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The correlation of the tidal polarizabilities Λ1-Λ2 for GW170817 is predicted by combining dense-
matter equations of state (EOS) that satisfy nuclear physics constraints with the chirp mass and
mass asymmetry for this event. Our models are constrained by calculations of the neutron-matter
EOS using chiral effective field theory Hamiltonians with reliable error estimates up to once or twice
the nuclear saturation density. In the latter case, we find that GW170817 does not improve our
understanding of the EOS. We contrast two distinct extrapolations to higher density: a minimal
model (MM) which assumes that the EOS is a smooth function of density described by a Taylor
expansion and a more general model parameterized by the speed of sound that admits phase tran-
sitions. This allows us to identify regions in the Λ1-Λ2 plots that could favor the existence of new
phases of matter in neutron stars. We predict the combined tidal polarizability of the two neutron
stars in GW170817 to be 80 ≤ Λ̃ ≤ 580 (280 ≤ Λ̃ ≤ 480 for the MM), which is smaller than the
range suggested by the LIGO-Virgo data analysis. Our analysis also shows that GW170817 requires
a NS with M = 1.4M� to have a radius 9.0 < R1.4 < 13.6 km (11.3 < R1.4 < 13.6 km for the MM).

I. INTRODUCTION

The first multi-messenger observations of a binary
neutron-star (NS) merger, GW170817, marks the be-
ginning of a new era in astronomy [1]. On August 17,
2017, gravitational waves (GW) from this event were ob-
served in the interferometer network consisting of Ad-
vanced LIGO and Virgo [2]. 1.7 s after the GW signal,
detectors onboard Fermi and Integral observed a short
gamma-ray burst, and after hours to days optical and
infrared observations by several ground-based telescopes
revealed emissions that were consistent with the decay of
heavy nuclei produced and ejected during the merger [1].
This event and more expected in future have the poten-
tial to unravel many unsolved questions related to NS,
their interior composition, and their role in nucleosyn-
thesis and astrophysics.

In this article, we confront the results of the LIGO-
Virgo (LV) data analysis [3] (updating the analysis pre-
sented in Ref. [2]), with our own analysis using equations
of state (EOS) consistent with the current understand-
ing of nuclear interactions and the properties of nucle-
onic matter in the vicinity of nuclear saturation density,
nsat = 0.16 fm−3. Unlike the LV analysis, we assume
that both compact objects are governed by the same
EOS, excluding, e.g., a binary black-hole NS scenario.
We employ two models for the high-density EOS: a min-
imal model (MM) which relies on an extrapolation of a
parametrized nuclear EOS guided by a density expan-
sion about nsat, and a second model (CSM) which is a
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general parametrization of the speed of sound cS and in-
cludes phase transitions. Both models are constrained
by calculations of pure neutron matter up to a transi-
tion density ntr, which is chosen to be either nsat or
2 nsat. The neutron-matter EOS, obtained by solving
the many-body Hamiltonian derived from chiral effective
field theory (EFT) using Quantum Monte Carlo (QMC)
methods, is expected to provide reliable error estimates
up to 2nsat [4]. Our models are also constrained to be
stable (pressure and cS are positive), causal (cS < c,
with the speed of light c), and are required to support
a NS maximum mass Mmax ≥ 1.9 M�. Our analysis,
which contrasts these models in light of the data from
GW170817, allows us to: (i) establish the range of tidal
polarizabilities Λ that are predicted by an EFT-based nu-
clear EOS expected to describe matter up to 2nsat with
associated errors, (ii) identify correlations between Λ1-Λ2

that are sensitive to the properties of matter between nsat
and 2 nsat, and to those at higher densities, where reli-
able calculations do not currently exist; and (iii) contrast
extrapolations of nuclear EOSs to those in which more
extreme variations, including phase transitions, may be
present and thereby address the masquerade problem [5].

We present our main findings in Fig. 1, where we show
correlation plots of the tidal polarizabilities Λ1 and Λ2

of the two neutron stars in GW170817. We find that our
analysis including PNM constraints up to nsat and the
assumption that the neutron stars are governed by the
same EOS is compatible with the LV analysis. The CSM,
however, allows for a wider range of Λi (see Fig. 1(a)). In
this case, the LV analysis provides useful constraints on
the EOS at supra-nuclear densities (see Fig. 1(b) where

70 ≤ Λ̃ ≤ 720 is imposed). However, if the neutron-
matter EOS is assumed to be valid up to 2nsat, the pre-
dicted Λi are more tightly constrained than suggested
by the LV analysis, as is evident from Fig. 1(c). In this
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FIG. 1. Envelopes for CSM (red) and MM (black) for the correlation of Λ1 and Λ2 for the two NSs in GW170817. We show

results: panel (a) for ntr = nsat and no constraint on Λ̃, panel (b) for ntr = nsat when additionally enforcing 70 ≤ Λ̃ ≤ 720, and

panel (c) for ntr = 2nsat and no constraint on Λ̃. We also show 90% (dashed lines) and 50% (dotted lines) probability contours
for MM and CSM, and compare to the corresponding 90% and 50% contours from the LV analysis (blue lines).

case, GW170817 does not provide new insights about the
EOS and future observations would need to achieve an
uncertainty ∆Λ̃ ≈ 300 − 400 to do so. Furthermore,
if the observational uncertainty reaches a precision of
∆Λ̃ < 200, a comparison between CSM and MM pre-
dictions in Fig. 1(c) suggests that it would be possible to
probe phase transitions at supra-nuclear density.

This paper is structured as follows. In Sec. II we in-
troduce the EOS models we use in this work. In Sec. III
we study the implications of the recent observation of
GW170817. Finally, we will summarize in Sec. IV.

II. EOS MODELS

A. Low-density neutron-matter constraints

Low-density neutron-matter is rather well determined
by microscopic approaches based on Hamiltonians con-
strained by NN scattering data and information on light
nuclei. At very low densities, PNM is close to the unitary
limit where the large two-body scattering length domi-
nates. Here, measurements of cold atomic gases [6, 7]
validate the QMC methods used in this work [8]. In
addition, two- and many-body interactions in neutron
matter are simpler than in systems containing also pro-
tons [9]. Therefore, current many-body methods are well
suited to describe neutron matter, and predictions of the
neutron-matter EOS based on different many-body ap-
proaches and Hamiltonians are typically in very good
agreement [10, 11].

Among them, Chiral EFT [12–16] is a systematic and
successful theory of nuclear forces that provides a well-
defined prescription to estimate uncertainties. In this
work, we consider neutron-matter results of Ref. [4],
which were obtained using chiral EFT Hamiltonians
from Refs. [17, 18], which have been tested in light- to

medium-mass nuclei and in n-α scattering with great suc-
cess [18, 19]. They also agree with experimental knowl-
edge of the empirical parameters for the symmetry en-
ergy [20, 21]. In Ref. [4], the order-by-order convergence
of these Hamiltonians was investigated, and it was found
that the convergence was reasonable and consistent with
power-counting arguments up to 2nsat within theoretical
uncertainty estimates. Thus, we base all our models on
the neutron-matter EOS up to ntr, which we vary to be
nsat or 2nsat.

The energy per particle and pressure of PNM, deter-
mined from chiral EFT [4], are shown as functions of
the baryon number density n in Figs. 2(a) and (b) up to
nsat and in Figs. 2(e) and (f) up to 2nsat (vertical blue
uncertainty bars).

B. Minimal Model

As mentioned earlier, for n > ntr we use two distinct
approaches. In the first approach, which we call minimal
model, the EOS is assumed to be smooth and related to
a density expansion about nsat. The model parameters,
which can in principle be measured in experiments, are
the so-called empirical parameters of nuclear matter: the
saturation energy Esat, the incompressibility Ksat, the
symmetry-energy parameter Esym, its slope parameter
Lsym, and higher-order parameters, defined through

es(n) = Esat +
1

2
Ksatu

2 +
1
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+
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24
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4 + ... (1)
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FIG. 2. Comparison of MM (black) and CSM (red) for ntr = nsat [upper panels, (a)-(d)] and ntr = 2nsat [lower panels, (e)-(h)].
We compare the energy per particle [panels (a) and (e)] and pressure in PNM [panels (b) and (f)], the EOS envelopes of NS
matter [panels (c) and (g)], and the MR envelopes [panels (d) and (h)]. In panels (a), (b), (e), and (f), we also show the PNM
constraints from Ref. [4].

with the energy per particle in symmetric matter es(n)
and the symmetry energy s(n) = 1

2∂
2e/∂δ2. Further-

more, the expansion parameter is defined as u = (n −
nsat)/(3nsat) with the baryon density n = nn + np
and the neutron and proton densities nn and np, re-
spectively. Lastly, the isospin asymmetry is given by
δ = (nn − np)/n. By varying the empirical parameters
within their uncertainties, the MM is able to reproduce
the EOSs predicted by a large number of existing models
which assume a nuclear description for all densities en-
countered in NSs [21]. Specifically, the MM corresponds
to the meta-model ELFc introduced and applied to NS
in Refs. [21, 22].

C. Speed-of-sound Model

We use a second approach to extend the EOS to higher
densities in terms of the speed of sound, and we call this
model CSM. The CSM constructs the EOS from a general
parametrization of the speed of sound, c2S = ∂P (ε)/∂ε,
with pressure P and energy density ε. It includes phase
transitions that can produce drastic softening or stiff-

ening, contrasting the smoothness imposed by the MM.
The CSM explores the widest possible domain of equa-
tions of state, maximizing the predictions for the EOS
and neutron-star observables. It was studied in Ref. [4],
but here we extend the parametrization to explore the full
space for cS by randomly sampling six reference points
cS(n) between ntr and 12nsat and connecting them by
linear segments. For each such EOS, we generate an ad-
ditional EOS by including a strong first-order phase tran-
sition with random position and width. We have checked
the stability of the resulting envelopes of this extension
shown in Fig. 2 against increasing the number of refer-
ence points to ten.

This approach represents a generalization of extensions
using piecewise polytropes, introduced in Ref. [23] and
widely used for NSs [24–27], but offers the advantage that
cS , entering in the calculation of Λ, is continuous except
when first-order phase transition are explicitly consid-
ered. Similar to piecewise polytropes, the CSM does not
allow to extract information on the composition of dense
matter or the type of a phase transition but is a prag-
matic way to test effects beyond the MM, and allows us
to discuss the observable differences between nucleonic
and exotic phases of matter.
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D. Neutron-star EOS

To obtain the neutron-star equations of state, we ex-
tend our models to β-equilibrium and include a crust as
described in Refs. [22, 28]. These different prescriptions
show excellent agreement, see panels (c) and (g) of Fig. 2
at low densities. For all our EOS, once β-equilibrium
matter is obtained, we enforce causality, stability, and, in
the MM, the positivity of the symmetry energy, s(n) >
0, up to the maximal central density corresponding to
Mmax. Current pulsar observations impose the additional
conservative contraint Mmax > 1.9M� [29–31].

In Fig. 2, we compare the EOS boundaries for the CSM
(light-red bands, dashed contours) and the MM (dark-
gray bands, solid contours) in panel (c) for ntr = nsat
and in panel (g) for ntr = 2nsat. In panels (d) and (h) we
show the corresponding boundaries in the mass-radius
(MR) diagram, resulting from solving the TOV equa-
tions [32, 33]. We find that i) both models show good
agreement at low densities, ii) the MM is a subset of the
CSM above ntr as expected, and iii) the CSM allows for
regions of sudden stiffening or softening that are absent
in the MM. From Fig. 2, we also conclude that iv) al-
though the PNM EOS has sizable uncertainties between
1 − 2nsat, see Ref. [4] and Fig. 2(e)-(f), it nevertheless
provides sufficient additional information to substantially
reduce the EOS and MR uncertainties; see also Ref. [34].

III. IMPLICATIONS OF GW170817

A. Tidal polarizabilities

We now discuss the implications of GW170817. The
wave-front analysis of the entire signal provided very
tight constraints on the chirp mass of GW170817, de-

fined as Mchirp = (m1m2)3/5m
−1/5
tot with mtot = m1+m2,

and less tight constraints on the mass distribution of the
two neutron stars. With m1 (m2) being the mass of the
heavier (lighter) neutron star, the mass asymmetry can
be parametrized by the ratio q = m2/m1. The observa-
tional constraints on Mchirp and q can be described by
an analytical probability distribution [35] ,

p(q,Mchirp) = p(q)p(Mchirp) , (3)

where

p(Mchirp) ∝ exp[−(Mchirp − M̄chirp)2/2σ2
M ] , (4)

with M̄chirp = 1.186M�, σM = 10−3M� [3], and

p(q) = exp

(
−1

2
v(q)2 − 1.83

2
v(q)4

)
, (5)

with v(q) = (q − 0.89)/0.20. We compare the normal-
ized observed and analytical mass distributions for m1

and m2, sampled from p(q,Mchirp), in Fig. 3. Note that
here we only investigate the more realistic low-spin case,
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FIG. 3. The mass distributions for m1 and m2 from Ref. [3]
(histograms) and the distributions used in this work (solid
lines).

because large spins are not expected from the observed
galactic binary NS population; see also Ref. [36].

The combined tidal parameter

Λ̃ =
16

13

[
(m1 + 12m2)m4

1Λ1

m5
tot

+ 1↔ 2

]
(6)

appears as a post-Newtonian fifth-order correction to the
wave-front phase [37, 38], which makes it small and there-
fore difficult to extract from GW observations [39, 40].

For GW170817, limits of 70 ≤ Λ̃ ≤ 720 were reported [3]
(hereafter LV constraint). Given the sizable observa-

tional uncertainty for Λ̃, we now analyze Λ̃ for GW170817
as predicted by nuclear physics. Using the two general
EOS models and the mass distributions as specified be-
fore, we compute the correlation for Λ1 and Λ2. We
present the envelopes for the CSM (top half) and the
MM (lower half, Λ1 ↔ Λ2) in Fig. 1, and compare their
respective 50% and 90% probability contours with the
corresponding LV results.

In panel (a), we show results for ntr = nsat. Due to the
large uncertainty in the high-density EOS, the contour
for the CSM is much wider than the LV contour, and we
find Λ̃CSM = 60− 2180, compared to Λ̃MM = 280− 1030.
In this case, the LV constraints can provide additional
information for the EOS of NSs, see also Refs. [27, 41].

When we enforce the LV constraint by selecting ap-
propriate EOS-q combinations, we obtain the envelopes
presented in panel (b). In this case, the two models are
in very good agreement with each other. This agreement
confirms previous works [2, 27, 41, 42], showing that the
LV constraint excludes the stiffest EOSs leading to less
compact NS. In our case, a M = 1.4M� NS has a radius
9.0 < R1.4 < 13.6 km (11.3 < R1.4 < 13.6 km for the
MM), similar to Ref. [27].

Finally, in panel (c), we show our results for ntr =

2nsat, and no Λ̃ constraint. In this case, the envelopes are
much narrower than the LV result. This highlights the
fact that, even though the neutron-matter EOS has siz-
able uncertainties at 2nsat, nuclear-physics calculations
provide sufficient information to decrease uncertainties
for Λ̃ below current observational limits. In this case, we
predict Λ̃CSM = 80 − 580 and Λ̃MM = 280 − 480, and
a M = 1.4M� NS has a radius 9.2 < R1.4 < 12.5 km
(11.3 < R1.4 < 12.1 km for the MM).
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and MM (dashed). We also show the Mmax constraints of

Refs. [35, 43, 44] and the Λ̃ constraint of Ref. [45].

While the CSM can also produce small values for Λ̃
in all cases shown in Fig. 1, the MM prevents Λ̃ . 250.
This quantitative difference is directly related to the pos-
sibility of phase transitions in the CSM, where significant
softening of the EOS in the vicinity of 2nsat followed by a
stiffer EOS at higher density produces compact neutron
stars while still accounting for the observed Mmax.

B. Λ̃ −Mmax correlation

Finally, we study the Λ̃ −Mmax correlation for ntr =
2nsat. In Fig. 4 we present envelopes of our predictions
for q = 1 and q = 0.7, corresponding to the upper and
lower limits for GW170817 [3]. The MM domain in Λ̃−
Mmax is much smaller than for the CSM, as anticipated
from Fig. 1. For the MM, Mmax is very compatible with
the inferences of about 2.2− 2.3 M� [35, 43, 44], but for
either model an upper bound forMmax does not constrain
Λ̃.

In Ref. [45], merger simulations using four different
equations of state and several values for q were performed
and the correlation between Λ̃−Mmax was used to argue
that Λ̃ > 400 under the assumption that the hypermas-

sive neutron star in GW170817 did not collapse promptly
to a black-hole. From Fig. 4, it is clear that there exist
equations of state with Λ̃ < 400 but much higher Mmax

than the four EOSs used in Ref. [45]. For example, there

exist EOSs with Λ̃ = 300 but with Mmax = 2.6M�, large
enough to support a stable long-lived merger remnant.
We therefore suggest that the lower limit of Ref. [45]
might be overestimated.

IV. SUMMARY

In conclusion, we have shown that neutron-matter cal-
culations using chiral EFT interactions up to 2nsat pre-
dict Λ̃CSM = 80 − 580 and Λ̃MM = 280 − 480 - a range
that is consistent but smaller than the constraints ob-
tained from the LV analysis of data from GW170817 [3].
This suggests that future GW detections will need to be
more precise to provide useful EOS constraints.

Furthermore, we have contrasted two high-density ex-
trapolations (MM and CSM) to provide insights on how

measurements of Λ̃ from binary neutron-star mergers can
elucidate properties of matter at supra-nuclear densi-
ties. For example, a detection of Λ̃ outside the range
of 280− 480 would provide strong evidence for the exis-
tence of phase transitions at supra-nuclear densities. Our
analysis also suggests that if future detections favor val-
ues incompatible with Λ̃CSM = 80− 580, it would imply
a breakdown of the nuclear EFT between 1− 2nsat, and
perhaps signal the presence of strongly-interacting dense
quark matter inside neutron stars.

Ongoing efforts to improve the EFT predictions for
neutron matter, especially those pertaining to three-
neutron forces, will likely reduce the present range for
Λ̃CSM and Λ̃MM, and improve prospects for GW detec-
tions to provide unique insights into the nature of dense
matter in NS.

ACKNOWLEDGMENTS

We thank the participants of the INT-JINA Sympo-
sium ”First multi-messenger observations of a neutron
star merger and its implications for nuclear physics” for
useful discussions. This work was supported in part
by the National Science Foundation Grant No. PHY-
1430152 (JINA Center for the Evolution of the Ele-
ments) and the U.S. DOE under Grants No. DE-FG02-
00ER41132. JM was partially supported by the IN2P3
Master Project MAC, ”NewCompStar” COST Action
MP1304, and PHAROS COST Action MP16214.

[1] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese,
K. Ackley, et al., Astrophys. J. Lett. 848, L12 (2017).

[2] B. . Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.
Lett. 119, 161101 (2017).

[3] B. P. Abbott et al. (Virgo, LIGO Scientific), (2018),

arXiv:1805.11579 [gr-qc].
[4] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, (2018),

arXiv:1801.01923 [nucl-th].
[5] M. Alford, M. Braby, M. W. Paris, and S. Reddy, Astro-

phys. J. 629, 969 (2005), arXiv:nucl-th/0411016 [nucl-



6

th].
[6] S. Nascimbne, N. Navon, K. J. Jiang, F. Chevy, and

C. Salomon, Nature 463, 1057 (2010).
[7] M. W. Zwierlein, Superfluidity in ultracold atomic Fermi

gases, Vol. 2 (Oxford University Press, 2014).
[8] J. Carlson and S. Reddy, Phys. Rev. Lett. 100, 150403

(2008).
[9] K. Hebeler and A. Schwenk, Phys. Rev. C82, 014314

(2010), arXiv:0911.0483 [nucl-th].
[10] S. Gandolfi, A. Gezerlis, and J. Carlson, Ann. Rev. Nucl.

Part. Sci. 65, 303 (2015), arXiv:1501.05675 [nucl-th].
[11] K. Hebeler, J. D. Holt, J. Menendez, and

A. Schwenk, Ann. Rev. Nucl. Part. Sci. 65, 457 (2015),
arXiv:1508.06893 [nucl-th].

[12] S. Weinberg, Physica A96, 327 (1979).
[13] S. Weinberg, Phys.Lett. B251, 288 (1990).
[14] S. Weinberg, Nucl.Phys. B363, 3 (1991).
[15] E. Epelbaum, H.-W. Hammer, and U.-G. Meiner, Re-

views of Modern Physics 81, 1773 (2009).
[16] R. Machleidt and D. R. Entem, Phys. Rept. 503, 1

(2011).
[17] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi,

K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. Lett.
111, 032501 (2013).

[18] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis,
K. E. Schmidt, and A. Schwenk, Phys. Rev. Lett. 116,
062501 (2016).

[19] D. Lonardoni, J. Carlson, S. Gandolfi, J. E. Lynn, K. E.
Schmidt, A. Schwenk, and X. Wang, Phys. Rev. Lett.
120, 122502 (2018), arXiv:1709.09143 [nucl-th].

[20] I. Tews, J. M. Lattimer, A. Ohnishi, and E. E. Kolomeit-
sev, Astrophys. J. 848, 105 (2017).

[21] J. Margueron, R. Hoffmann Casali, and F. Gul-
minelli, Physical Review C 97 (2018), 10.1103/Phys-
RevC.97.025805.

[22] J. Margueron, R. Hoffmann Casali, and F. Gul-
minelli, Physical Review C 97 (2018), 10.1103/Phys-
RevC.97.025806.

[23] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,
Phys. Rev. D79, 124032 (2009), arXiv:0812.2163 [astro-
ph].

[24] K. Hebeler, J. M. Lattimer, C. J. Pethick, and
A. Schwenk, Physical Review Letters 105, 161102 (2010),
arXiv:1007.1746 [nucl-th].

[25] K. Hebeler, J. M. Lattimer, C. J. Pethick, and
A. Schwenk, Astrophys. J. 773, 11 (2013).

[26] C. A. Raithel, F. Ozel, and D. Psaltis, Astrophys. J.
831, 44 (2016).

[27] E. Annala, T. Gorda, A. Kurkela, and A. Vuorinen,
Phys. Rev. Lett. 120, 172703 (2018), arXiv:1711.02644
[astro-ph.HE].

[28] I. Tews, Phys. Rev. C95, 015803 (2017).
[29] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and

J. Hessels, Nature 467, 1081 (2010).
[30] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S.

Lynch, et al., Science 340, 6131 (2013).
[31] E. Fonseca et al., Astrophys. J. 832, 167 (2016).
[32] R. C. Tolman, Phys.Rev. 55, 364 (1939).
[33] J. Oppenheimer and G. Volkoff, Phys.Rev. 55, 374

(1939).
[34] J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426

(2001), arXiv:astro-ph/0002232 [astro-ph].
[35] B. Margalit and B. D. Metzger, Astrophys. J. 850, L19

(2017).
[36] B. P. Abbott et al. (Virgo, LIGO Scientific), (2018),

arXiv:1805.11581 [gr-qc].
[37] E. E. Flanagan and T. Hinderer, Physical Review D 77

(2008), 10.1103/PhysRevD.77.021502.
[38] T. Damour and A. Nagar, Physical Review D 80 (2009),

10.1103/PhysRevD.80.084035.
[39] M. Favata, Physical Review Letters 112 (2014),

10.1103/PhysRevLett.112.101101.
[40] K. Yagi and N. Yunes, Physical Review D 89 (2014),

10.1103/PhysRevD.89.021303.
[41] E. R. Most, L. R. Weih, L. Rezzolla, and J. Schaffner-

Bielich, (2018), arXiv:1803.00549 [gr-qc].
[42] V. Paschalidis, K. Yagi, D. Alvarez-Castillo, D. B.

Blaschke, and A. Sedrakian, Phys. Rev. D97, 084038
(2018), arXiv:1712.00451 [astro-ph.HE].

[43] M. Shibata, S. Fujibayashi, K. Hotokezaka, K. Kiuchi,
K. Kyutoku, Y. Sekiguchi, and M. Tanaka, Phys. Rev.
D96, 123012 (2017).

[44] L. Rezzolla, E. R. Most, and L. R. Weih, Astrophys. J.
852, L25 (2018).

[45] D. Radice, A. Perego, F. Zappa, and S. Bernuzzi, Astro-
phys. J. 852, L29 (2018).


