A6

(n6 − na)ŌJ
′

(K4̄)(6Ā)Ω̄
J′

(6Ā)(3L̄) (A6)

−(−1)jk+jl+J+1
∑
J′

Ĵ ′
2
{
jl jk J
j3 j4 J ′

}∑
A6

(n6 − na)ŌJ
′

(L4̄)(6Ā)Ω̄
J′

(6Ā)(3K̄)

+
∑
J′

Ĵ ′
2
{
jk jl J
j3 j4 J ′

}∑
A6

(na − n6)Ω̄J
′

(K4̄)(A6̄)Ō
J′

(A6̄)(3L̄)

+(−1)jk+jl+J+1
∑
J′

Ĵ ′
2
{
jl jk J
j3 j4 J ′

}∑
A6

(na − n6)Ω̄J
′

(L4̄)(A6̄)Ō
J′

(A6̄)(3K̄)

where the Latin indices k, l stand for proton states and
the numerals 3,4 stand for neutron states. Only the Ω-
matrix elements of the form Ωnpn′p′ contribute to the ph-

parts of O. The unnormalized ph matrix element ŌJ is
related to that of pp matrix element ŌJ by the Pandya
transformation [51]

ŌJ(αβ̄)(γδ̄) = −
∑
J′

Ĵ
′2

{
jα jβ J

jγ jδ J
′

}
ŌJ

′

(αδ)(γβ). (A7)

Appendix B: The Brillouin generator

In the IMSRG(2) calculation, we truncate the matrix
elements of η(s) at the NO2B level,

η̂(s) =
∑
ij

ηkl (s){Akl }+
1

4

∑
klmn

ηklmn(s){Aklmn} , (B1)

and use the Brillouin generator [25]. The matrix elements
of the one and two-body parts are (n̄i = 1− ni)

ηkl = f lk(nl − nk)− 1

2

∑
abc

(Γlabcλ
ka
bc − Γabkcλ

ab
lc ), (B2)

ηklmn = Γmnkl (n̄kn̄lnmnn − nknln̄mn̄n)

+
∑
a

(fakλ
al
mn + fal λ

ka
mn − fma λklan − fna λklma)

+
1

2
[(λΓ)mnkl (1− nk − nl)− (Γλ)mnkl (1− nm − nn)]

+(1− P̂mn)(1− P̂kl)
∑
ac

Γamcl λ
ak
cn(nl − nm)

+
1

2

∑
abc

[(1− P̂mn)Γmabc λ
akl
bcn + (1− P̂kl)Γablc λabkcmn].

(B3)

We use the J-coupled scheme above to save memory.
Since the terms involving the three-body irreducible den-
sity are more complicated than the others, we write them
explicitly:

η̄J(KL)(MN)(λ
3B , 1) =

1

2

∑
ABC

∑
J2JakJbc

(−1)Jak+ja−jk ĴakĴbcĴ
2
2 (−1)Jak+Jbc+jl+jn

×
{
ja Jak jk
jl J J2

}{
ja Jbc jm
jn J J2

}
Γ̄Jbc(MA)(BC) 〈(jajk)Jakjl; J2|λ |(jbjc)Jbcjn; J2〉 , (B4a)

η̄JKL)(MN)(λ
3B , 2) = (−1)jm+jn−J+1 1

2

∑
ABC

∑
JakJbc

∑
J2

(−1)ja+Jak−jk(−1)4ja+Jbc+Jak+2J+jm+jl Ĵ2
2 ĴbcĴak

×
{
ja Jak jk
jl J J2

}{
ja Jbc jn
jm J J2

}
Γ̄Jbc(NA)(BC) 〈(jajk)Jakjl; J2|λ |(jbjc)Jbcjm; J2〉 , (B4b)

η̄J(KL)(MN)(λ
3B , 3) =

1

2

∑
ABC

∑
J2JabJcm

(−1)jc+Jcm−jm ĴabĴcmĴ
2
2 (−1)Jab+Jcm+J+jl+jn+2jk

×
{
jc Jcm jm
jn J J2

}{
jc Jab jl
jk J J2

}
Γ̄Jab(AB)(LC) 〈(jajb)Jabjk; J2|λ |(jcjm)Jcmjn; J2〉 , (B4c)

η̄J(KL)(MN)(λ
3B , 4) = (−1)jk+jl−J+1 1

2

∑
ABC

∑
JabJcmJ2

(−1)jc+Jcm−jm(−1)2jl+4jc+jk+jn+Jab+Jcm+J ĴcmĴabĴ
2
2

×
{
jc Jab jk
jl J J2

}{
jc Jcm jm
jn J J2

}
Γ̄Jab(AB)(KC) 〈(jajb)Jabjl; J2|λ |(jcjm)Jcmjn; J2〉 . (B4d)
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Here, λ3B in parentheses indicates a depen-
dence on the irreducible three-body density
〈(j1j2)J12j3; J |λ |(j4j5)J45j6; J〉, the calculation of
which is given in Appendix (C).

Appendix C: Density matrices of multi-reference
states

We present here the most important expressions
needed to compute the density matrices associated with
a general multi-reference state, taken here to have spin
and parity 0+. The irreducible (or residual) one-, two-,

and three-body parts of density matrix elements follow
from a cumulant expansion (11). In the coupled scheme,
the expressions for the one- and two-body densities take
the form (with κ = {n, α}) ,

λJ=0
κ1κ2

= ρJ=0
κ1κ2

≡
[a†κ1

ãκ2 ]00√
2j1 + 1

δα1α2
. (C1)

λJ(12)(34) = ρJ(12)(34) − λ
J=0
κ1,κ3

λJ=0
κ2,κ4

δα1,α3
δα2,α4

+(−1)J−(j1+j2)λJ=0
κ1,κ4

λJ=0
κ2,κ3

δα1,α4δα2,α3 ,(C2)

where α = {τ lj}, and the expression for the irreducible
three-body density takes the form

〈(j1j2)J12j3; J123|λ |(j4j5)J45j6; J123〉
=

∑
m1,m2,··· ,m6

〈j1m1j2m2|J12M12〉 〈J12M12|j3m3JM〉 〈j4m4j5m5|J45M45〉 〈J45M45j6m6|JM〉λ123
456

= 〈(j1j2)J12j3; J123| ρ |(j4j5)J45j6; J123〉 −
15∑
i=1

Ti , (C3)

where

T1 = (−1)J45+j2+j3+1Ĵ12Ĵ45

{
j1 j2 J12

j3 J J45

}
ρJ=0
κ1κ6

ρJ45(23)(45) , (C4a)

T2 =
∑
J23

(−1)J45+J23+j1+j2+j3+j4 Ĵ12Ĵ45Ĵ
2
23

{
j4 j1 J45

J j6 J23

}{
j2 j3 J23

J j1 J12

}
ρJ=0
κ1κ5

ρJ23(23)(64) , (C4b)

T3 =
∑
J23

(−1)j2+j3+j5+j6 Ĵ12Ĵ45Ĵ
2
23

{
j5 j1 J45

J j6 J23

}{
j2 j3 J23

J j1 J12

}
ρJ=0
κ1κ4

ρJ23(23)(56) , (C4c)

T4 = (−1)j1+j2−J12+1Ĵ12Ĵ45

{
j2 j1 J12

j3 J J45

}
ρJ=0
κ2κ6

ρJ45(31)(45) , (C4d)

T5 =
∑
J31

(−1)j4+j1+J12+J45+1Ĵ12Ĵ45Ĵ
2
31

{
j4 j2 J45

J j6 J31

}{
j1 j3 J31

J j2 J12

}
ρJ=0
κ1κ4

ρJ31(31)(64) , (C4e)

T6 =
∑
J31

(−1)j1+j2+J12+j5+j6+J31 Ĵ12Ĵ45Ĵ
2
31

{
j5 j2 J45

J j6 J31

}{
j1 j3 J31

J j2 J12

}
ρJ=0
κ2κ4

ρJ31(31)(56). (C4f)

T7 = δJ12J45ρ
J=0
κ3κ6

ρJ12(12)(45) , (C4g)

T8 = (−1)j3+j4+J45+1Ĵ12Ĵ45

{
j4 j3 J45

J j6 J12

}
ρJ=0
κ3κ5

ρJ12(12)(64) , (C4h)

T9 = (−1)J12+j5+j6+1Ĵ12Ĵ45

{
j5 j3 J45

J j6 J12

}
ρJ=0
κ3κ4

ρJ12(12)(56) , (C4i)

T10 = −2Ĵ12Ĵ45

{
j1 j2 J12

j3 J J45

}
ρJ=0
κ1κ6

ρJ=0
κ2κ5

ρJ=0
κ3κ4

, (C4j)
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T11 = −2(−1)J45+j2+j3+1Ĵ12Ĵ45

{
j1 j2 J12

j3 J J45

}
ρJ=0
κ1κ6

ρJ=0
κ2κ4

ρJ=0
κ3κ5

, (C4k)

T12 = −2(−1)j1+j2−J12+1Ĵ12Ĵ45

{
j2 j1 J12

j3 J J45

}
ρJ=0
κ1κ5

ρJ=0
κ2κ6

ρJ=0
κ3κ4

, (C4l)

T13 = 2(−1)j1+j2−J12δJ12J45ρ
J=0
κ1κ5

ρJ=0
κ2κ4

ρJ=0
κ3κ6

, (C4m)

T14 = 2(−1)j2+j3−J12+J45 Ĵ12Ĵ45

{
j2 j1 J12

j3 J J45

}
ρJ=0
κ1κ4

ρJ=0
κ2κ6

ρJ=0
κ3κ5

, (C4n)

T15 = −2δJ12J45ρ
J=0
κ1κ4

ρJ=0
κ2κ5

ρJ=0
κ3κ6

. (C4o)
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