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We treat 6Li as an effective three-body (n-p-α) system and compute the d-α S−wave scattering
length and three-body separation energy of 6Li for a wide variety of nucleon-nucleon and α-nucleon
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Introduction Few-body universality is a powerful tool to analyze the low-energy properties of quantum mechanical12

systems that are weakly bound [1, 2]. Applications of few-body universality range from atomic and molecular physics,13

e.g., atomic species near a Feshbach resonance [3] or dimers and trimers of 4He atoms [4], to nuclear physics, e.g.,14

few-nucleon systems [5] and halo nuclei [6], to hadronic physics, e.g., the X(3872) and other “exotic” mesons near15

two-meson thresholds. All these systems have in common that their two-body separation energy is small enough that16

the wave function of the effective low-energy degrees of freedom (e.g., atoms, nucleons, D and D̄-mesons) has much of17

its support in a region outside the interaction potential, i.e., in the tunneling regime. The properties of the two-body18

systems are then, to a first approximation, independent of details of the potential, and are correlated solely with the19

separation energy. The qualitative picture of two-body universality laid out in this paragraph can be systematically20

organized in terms of an effective field theory (EFT) expansion in powers of R, the range of the two-body potential,21

times γ =
√
2µE2, the binding momentum of the two-body bound state (with E2 the two-body separation energy and22

µ the two-body reduced mass) since γ determines the exponential fall-off of the two-body wave function outside the23

potential.24

Many of these systems also exhibit three-body bound states. However, the three-body separation energy E3 is not25

solely determined by the two-body separation energy, although it does depend on it. At leading order (LO) in the γR26

expansion, one three-body observable must be used to fix a “three-body parameter”. All other properties of the three-27

body system are then determined by the three-body observable chosen (e.g., the separation energy E3) and E2 [7–9].28

It is important to note—especially in the context of our calculation presented below—that the three-body parameter29

need not arise from “intrinsic” three-body forces. It may, instead, in part or in whole, reflect off-shell properties of30

two-body forces that are not observable in the two-body system, and first have experimental consequences in the31

three-body system [10, 11]. If E2 is small compared to E3 and
√
2νE3R (with ν the 2+1 reduced mass) is also small,32

then there is the possibility to observe a sequence of three-body bound states, which are related to one another by a33

scaling transformation, as predicted by Efimov [12, 13]. But, even in systems where the conditions for the emergence34

of bound excited Efimov states are not met, universality still connects disparate three-body systems to one another35

and provides insights that aid in organizing their phenomenology [14, 15].36

For example, one important consequence of universality in the three-body system is that E3 is correlated with the37

scattering length of the third particle from the two-body bound state. This correlation persists to much smaller 2+138

scattering lengths a21 than does the correlation obtained by considering the three-body system to be weakly bound39

with respect to the 2+1 threshold, E3 = 1
2νa2

21

+ E2. In the three-nucleon system, the E3-a21 correlation—which in40

this case is with the scattering length in the total-spin-1/2 channel, where the three-body bound state, the triton,41

resides—was first demonstrated by Phillips [16] and is known as “the Phillips line”. This “Phillips line” still emerges42

for nucleon-nucleon (NN) potentials that are fitted much more accurately to data than were those originally examined43

by Phillips [17]. Efimov [18] demonstrated that such a correlation is a consequence of the shallow binding of the two-44

body system, and it has been computed at LO and next-to-leading order (NLO) in the EFT that encodes universality45

in the three-nucleon system [9, 19].46

In this paper we show that a similar, universal, correlation occurs between the three-body separation energy of 6Li47

and the d-α S−wave scattering length adα. We do this by modeling the d-α system as an effective three-body problem,48

in which the neutron, proton, and α-particle are viewed as basic degrees of freedom that interact via pairwise forces.49

This is justified because the first excited state of the α particle is ≈ 20 MeV above its ground state and the α particle50

is compact with respect to 6Li. Our ansatz follows a large body of work treating 6Li as a three-body problem, see51

e.g. [20–23].52

We note that there is also a study of the implications of universality for 6Li as a six-body system. In Ref. [24]53

Stetcu, Barrett, and van Kolck constructed an EFT for the No-Core Shell Model and determined the leading-order54

NN and three-nucleon forces in the EFT by demanding that the experimental binding energies of the deuteron,55

triton, and α-particle are exactly reproduced. Their six-body calculation then had 6Li unbound with respect to the56

d-α threshold; adα thus could not be computed. In contrast, our three-body model of 6Li avoids the need to compute57

the emergent low-energy scales in 5He and 6Li ab initio from NN and three-nucleon forces. Instead, it takes those58

scales as input and elucidates their consequences for the low-energy dynamics of the d-α system.59

For the purpose of this work we ignore the Coulomb effects between the α particle and the proton. The α interacts60

with the nucleons predominantly in P -waves, while the neutron and proton interaction is mainly S-wave. The resulting61

three-body system thus has different dynamics to the three-nucleon case described above, since it contains two P -wave62

attractive interactions and only one S-wave one.63

Framework We take the neutron-proton (np) force in the 3S1-
3D1 channel, and the αN force in the P3/2, P1/2,64

and S1/2 partial waves. The three-body separation energy of 6Li is obtained by solving bound state Faddeev equations65

with separable representations of these forces as outlined in Ref. [25]. (The “three-body separation energy” of 6Li is66

the amount by which it is bound compared to the n-p-α threshold, and thus is equal to its d-α separation energy plus67

the n-p separation energy of deuteron.) The work of Ref. [25] showed that in this system the solution of the Faddeev68

equations with separable forces is numerically indistinguishable from the solution with non-separable forces provided69
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the separable basis is appropriately chosen.70

For d-α scattering, we solve the momentum space Faddeev-AGS equations [26],71

Uij(E) = δ̄ijG
−1
0 (E) +

3∑

k=1

δ̄iktk(E)G0(E)Ukj(E), (1)

with δ̄ij = 1 − δij , and G0(E) = (E + i0 − H0)
−1 being the free resolvent at the available energy E. The free72

three-particle Hamiltonian is denoted by H0, while tk = vk + vkG0(E)tk is the two-body transition matrix. Here73

the index k stands for the channel corresponding to the configuration where the particle k is the spectator and the74

remaining two form the pair (ij). Since here we are working with three distinguishable particles, cyclic permutations75

of (ijk) leads to the three required transition operators in Eq. (1). Since we are interested only in very low energy76

scattering, we do not have to treat breakup singularities, and the numerical solution of Eq. (1) is straightforward.77

As in the bound state calculation [25] we employ the separable representation of the interactions in the two-body78

subsystems, which was shown to lead to numerically the same observables as a solution with non-separable forces for79

continuum [27]. In addition, we employ the same model space in the scattering calculation as is used to calculate the80

three-body separation energy of 6Li; this is sufficient when studying the low energy parameters in the d-α channel81

with Jπ = 1+ and total isospin T = 0.82

In order to investigate if there is a correlation between the three-body separation energy of 6Li and the d-α S−wave83

scattering length, one needs to solve for these quantities using different sets of potentials which describe the low-84

energy behavior in the subsystems with the same quality, i.e., potentials that are phase shift equivalent. In the case85

of the np interaction this is relatively easy to achieve, since all modern NN interactions are fitted to describe the86

deuteron binding energy, the np low energy parameters (scattering length and effective range) and phase shifts in87

the energy range we are considering. The situation is quite different in the case of effective αN interactions. There88

have been several efforts to construct effective αN interactions of varying degrees of sophistication (e.g. [28–31]).89

However, the condition of phase shift equivalence was imposed rather loosely compared to the NN subsystem. Thus90

we need to consider a different approach to construct phase shift equivalent αN potentials. Following the suggestion91

of Refs. [32, 33] we employ a unitary transformation (UT) of the αN Hamiltonian H2b = h0 + v with h0 being the92

two body kinetic energy operator and v the effective two-body interaction. Following [32, 33] we define a transformed93

Hamiltonian94

H̃2b = UH2bU
† = h0 + ṽ, (2)

where ṽ is the transformed potential keeping the phase shifts unchanged. The operator for the UT is defined as95

U = 1− 2|h〉〈h|. (3)

Following Ref. [34] we choose for |h〉96

〈rY m
l |h〉 = Nrle−cr(1− br), (4)

where N is evaluated through the normalization condition 〈h|h〉 = 1 for each partial wave. In our calculations, we97

only consider the UT on P−waves. We include the factor of rl in accord with Ref. [34], and pick b = 1 fm−1 for98

simplicity. We vary the parameter c, thereby changing the range of the transformation. If the starting potential v99

is separable and of rank-1, the transformed potential ṽ will be of rank-3 [32]. In the case of an arbitrary local or100

nonlocal v, the transformed potential will have to be numerically calculated, leading to a nonlocal potential ṽ.101

Results To study a possible correlation between the three-body separation energy of 6Li and the corresponding102

S−wave scattering length in the d-α channel, we start by using very simple, rank-1 separable interactions in the two-103

body subsystems. The form factors of the separable interactions are of Yukawa type, and the parameters are fitted104

to reproduce the deuteron binding energy and np low-energy scattering parameters in the case of the np interaction,105

and the αN S− and P−wave phase shifts up to 10 MeV in the case of the αN interaction. Specifically, for the αN106

interaction we employ model A from Ref. [20] and for the np interaction we choose the parameters from that work107

that lead to a deuteron D−state probability of 4%.108

We then apply the UT of Eqs. (3) and (4) to the P−waves of the αN interaction and reduce the parameter c in109

Eq. (4), starting from a value c = 35 fm−1 until we reach values at which 6Li is no longer bound. The result of110

these calculations is summarized in Fig. 1, which shows the dependence of the three-body separation energy of 6Li111

as a function of the inverse S−wave scattering length adα. (Almost exactly the same correlation of inverse scattering112

length and three-body separation energy is obtained if the UT is only employed in the P3/2 channel, and a very similar113

result is obtained if only the P1/2 αN partial wave is unitarily transformed. Including the S1/2 αN partial wave in the114

UT does not change the results either.) The insert magnifies the regime when c varies from 35 fm−1 to 4 fm−1, and115
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also shows the calculation using the unmodified αN interaction as a solid circle (labeled by ∞). First, a decrease in c116

from 35 fm−1 to 10 fm−1 leads to a decrease in the 6Li separation energy together with an increase in the scattering117

length, forming a line along which the loci of separation energy versus inverse scattering length sit (red solid squares).118

When c is further decreased, this trend reverses, with the loci now following the previous line, but in the opposite119

direction—as indicated by the green diamonds in the inset of Fig. 1. This phenomenon of directional reversal on the120

correlation line has also been observed in Ref. [33], where the UT was applied to NN potentials in the three-nucleon121

problem. Once the value of c drops below 4 fm−1, the separation energy decreases uniformly as a function of the122

inverse scattering length until the deuteron breakup threshold is reached at c = 3.9 fm−1. At this point 6Li becomes123

unbound, and 1/adα → 0. Figure 1 shows that all calculations determine a single parametric curve.124

The large variation of the parameter c in the UT of the αN interaction in the P−wave may appear somewhat125

artificial. Thus as the next step we consider “realistic” interactions in the two-body sub-system. For the αN interaction126

we choose the Bang interaction [30], where we set the strength parameter of the central Woods-Saxon term to -44 MeV127

as in Ref. [25], while for the np interaction we employ the CD-Bonn potential [35]. This αN interaction generates a128

Pauli-forbidden S-wave αN bound state, which we remove from the two-body spectrum using the methods described129

in Ref. [25]. Omitting the Coulomb interaction we then obtain a 6Li three-body separation energy of −3.78 MeV and130

a scattering length of 5.29 fm, indicated in Fig. 2 as a solid red upward triangle. As a guide to the eye a subset of the131

points from Fig. 1 is also displayed in Fig. 2 as a faint dotted line; we see that this calculation based on “realistic”132

interactions falls almost on top of the line determined previously by the rank-1 separable interactions. This indicates133

that off-shell/high-momentum details of the two-body forces do not influence the low energy behavior of the d-α134

system—except to the extent that a particular force’s high-momentum behavior determines the particular point on135

the correlation line at which it resides. To check if this is indeed the case, we employ a series of np interactions136

which have quite different off-shell/high-momentum behavior but are all fitted to the deuteron binding energy and the137

3S1-
3D1 phase shift with high precision. The calculation based on the Nijmegen-93 potential [36] is indicated by the138

blue solid square, the Nijmegen-II potential [36] by the magenta solid diamond, and the Idaho-N4LO potential [37] by139

the open cyan circle. Though the realistic NN interactions are located very close to each other in Fig. 2, they all fall140

on the line established by the previous calculations shown in Fig. 1. In addition to the modern NN interactions we141

also include as filled green circles the rank-1 np interaction from Ref. [20] in which the deuteron D-state probability142

is varied for the np interaction.143

In order to further explore this behavior for more sophisticated potentials we also modify the strength of the144

Woods-Saxon potential in the central part of the Bang αN interaction from -42 MeV to -45 MeV; this preserves the145

general characteristics of the αN system, i.e., leaves it unbound, but causes the agreement with the αN phase shifts146

to deteriorate and the P3/2 resonance position to move. Keeping the np interaction fixed while making this change147

yields results for the three-body system that are represented in Fig. 2 by the red open upward triangles. They are148

consistent with the line established earlier. This is a non-phase-equivalent variation of the Bang interaction, so it is149

somewhat surprising that the E6Li-adα curve is unaffected. In contrast, changing the strength of the NN interaction,150

so altering the deuteron binding energy, yields a E6Li-adα curve whose linear portion has a different slope (not shown).151

The correlation seems to be more sensitive to the on-shell NN input than it is to the on-shell αN input.152

Interpretation and Implications We compute the universal correlation between adα and E6Li by evaluating both153

quantities using several np potentials that have different high-momentum/off-shell behavior, but almost the same154

np phase shifts, together with a continuous family of αN potentials that have different high-momentum/off-shell155

behavior but exactly the same αN phase shifts. Arbitrary combinations of these two-body potentials yields results156

for the three-body observables that lie on a single curve in the adα- E6Li plane.157

The adα-E6Li correlation displayed here is certainly related to the well-known “Phillips line” of the neutron-deuteron158

system: it is not surprising that NN interactions with different off-shell behavior produce points along a curve in the159

adα-E6Li plane. The novel feature of the n-p-α system is that varying the off-shell properties of the P -wave nucleon-α160

potential also produces points on the same curve. This kind of correlation is typical of weakly-bound systems and161

is a consequence of few-body universality. It is in accord with analyses of 6He that show universal correlations are162

expected for weakly bound, three-body systems where the same angular-momentum-structure of two-body potentials163

occurs as in 6Li [38, 39].164

The existence of an adα-E6Li correlation thus suggests that 6Li can be thought of as a “deuteron halo”. Indeed, the165

experimental d-α separation energy of 6Li (1.47 MeV) [40] is comparable to the deuteron binding energy (Bd = 2.22166

MeV), and certainly much smaller than the energy associated with α-particle excitation. Recent work on infra-red167

extrapolations of the 6Li binding energy in ab initio No-core Shell Model calculations using sophisticated NN and168

three-nucleon forces also show a typical momentum that is much smaller than that of the α particle, supporting its169

identification as a halo nucleus [41].170

The portion of the curve at very large adα, i.e., very small deuteron separation energy, is well described by an171

effective-range expansion in the dα system. However, such a two-body description is only valid when |E6Li|−Bd < Bd,172

i.e. the deuteron separation energy of 6Li is significantly less than the deuteron binding energy. When 6Li is more173
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bound the adα-E6Li correlation is linear, with a slope that depends on low-energy NN observables. In this domain174

changes of the NN interaction that alter the NN phase shifts and the deuteron binding energy yield a different175

relation between adα and E6Li. We conclude that, at least for realistic 6Li binding, the connection between adα and176

E6Li is a consequence of universality in the three-body n-p-α system, and cannot be understood using a low-order177

effective-range expansion for the d-α system.178

As is well known from three-nucleon systems [9], such a strict correlation suggests that one three-body force can179

absorb the dependence on the unitary transformation at leading order in the γR expansion. We caution that here180

we have only examined the existence of such a correlation in the α-n-p channel with total angular momentum J = 1,181

positive parity, and total isospin T = 0. But, following the example of the three-nucleon case, we anticipate that182

other low-energy d-α observables—not just adα—are correlated with the three-body separation energy. If that’s the183

case then d-α scattering should be accurately predicted starting from α-nucleon and np interactions as long as the184

three-body separation energy is reproduced.185

In Ref. [42] Ryberg et al. performed an EFT calculation of the αnn system and argued that, for the 6He channel186

where J = 0 and T = 1, there were at least two three-body force structures if both the P3/2 and P1/2 channels187

were included in the αN interaction. In contrast, we found that the adα-E6Li correlation is very similar regardless188

of whether only P3/2, only P1/2, or both αN channels are unitarily transformed. Thus we have no indication that a189

second three-body force structure contributes to low-energy αd observables at leading order in the γR expansion, even190

if both P -wave αN channels are included non-perturbatively in the three-body calculation. The extent to which other191

observables are correlated with the 6Li binding energy is an interesting topic for future work, as is the identification192

of the leading three-body force in all of the 6Li three-body channels [43].193

As mentioned before, we have not included the Coulomb repulsion between the α particle and the proton in this194

analysis. It seems reasonable to expect that the halo nature of the 6Li system unveiled in this study will still be present195

once Coulomb effects are included (cf. Ref. [44] for a study of this issue in a two-body model). In Ref. [25] a subset196

of the authors computed the amount by which that force reduces the three-body separation energy of 6Li, but those197

results were only for the 6Li bound state. Once we have the ability to include the Coulomb force when solving the198

scattering Faddeev-AGS equations with separable interactions, it will be worthwhile revisit the calculations present199

here and assess the impact of the repulsive αp electrostatic interaction on the universal correlations in the 6Li system.200
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FIG. 1. (Color online) The absolute value of the three body separation energy of 6Li as function of the inverse of the d-α S-wave
scattering length adα for phase shift equivalent interactions obtained by unitarily transform the interactions in the nα P3/2 and
P1/2 channels. The insert magnifies the marked rectangle and indicates the value c of the exponent in the transformation of
Eq. (4). The dashed horizontal line indicates the deuteron breakup threshold.
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FIG. 2. (Color online) The absolute value of the three body separation energy of 6Li as a function of d-α S−wave scattering
length adα calculated with a variety of interactions, as described in the text and indicated by the legend. The faint dotted line
picks up points from Fig. 1 and is intended to guide the eye.


